

6.858 Lecture 8
Web	 Security

What is the web? In the old days, it was a simple client/server architecture (client
was your web browser, server was a machine on the network that could deliver
static text and images to your browser).
• In the old days,	 the server-‐side	 was much more complex than the client-‐side:

browsers didn't support rich interactivity, but the server might interface with
databases,other	 servers, etc.

• Because the server was so much more complicated, "web security" focused on
the server-‐side.	 Up to this point, this class has largely	 focused on the server-‐side	
as well	 (e.g.,	 buffer overflows on	 web	 servers,	 privilege separation	 in	 the OKWS
server).

The web has changed: now the browser is very complicated.
• JavaScript: Allows a page to execute client-‐side	 code.
• DOMmodel Provides a JavaScript interface to the page's HTML,	 allowing the

page to add/remove tags, change their styling, etc.
• XMLHttpRequests	 (AJAX): Asynchronous HTTP	 requests.
• Web	 sockets: Full-‐duplex client-‐server	 communication over TCP.
• Web	 workers: Multi-‐threading	 support.
• Multimedia support: <video>, web cams, screen-‐sharing.
• Geolocation: Browser can determine your location by examining GPS units.

Firefox can also locate you by passing your WiFi information to the Google
Location Service.

• <canvas> and WebGL: Bitmap manipulation and interactive 2D/3D graphics.
• Nacl: Allows browsers to run native code!

The web is now a complex platform for distributed computation! But what does this
mean for security?
• The threat surface	 is huge!
• A single web application now spans multiple programming languages,	 OSes,

hardware platforms. I might be running Firefox on Windows	 interacting with	 a
Linux server running Apache and interfacing with memcached and MySQL).

• All of this composition makes it difficult	 to verify end-‐to-‐end	 correctness,	 or even
understand what the system is doing. Ex: Parsing contexts and content
sanitization.

<script> var x = 'UNTRUSTED'; </script>

//Single quote breaks out of JS string

//context into JS context

//

//"</script>" breaks out of JS context

//into HTML context

1

• The web specs are incredibly long, very complex, occasionally	 contradictory,	 and
constantly	 evolving.

o So, browser vendors	 do something that roughly resembles the specs and
then	 laugh about	 it with their friends.

o If you want to understand the horror,	 go to quirksmode.org.

In this lecture,	 we're	 going to focus on the client-side	 of a web application.	 In	
particular, we're going to focus on how to isolate content from different providers
that	 has to reside within the same browser.
• Big	 difference between	 a web	 application	 and a traditional	 desktop	 application:

the bits in a desktop application typically come from a single vendor	 (e.g.,
Microsoft or Apple or TurboTax),	 but a single	 web application	 contains content
from a bunch of different principals!

+--+
| +--------------------------------------+ |

| | ad.gif from ads.com | |

| +--------------------------------------+ |

| +-----------------+ +------------------+ |

| | Analytics .js | | jQuery.js from | |

| | from google.com | | from cdn.foo.com | |

| +-----------------+ +------------------+ |

| |

| HTML (text inputs, buttons) |

| |

| +--------------------------------------+ |

| | Inline .js from foo.com (defines | |

| | event handlers for HTML GUI inputs) | |

| +--------------------------------------+ |

|+--+|

|| frame: https://facebook.com/likeThis.html||

|| ||

|| +----------------------+ +--------------+||

|| | Inline .js from | | f.jpg from https://

|| | https://facebook.com | | facebook.com |||

|| +----------------------+ +--------------+||

|| ||

|+--+|

| |

Question: Which pieces of JavaScript code can access which pieces	 of state? For
example…

