
 
 

 
 

6.858 Lecture 12
TCP/IP security


Threat model for network security:
• Adversary can intercept / modify network traffic. 
• Adversary can send packets. 
• Adversary has full control of their own machines. 
• Adversary can participate in protocols (usually). 

o Often	
  not feasible to keep bad guys out of a large systems. 

Eavesdropping	
  on packets.
• Important to keep in mind, but relatively well understood. 
• Any data sent over the network can be observed by an adversary. 

Sending / spoofing packets.
• IP allows sender to construct an	
  arbitrary	
  packet. 
• In particular,	
  sender can fill	
  in any source	
  address. 
• Can	
  pretend that a packet is coming from any address. 
• What	
  can	
  an adversary do with this? 

Easy target: trigger bugs in some implementation.
• Author isn't so interested in this class of problems. 
• Instead,	
  want to look at "protocol-­‐level	
  problems". 
• What	
  is a protocol-­‐level	
  problem? 

o A problem inherent in the design. 
o A correct implementation will have this problem. 

• Why is it so important? 
o Can	
  fix implementation bugs. 
o To fix protocol-­‐level	
  bugs, might need to change protocol! 
o Might be incompatible with existing systems. 
o As we will see, sometimes possible to come up with compatible fixes. 

TCP	
  sequence number attack.
Standard	
  handshake (figure	
  on the right	
  side of page 2):

C: SRC=C, DST=S, SYN(SNc)

S: SRC=S, DST=C, SYN(SNs), ACK(SNc)

C: SRC=C, DST=S, ACK(SNs)

C: SRC=C, DST=S, data(SNc), ACK(SNs)
 

How	
  does the adversary know the data is coming from the client?
• Only the client	
  should have been	
  able to receive the second	
  message. 
• Thus, only	
  the	
  client should	
  know SNs. 
• Third message is rejected, unless it has the right SNs value. 
Suppose adversary A wants to simulate a connection to S from C.	
  (Assume A knows
C's IP	
  address	
  -­‐-­‐ usually	
  not a big deal	
  in practice.)

1



 

 
 

  
 

 

A: SRC=C, DST=S, SYN(SNc)
S: SRC=S, DST=C, SYN(SNs), ACK(SNc)

A: SRC=C, DST=S, ACK(SNs) -- but how to guess SNs?

A: SRC=C, DST=S, data(SNc)
 

Where does the adversary get	
  SNs?
•	 TCP	
  specification suggested a specific way to choose them. 
•	 In particular, increment at a ~constant rate: ~250,000 per second. 
•	 Why so specific? 

o	 Subtle interactions with reused connections (src/dst port numbers). 
o	 Want to avoid old packets (from past conns) interfering with new conn. 
o	 [ Ref: RFC 1185 appendix ] 

•	 If adversary	
  knows a recent sequence number, can guess the next one. 
o Impl would actually bump ISN every second, making it easy to guess.

What	
  happens to the real	
  packet	
  that	
  S sends to C (second pkt)?
•	 C would assume the packet is from an old conn, send RST in response. 
•	 Even if that RST was sent,	
  adversary	
  could try	
  to race	
  before	
  RST arrives. 
• Luckily, there	
  was	
  another	
  curious	
  bug;	
  will get to	
  it later. 
But why do sequence number attacks turn into a security problem?

1. Spoof	
  connections	
  to	
  applications	
  that rely	
  on	
  IP addresses. 
•	 E.g., Berkeley remote access tools: rlogin, rsh, rcp. 
•	 Allowed login without a password, if connection came from a "trusted" system. 

o	 Required connection to come from a trusted source port (512-­‐1023). 
§ Why this requirement?

o	 Trusted	
  rlogin/rsh/rcp	
  program sent the client's username. 
o	 If username was the same as the account on the server, no password

needed. 
o	 E.g.: "rsh athena.dialup.mit.edu ls". 

•	 Made a bad assumption about what the TCP	
  layer provided. 
o	 Assumed TCP	
  conn from an IP address meant it really came from that 

host. 
•	 If adversary can guess SNs, then can simulate connection from trusted host. 

o	 Issue any command using rsh. 
o	 Could	
  change the user's .rhosts file to allow login from attacker's host. 
o	 Then connect directly without having to simulate a connection. 

•	 Host-­‐based	
  authentication seems like a bad plan. 
o	 Especially relying on "trusted" vs "untrusted" ports on a machine. 
o	 Still in some use today: e.g., SMTP for outgoing mail. 