2

https://||
http://quirksmode.org/

• ������� ���	
��� ���� ���� ����	����� ���� ���� ������ �����
����� ����

������������ ����� ��
�� ��� ���� ��������� ��������	 ��������� ���������

���
 ��� ���	���� �� ��� ��� ����� � � ��

• ������� �����
 ���� ���� ����������� ���� ���� ������ ��	��� �!������������

������� �
 �������� �"��
#�� $�	���$ ���� ��� ��� �	��� � � ��

• ��� �������	
�������� �� �����
����� ��� %"&' ��(����������)�#!� ������

��*� ���� ������� ���������!� ��������

• ���� �!������� �� ��� +������* ����� ����� ��
 ���� �� ��� ������� ������ ,��

�� ������ ���� ��� +������* ����� � ����-..� ��� ��� ������� ����� � ����	��

����-..�

"� �����������/����������������� � ������
 ����	 ��		�� ��� ���0�������

��	��
�

• 1��������	-�"������������ ����������	����� �� ��	� �� ������ ���� ����

�����#���������

• 2�
 �� ����� ��� ����*
 �� ���	������

o 3�!���	
����- 4� 4 ��!� ��� ��������� ������� ��������� �������� ���	�

��� �� ��	� �� �!����������� !���	 ���	�
 �� ��������� ����

o 3�!���	
�����- ,�!�	���� ���	� �� ��	� �� ������ ���0������ ����

������� ������� ���� �����		
 ���������!� ��� ����

� 02(- 5 ��� ���� ������� 6���	� &�� ���� ��������	 �����������

� 02(- 5�!�����������

� 02(- �����	 ����� ������ 7��������� +������* 8	�*�8 ������9�

o %������ �
- 4� � ���� ���� ��� ��!�� : ����	����� �!������� 	�����

���� � ��������� ��!�� ;������ ������	���� ���	������ ����� ��!��

• <��� ������
 �� ���0���������	��
-�"�� ������ ���� �� ��������� �!��

���������� � ����� ���	������ �!������� 	��������� �!������� ���� ��� ��	
�����

������������ ��	��� �������������

• ,��������� �� �� ������- ����� = ������� = ����

• +�� �(���	�-

o ����-..�������.����(����	 7����� �������� >? ����	�����9

o ����-..�������.����(����	 7����� �������� @@A ����	�����9

o ����-..�������->B>B.����(����	�7���������������>B>B9

• ������ ��� �� ����� ����� ���� ��	�� ����

• +��� ���� ����-

B� 2��� �������� �������� ���� �	����0��� ��������7����� ���*��� ,3&

������� � �!������� ��������� � ,3& ����� ������� � !���	����	�

������������*�������9�

� 5� ������ � ��� ����	 �/��!�	��� �� � C4, ������ C��(����	��

D� 2��� ����� ��� ��� ������ �� �� CE'� 5 ����� � ��� ����	 �/��!�	��� �� �

����� �� C��(�

A� ������ ���	���� �
 � ����� �(����� ���� ��� ��������
 �� �����%"&' ��	�#

������� "�� � �������� �������	��� ������$���$ ��� ���� ������		�������

�(�����	 ������F �C��(���	��
- E������ � �����
�����# ����� ���

������
 �	�# ���� ��������
��

�

4. Passive	 content (e.g., images and CSS)	 can't execute	 code, so this	 content
is given zero	 authority.

• Returning to our example:
o The Google	 analytics	 script and	 the	 jQuery script can	 access	 all the

resources	 belonging to foo.com (e.g., they can read and write cookies,
attach event	 handlers to buttons, manipulate the DOM tree, access
JavaScript variables,	 etc.).

o JavaScript code in the Facebook frame has	 no access	 to	 resources in the
foo.com frame, because the two frames have different origins. The two
frames can only	 talk via postMessage(), a JavaScript API that allows
domains to exchange immutable strings.

§ If the two frames *were* in the same origin, they	 could	 use
window.parent and window.frames[] to directly interact with	 each	
other's	 JavaScript state!

o JavaScript code in the Facebook frame cannot issue an	 XMLHttpRequest
to foo.com's server [the network	 is a resource	 with an origin!]	 . . .

o However, the Facebook frame *can* import scripts, CSS,	 or images from
foo.com (although	 that content can	 only	 update the Facebook frame, since
the content inherits	 the	 authority	 of the	 Facebook origin, not foo.com
origin).

o The browser	 checks	 the	 type	 of ad.gif, determines that ad.gif is a image,
and concludes that the image should receive no authority	 at all.

What	 happens if	 the browser mistakenly identifies the MIME type of an object?
• Old versions of IE used to do MIME sniffing.

o Goal:	 Detect when	 a web server has	 given an incorrect	 file extension	 to an
object (e.g., foo.jpg should actually be foo.html).

o Mechanism: IE looks at the first 256 bytesof the file and looks for magic
values which indicate a file type.	 If there's a disagreement between the
magic values and the file extension,	 IE trusts the file	 extension.

o Problem: Suppose that a page includes some passive content (e.g.,	 an
image) from an attacker-‐controlled domain. The victim page thinks that
it's	 safe	 to import passive content, but the attacker can intentionally	 put
HTML+JavaScript in the image and execute code in the victim page!

• Moral: Browsers are complex-‐-‐-‐adding a well-‐intentioned	 feature may cause
subtle and unexpected security	 bugs.

Let's	 take	 a deeper	 look at how the	 browser secures	 various	 resources.

Frame/window objects
• Note: A frame object is a DOM node of type HTMLIFrameElement,	 whereas	 the

window	 object is the alias for the global JavaScript namespace. Both objects have	
references	 to	 each	 other.

• Get the origin of their frame's URLs
-‐OR-‐	

4

• Get the origin of the adjusted document.domain
o A frame's document.domain is originally derived from the URL in the

normal	 way.
o A frame can set document.domain to be a suffix of the full domain. Ex:

§ x.y.z.com //Original value
§ y.z.com //Allowable new value
§ z.com //Allowable new value
§ a.y.z.com //Disallowed
§ .com //Disallowed

o Browsers distinguish between a document.domain that	 has been	 written,
and one that	 has not, even if both have the same value! Two frames can
access each other if:

o They have both set document.domain to the same
value,	 or

o Neither	 has	 changed	 document.domain (and	 those
values	 are equal in both frames)

o These rules	 help protect a site from being attacked by a buggy/malicious
subdomain, e.g., x.y.z.com trying to attack y.z.com by shortening	 its
document.domain.

DOM nodes
• Get the	 origin	 of their surrounding frame

Cookies
• A cookie has a domain AND a path. Ex: *.mit.edu/6.858/

o Domain can only be a (possibly full) suffix of a page's current domain.
o Path	 can be	 "/" to	 indicate	 that all paths	 in the domain should have access

to the cookie.
• Whoever sets cookie gets to specify the domain and path.

o Can be	 set by	 the	 server using a header, or by JavaScript	 code that	 writes
to document.cookie.

o There's also	 a "secure" flag	 to	 indicate HTTPS-‐only	 cookies.
• Browser keeps cookies on	 client-‐side	 disk (modulo cookie expiration,	 ephemeral

cookies,	 etc.).

• When	 generating	 an HTTP request,	 the browser sends all matching cookies in
the request.

o Secure	 cookies only sent for HTTPS	 requests.
• JavaScript code can access any cookie that match the code's origin,	 but note that

the cookie's path and the origin's port	 are ignored!
o The protocol matters, because HTTP	 JavaScript cannot access HTTPS

cookies	 (although	 HTTPS JavaScript can access	 both	 kinds	 of cookies).

• Q: Why is it important to protect cookies from arbitrary	 overwriting?

5

• A: If an attacker controls a cookie, the attacker can force the	 user to	 use an
account	 that's controlled	 by	 an attacker!

o Ex: By controlling a Gmail cookie, an attacker can redirect a user to	 an
attacker controlled account	 and read any	 emails that are sent from that
account.

• Q: Is it	 valid for foo.co.uk	 to set	 a cookie's domain to co.uk?
• A: This is valid according to the rules that we've discussed	 so far,	 but in practice,

we should disallow such a thing,	 since	 ".co.uk"	 is semantically	 a single, "atomic"
domain	 like	 ".com". Mozilla maintains a public	 list which	 allows browsers to
determine the	 appropriate suffix rules for top-level domains.
[https://publicsuffix.org]

HTTP responses:	 Many	 exceptions	 and	 half-‐exceptions	 to same-‐origin	 policy.
• XMLHttpRequests: By default,	 JavaScript	 can only send XMLHttpRequests to its

origin server… unless the remote server has enabled Cross-‐origin Resource	
Sharing (CORS).	 The scheme defines some new HTTP	 response	 headers:

o Access-‐Control-‐Allow-‐Origin	 specifies	 which origins can	 see HTTP
response.

o Access-‐Control-‐Allow-‐Credentials	 specifies if browser	 should	 accept
cookies in HTTP	 request from the foreign origin.

• Images: A frame can load an image from any origin… but it	 can't	 look	 at the
image pixels… but it	 can determine the image's size.