•	 Actually rlogin authentication was even worse: they authenticated by hostname. 
o	 Where does hostname come from? Reverse DNS lookup. 
o	 E.g., 18.26.4.9: find the PTR record of 9.4.26.18.in-­‐addr.arpa. 
o	 Owner of that domain can set PTR record to any hostname! 
o	 (Can	
  make a slight improvement: check if host resolves to same addr.) 
o	 Similar problems show up in log files: log resolved (untrusted) hostname. 

2



 

 

2. Denial of service attack:	
  connection	
  reset. 
•	 Once we know	
  SNc,	
  can send a RST packet. 
•	 Worse yet: server will	
  accept	
  a RST packet	
  for any SNc value within	
  window. 
•	 With a large window	
  (~32K=2^15),	
  only	
  need 2^32/2^15	
  = 2^17 guesses. 

How bad	
  is a connection reset?
•	 One target	
  of such attacks were the TCP	
  connections between	
  BGP	
  routers. 
•	 Causes	
  routers to assume link failure, could affect traffic for minutes. 
•	 Solutions: 

o	 TTL hack (255). 
o	 MD5 header	
  authentication	
  (very specialized	
  for router-­‐to-­‐router	
  links). 

3. Hijack existing	
  connections. 
•	 In similar vein, can also inject data into an existing connection. 
•	 All adversary needs to know is the current SNc. 

How	
  to mitigate this problem?
•	 Baseline:	
  don't rely	
  on IP	
  addresses	
  for authentication. 

o	 Use encryption	
  / authentication	
  at a higher level. 
o	 Next lecture:	
  Kerberos. 
o	 But still,	
  want to fix	
  the situation	
  we're in,	
  for TCP. 

•	 ISPs can filter packets sent by their customers. 
o	 Often done today for small customers, but not consistently. 
o	 Not straightforward for customers with complex networks,


multihoming…
 

How to	
  patch	
  up TCP?
•	 Can't	
  choose ISN's in a completely random way, without violating TCP	
  spec. 

o	 Might	
  break	
  connection	
  (port) reuse guarantees. 
•	 Random increments? 

o	 Should preserve increment rate (~250k/second). 
o	 Not a huge amount of randomness (say, low 8 bits per increment). 

•	 Aside: must be careful about how we generate random numbers! 
o	 Common	
  PRNG: linear congruential generator: R_k = A*R_{k-­‐1}+B mod N. 
o	 Not secure:	
  given one pseudo-­‐random	
  value, can guess the next one! 
o	 Lots	
  of better	
  cryptographically	
  secure	
  PRNGs	
  are	
  available. 

§ Ideally,	
  use	
  your kernel's built-­‐in	
  PRNG (/dev/random
/dev/urandom)

§ Ref: http://en.wikipedia.org/wiki/Fortuna_(PRNG), or any stream	
  
cipher like	
  http://en.wikipedia.org/wiki/RC4

•	 However, SN	
  values	
  for different src/dst pairs	
  never	
  interact! 
•	 So, can choose the ISN using a random offset for each src/dst pair. 

o	 Nice trick:	
  ISN	
  = ISN_oldstyle	
  + F(srcip,	
  srcport,	
  dstip,	
  dstport,	
  secret) 
o	 F is	
  some pseudo-­‐random function; roughly, think SHA1. 

3

http://en.wikipedia.org/wiki/Fortuna_(PRNG)
http://en.wikipedia.org/wiki/RC4


 

 
 

 

 

o Requires	
  no extra	
  state to keep track	
  of per-­‐connection	
  ISNs.

Are sequence number attacks still relevant?
• Most operating systems implement the per-­‐connection	
  ISN workaround	
  above.

o Ref: Linux	
  secure_tcp_sequence_number	
  in net/core/secure_seq.c
• But other protocols suffer from almost identical problems -­‐-­‐ e.g., DNS.

o DNS runs over UDP, no seq numbers, just ports, and dst port fixed (53).
o If adversary knows client is making a query, can fake a response.

§ Just need	
  to	
  guess src port,	
  often	
  predictable.
o Problem gained popularity in 2008, though well-­‐understood by djb

before.
§  Ref: http://cr.yp.to/djbdns/forgery.html
§  Ref: http://unixwiz.net/techtips/iguide-kminsky-dns-vuln.html

o Solution: carefully	
  take advantage of all possible randomness!
§ DNS queries	
  contain 16-­‐bit	
  query ID, and can randomize ~16 bit

src port.
o Solution: deploy DNSSEC (signed DNS records, including missing

records).
o One problem: key distribution (who is allowed to sign each domain?)
o Another problem: name enumeration (to sign "no such name" responses).

§ Partially mitigated by NSEC3: http://tools.ietf.org/html/rfc5155
o Slow adoption, not much incentive to upgrade, non-­‐trivial	
  costs.
o Costs	
  include both performance and administrative (key/cert

management).