• CSS:	 Similar story to images-‐-‐a frame can't directly read	 the	 content of external
CSS files, but can infer some of its properties.

• JavaScript: A frame can load JavaScript from any origin . . . but it can't directly
examine the source	 code in a <script>	 tag/XMLHttpRequest response	 body	 . . .
but all JavaScript	 functions have a public toString() method which reveals source	
code… and a page's home server can always fetch the source code directly	 and
then pass it to the page!

o To prevent	 reverse-‐engineering,	 many sites minify and obfuscate their
JavaScript.

• Plugins: A frame can run a plugin from any origin.
o <embed src=...> // Requires	 plugin-‐specific elaborations.

Remember that, when the browser generates an HTTP	 request, it automatically	
includes	 the	 relevant cookies.

• What happens if the browser creates a frame with a URL like this?
o http://bank.com/xfer?amount=500&to=attacker

• This attack is called	 a cross-‐site	 request forgery (CSRF).
• Solution: Include some random data in URLs that is difficult for the	 attacker

to guess.	 Ex:

<form action="/transfer.cgi" ...>
<input type="hidden"

name="csrfToken"

6

https://publicsuffix.org/

 value="a6dbe323..."/>

•	 Each time a user requests the page, the server generates	 HTML	 with	 new
random tokens. When the user submits a request, the server validates the
token	 before actually processing	 the request.

•	 Drawback: If each URL to the same object is unique, it's difficult	 to cache that
object!

Network addresses almost	 have an origin.
•	 A frame can send HTTP	 *and* HTTPS	 requests to a host+port that match its

origin.
•	 Note that the security of the same-‐origin	 policy depends	 on the	 integrity	 of the	

DNS infrastructure!
•	 DNS rebinding attack

o	 Goal: Attacker wants to run attacker-‐controlled JavaScript code with	 the	
authority	 of an origin that he does not control (victim.com).

o	 Approach:
1) Attacker	 registers a domain name (e.g., attacker.com) and creates

a DNS	 server to respond to the relevant	 queries.
2) User	 visits the attacker.com website, e.g., by	 clicking	 on an	

advertisement.
3) The	 attacker	 website	 wants	 to	 downloads a single object,	 but first,	

the browser must issue a DNS request for attacker.com. The
attacker's DNS	 server responds with a DNS	 record to the attacker's
IP address. However,	 the record has a short time-‐to-‐live.

4) The	 attacker rebinds attacker.com to the IP address of victim.com.
5) A	 bit later, the attacker website creates an XMLHttpRequest	 that	

connects	 to attacker.com. That request will actually be sent	 to the
IP address of victim.com! The browser won't complain because it
will	 revalidate the DNS	 record and see the new	 binding.

6) Attacker	 page can now exfiltrate data, e.g., using CORS	
XMLHttpRequest	 to the attacker domain.

o	 Solutions:	
§ Modify DNS	 resolvers so that	 external hostnames can never

resolve	 to	 internal IP addreses.
§ Browsers can pin	 DNS	 bindings,	 regardless of their	 TTL settings.	

However, this may break web applications that use dynamic DNS
(e.g., for load-‐balancing).

What	 about	 the pixels on	 a screen?
•	 They don't have	 an origin! A frame can draw anywhere within	 its bounding	 box.
•	 Problem: A parent frame can overlay content atop the pixels of its child frames.

o	 Ex: At attacker creates a page which has an enticing	 button	 like "Click	
here for a free iPad!" Atop that button,	 the	 page creates a child frame that
contains	 the Facebook "Like" button. The attacker places that button atop

7

the "free iPad" button, but makes it transparent! So, if the	 user clicks	 on
the "free iPad" button,	 he'll actually "Like"	 the attackers page on
Facebook.

• Solutions
1) Frame-‐busting	 code: Include JavaScript that prevents your page from

being included as a frame. Ex: if(top	 != self)
2) Have	 your	 web server send	 the	 X-‐Frame-‐Options HTTP response	 header.

This will instruct the browser not	 to put your content	 in a child frame.

What about frame URLs that don't have an origin?
Ex: file://foo.txt

about:blank
javascript:document.cookie="x"

• Sometimes the frame is only accessible to other frames with	 that protocol (e.g.,
file://). [This	 can	 be	 irritating	 if you're debugging	 a site and you want to mix
file:// and	 http:// content].