SYN flooding.
• Note that server must store some state when it receives a SYN packet.

o Called	
  a half-­‐open	
  connection:	
  replied	
  with	
  SYN-­‐ACK,	
  waiting for the ACK.
• What if it receives SYN messages frommany sources?

o Many implementations try to keep state for all	
  half-­‐open	
  connections.
o But eventually run out of memory, must reject connections!

• Annoying problem: we don't even know who we're keeping state for!
o Adversary could have a single host, and generate SYNs frommany src IPs.

• Denial-­‐of-­‐service	
  attack:	
  big	
  asymmetry	
  between client + server resources.
o Client	
  spoofs a single packet (less than 1 millisecond).
o Server wastes memory until connection times out (minutes).

Defense	
  for SYN	
  flooding:	
  SYN	
  cookies.
• Idea: make the server stateless, until it receives that third packet (ACK).
• Why is this tricky?

o Need to ensure an adversary can't make up a conn from any src address.
o Previously, this was done by storing ISNs, and expecting it in the ACK.

• Use a bit of cryptography to achieve similar goal.
• Encode	
  server-­‐side	
  state	
  into sequence number.

o ISNs = MAC_k(src/dst	
  addr+port, timestamp) || timestamp

4

http://cr.yp.to/djbdns/forgery.html
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
http://tools.ietf.org/html/rfc5155


o Timestamp is coarse-­‐grained (e.g., minutes).
o Server stores	
  secret	
  key k, not shared	
  with anyone else.
o Detailed ref: http://cr.yp.to/syncookies.html

• Server computes seq as above	
  when	
  sending SYN-­‐ACK	
  response.
• Server can verify state is intact by verifying hash (MAC)	
  on ACK's	
  seq.

o Not quite ideal: need to think about replay attacks within timestamp.
• Another problem: if third packet lost, noone retransmits.

o Maybe not	
  a big	
  deal	
  in case of a DoS attack.
o Only a problem for protocols where server speaks first.

Another DoS attack vector: bandwidth amplification.
• Send ICMP	
  echo request	
  (ping) packets to the broadcast	
  address	
  of a network.

o E.g., 18.26.7.255.
o Used to	
  be	
  that you'd get an ICMP	
  echo reply from all machines on

network.
o What if you fake a packet from victim's address? Victim	
  gets all replies.
o Find a subnet with 100 machines on a fast network: 100x amplification!
o Ref: http://en.wikipedia.org/wiki/Smurf_attack

• Can we	
  fix this?
o Routers	
  now block "directed	
  broadcast"	
  (packets sent to broadcast

address).
• Modern-­‐day	
  variant: DNS amplification.

o DNS is also	
  a request-­‐response	
  service.
o With a small query, server might send back a large response.
o With DNSSEC,	
  responses contain	
  lots of signatures,	
  so they're	
  even larger!
o Since DNS runs over UDP, source address is completely unverified.
o Ref: http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-

attack
• Can we	
  fix the	
  DNS attack?

o Actually quite hard! Root name servers must answer to queries from
anyone.

• What	
  if we had a chance to re-­‐design	
  DNS from scratch?
o One possible plan: query must be as big as response (require padding).
o General technique: force client to expend at least as much work.

TCP congestion	
  control.
• Receiver can get	
  the sender to speed up, by ACKing	
  unreceived segments. Or

send more ACKs	
  (e.g., send ACK	
  for each byte instead of every packet).

Routing protocols:	
  overly-­‐trusting	
  of participants.
• ARP: within a single Ethernet network.

o To send IP packet,	
  need the	
  Ethernet	
  MAC address of router / next hop.
o Address Resolution Protocol (ARP): broadcast a request for target's MAC.
o Anyone can listen to broadcast, send a reply; no authentication.

5

http://cr.yp.to/syncookies.html
http://en.wikipedia.org/wiki/Smurf_attack
http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack
http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack


 

 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 
 

 

o Adversary can impersonate router, intercept packets, even on switched
net.

o Potential solution: make the switch in charge of ARP.
§ Not widely deployed: would require managing MAC/IP	
  addresses

carefully.

• DHCP: again, within a single	
  Ethernet network.
o Client asks	
  for IP	
  address	
  by	
  sending a broadcast request.
o Server responds,	
  no authentication	
  (some specs exist but not widely

used).
§ If you just plugged into a network, might not know what to expect.

o Lots of fields: IP address, router address, DNS server, DNS domain list, ..
o Adversary can impersonate DHCP	
  server to new clients on the network.

§ Can	
  choose their DNS servers, DNS domains, router, etc.

o Also, DoS attack on server: ask for lots of leases, frommany MAC addrs.
o Solution: make the switch in charge of DHCP	
  (forward reqs to real

server).
§ Not widely	
  deployed:	
  would	
  require	
  careful switch configuration.
§ Even more complicated on a wireless network.

• BGP: Internet-­‐wide	
  (similar to RIP attacks described in paper).
o Any BGP participant router can announce route to a prefix.
o What	
  if adversary has a router?	
   Can	
  announce any prefix	
  or route.
o Is this problem still relevant?

§ Spammers often exploit this: announce an unused address, and
send spam.

§ Gets	
  around	
  IP-­‐level	
  blacklisting of spam senders: choose almost
any IP!

o How to	
  fix?
§ SBGP: cryptographic signing of route announcements.
§ Must	
  know	
  who is allowed	
  to	
  announce	
  every particular	
  IP prefix.
§ Requires someone to distribute keys / certificates for every IP

prefix.
§ Bootstrapping problem is tricky; some performance overheads

too.
§  Getting some traction but still not widely deployed.

Many other problems too.
• ICMP	
  messages like redirect: no authentication, basically unused now.
• Exposing too much information (netstat, SNMP, finger): mostly fixed.
• identd ("Authentication Service"): bad design, no real authentication.
• Email: real problem but no practical solutions	
  yet.

o Authentication vs authorization.
o E.g., PGP would not solve the spam problem.

• Passwords	
  in protocols:	
  supporting	
  ONLY passwords	
  isn't so great.

6



 

o We'll talk about	
  alternatives in	
  a few	
  weeks.
• FTP data transfer	
  protocol.

o Server connects back	
  to client	
  to send a file to the client.
o Client	
  tells the server what IP address and port number to use.
o Could	
  be	
  used	
  for port-­‐scanning	
  from server's IP.
o Could	
  be used to send any traffic (embedded in file) from server's IP.

§ E.g., back to IP authentication	
  problems: rlogin, spam, etc.

How do adversaries	
  know what software	
  / protocol you are	
  running?
• Probing:

o Check	
  if a system is listening on a well-­‐known	
  port.
o Protocols / systems often send an initial banner message.

• nmap can guess OS by measuring various impl-­‐specific	
  details.
o Ref: http://nmap.org/book/man-os-detection.html

• Use DNS to look up the hostname for an IP address; may give hints.
• Guessing: assume system is vulnerable, try to exploit bug.

How	
  do adversaries know the IP address of the system to attack?
• traceroute to find routers along	
  the way,	
  for BGP attacks.
• Can also	
  just scan the	
  entire	
  Internet:	
  only	
  2^32 addresses.

o 1 Gbps (100 MB/s) network link, 64 byte minimum packets.
o ~1.5M	
  packets per second.
o 2^32=4B packets in ~2500 seconds, or 45 minutes.
o zmap: implementation of this [ Ref: https://zmap.io/ ]

Why are things so insecure at the TCP/IP level?
• Historically,	
  designers did not worry as much about security.

o Even Bellovin says: "The Internet in 1989 was a much friendlier place".
o Original	
  Internet	
  had a small number of relatively trustworthy users.
o Design requirements changed over time.

• End-­‐to-­‐end	
  argument in action.
o Must	
  provide security at the application	
  level	
  anyway.
o Things are	
  "good enough" at the	
  transport level to	
  let application	
  work.

• Some	
  fixes do get added, but only for the worst problems / easier solutions.

How	
  to improve security?
• Protocol-­‐compatible	
  fixes to TCP implementations.
• Firewalls.

o Partial fix,	
  but widely	
  used.
o Issue: adversary may be within firewalled network.
o Issue: hard to determine if packet is "malicious" or not.
o Issue: even for fields that are	
  present	
  (src/dst),	
  hard to authenticate.
o TCP/IP's	
  design not a good match for firewall-­‐like filtering	
  techniques.
o E.g., IP packet fragmentation: TCP	
  ports in one packet, payload in another.

• Implement security on top of TCP/IP:	
  SSL/TLS, Kerberos, SSH,	
  etc.

7

https://zmap.io/


 
 

 
 

 
 

o Beware: this paper isn't	
  clear on	
  encryption	
  vs.	
  authentication.
o Will talk about this more in next lecture on Kerberos.

• Use cryptography (encryption, signing, MACs,	
  etc).
o Quite a hard problem: protocol design, key distribution, trust, etc.

• Some kinds of security hard to provide on top: DoS-­‐resistance, routing.
• Deployment of replacement protocols: SBGP, DNSSEC.	
  

8



MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