• Sometimes the frame is just inaccessible to all other origins (e.g.,	 "about:").
• Sometimes the origin is inherited from whoever created	 the	 URL (e.g.,

"javascript:").	 This prevents attacks in which a attacker.com creates a frame
belonging to victim.com, and then navigates the victim frame to a javascript:
URL-‐-‐we don't want the JavaScript	 to execute in	 the context of victim.com!

Names can be used as an attack vector!
• IDN: internationalized domain names (non-‐latin	 letters).
• Supporting more languages is good, but now, it can be difficult	 for users to

distinguish two domain names from each other.
•	 *Ex: The Cyrillic	 "C"	 character looks like the Latin "C" character!	 So, an attacker

can buy a domain like "cats.com" (with a Cyrillic	 "C")	 and trick	 users who
thought	 that	 they were going to "cats.com" (Latin "C").

• Good example of how new features can undermine security assumptions.
• Browser vendors thought	 registrars will	 prohibit ambiguous names.
• Registrars	 thought browser vendors will	 change browser to do something

Plugins	 often	 have subtly-‐different security	 policies
• Java: Sort of uses the same-‐origin	 policy,	 but Java code can set HTTP headers

(bad!	 see "Content-‐Length" discussion), and in some cases, different hostnames
with the same IP address are considered to share the same origin.

• Flash: Developers place a file called crossdomain.xml on their	 web servers. That
file	 specifies	 which	 origins can talk to	 the	 server via	 Flash.

HTML5	 introduces	 a new screen-‐sharing	 API: Once	 the user gives permission, a site
can capture	 the entire visible screen area and transmit it back
to the site's origin.

8

• So, if an attacker page can convince the user to grant	 screen-‐sharing	 permission,
the attacker page can open an iframe to a sensitive site (e.g., banking,	 Facebook,
email), and capture the screen	 contents!

• The iframe will send cookies, so the user will automatically be logged in,
allowing	 the attacker to see "real" information, not boring login	 page stuff.

• Attacker can make the iframe flash only briefly to prevent the user from noticing
the mischief.

• Possible	 defenses:
o Allow users to only screen-‐share	 part of the DOM tree? It seems like this

will	 be tedious and error-‐prone.
o Only allow	 an origin	 to screen-‐capture content from its own origin?

Seems like a more reasonable approach, although it prevents

"The Tangled	 Web,"	 there	 have	 been	 various	 modifications and additions to
the aggregate web stack.

• In general, things have gotten more complicated, which is typically bad for
security.

• For reference, here are some of the new features:
o http://en.wikipedia.org/wiki/Content_Security_Policy
o http://en.wikipedia.org/wiki/Strict_Transport_Security
o http://en.wikipedia.org/wiki/Cross origin_resource_sharing
o HTML5 iframe sandbox attribute [http://msdn.microsoft.com/enn

us/hh563496.aspx]

The browser security model is obviously a mess. It's very complex and contains a lot
of subtleties	 and inconsistencies.

• Q: Why not rewrite the security model from scratch?
• A1: Backwards compatibility! There's a huge amount of preexisting	 web

infrastructure	 that	 people rely	 on.
• A2: How	 do we know that a new security model would be expressive

enough? Users typically	 do not accept	 a reduction	 of features in	 exchange for
an increase in	 security.

• A3: Any security model may be intrinsically doomed-‐-‐-‐perhaps all popular
systems are destined to accumulate a ton of features as time progresses. [Ex:
Word processing programs, smartphones.]

• What might a better design look like?
o Strict isolation Embassies-‐-‐-‐everything is a network message, even

locally
§ https://www.usenix.org/system/files/conference/nsdi13/nsd

i13-final85.pdf
o Don't make policy extraction and enforcement dependent on complex

parsing rules (remember our sanitization example)

9

Since

http://en.wikipedia.org/wiki/Content_Security_Policy
http://en.wikipedia.org/wiki/Strict_Transport_Security
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://msdn.microsoft.com/en-us/hh563496.aspx
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final85.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final85.pdf
https://msdn.microsoft.com/en-us/hh563496.aspx

o

and the need for guessing.

Only add	 features in small, clearlyn defined quanta with minimal room
for implementation error or interpretation mistakes---remove ambiguity

10

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

