6.863J Natural Language Processing Lecture 7: parsing with hierarchical structures - context-free parsing

Robert C. Berwick

The Menu Bar

- Administrivia:
- Schedule alert: Lab2 due today; Lab 3 out late Weds. (context-free parsing)
- Lab time today, tomorrow
- Please read notes3.pdf, englishgrammar.pdf (on web)
- Agenda:
- Chart parsing summary; time complexity
- How to write grammars

Chart parsing summary

- Data structures \& Algorithm
- Data structures
- A chart parser has three data structures:
- an input stack, which holds the words of the input sentence (in order)
- a chart, which holds completed phrases organized by starting position and length
- a set of edges, organized by ending position.

Input sentence stack

- The input
- Positions in the input sentence will be numbered starting with zero and will be the positions between successive words. For example:
${ }_{0} \mathrm{I}_{1}$ shot ${ }_{2}$ an 3 elephant 4 in $5 \mathrm{my}_{6}$ pajamas 7

For now, assume POS already assigned, words consumed l-to-r

We have presented the chart graphically so far...

Chart
 - Example of chart

Chart in graphical form

At the end...

Position

Corresponding to Marxist analysis

The chart

- A cell in the chart can contain more than one phrase (e.g., n \& np)
- With each constituent is frequently stored information about which parsing rule was used to generate it and what smaller constituents make it up (to recover the parse)
- Used to prevent redundant work if 2 or more possible internal structures for a single phrase ("blue socks and shoes")

Edges

- Each edge consists of a grammar rule, plus info about how it matches up against the input, specifically:
- A rule, e.g., S (entence) $\rightarrow \mathrm{NP}$ VP
- The position up to which we've matched the rule to the input, indicated by a dot (•), e.g., $S \rightarrow N P \cdot V P$
- The starting position of the edge (the first input word matched) (e.g., VP 'shot...' starts at position 1
- The \# of input words matched so far
- Edges organized by ending position (the last input word matching against their rule so far)
- Edges are added but never deleted

Edges, cont'd

Start
0
$S \rightarrow \bullet N P V P$
$N P \rightarrow \bullet$ Det N
$N P \rightarrow \cdot N$
$N P \rightarrow \cdot N P P P$

1
$N P \rightarrow N \cdot$
$S \rightarrow N P \cdot V P$
$N P \rightarrow N P \cdot P P$
$\mathrm{VP} \rightarrow \bullet \mathrm{V} \mathrm{NP}$
$\mathrm{VP} \rightarrow \bullet \mathrm{V}$ NPP
$P P \rightarrow \cdot P N P$
Etc...

State-set construction

Initialize: $S_{0} \leftarrow$ initial state set=initial
state edge
[Start $\rightarrow \bullet$ S, 0, n] \cup
ε-closure of this set under predict, complete

Loop: \quad For word $i=1, \ldots, n$
S_{1} computed from S_{1-1}
(using scan, predict, complete) try scan; then predict, complete

Final: Is a final edge in S_{n} ?
$\left[\right.$ Start $\left.\rightarrow S_{\bullet}, 0, n\right] \in S_{n}$?

The overall algorithm

- Suppose there are n words in the input
- Set up chart of height and width n
- Add input words onto stack, last word at bottom
- For each ending position in the input, 0 through n, set up two sets, S_{i} and D_{i} ("Start", "Done")
$\mathrm{S}_{0} \leftarrow$ all rules expanding start node of grammar
$S_{i} \leftarrow \varnothing$ for $i \neq 0$
S_{i} will be treated as search queue (BFS or DFS). Edges will be extracted one by one from S_{i} \& put into D_{i}. When S_{i} becomes empty, remove $1^{\text {st }}$ word from stack \& go to next ending position i +1

Or:

- Loop until S_{i} is empty
- Remove first edge e from S_{i}
- Add e to D_{i}
- Apply 3 extension operations to e, using the 3 operators: scan, complete, predict (which may produce new edges)
- New edges added to S_{i} or S_{i+1}, if they are not already in S_{i}, D_{i}, or D_{i+1}
- Pop first word off input stack
- When all ending positions processed, chart contains all complete phrases found

Another way to view it/a.

 the guy

Connecting the dots

The dots - in the middle

Dot at end

Advance in input $=$ scan

Dotted rule form
$\mathrm{NP} \rightarrow$ Det • Noun

$\mathrm{NP} \rightarrow$ Det Noun •
(finished building phrase)

The three ops add edges in our full chart representation ...

- Loops (Predict) - start a phrase
- Skips (Scan) - build phrase
- Pastes - glue 2 edges to make a third, larger one (Complete) - finish a phrase

Picture: Predict adds the 'loops’

Picture: Scan adds the 'jumps'

The ops

- 3 ops: scan, predict, complete; or scan, push, pop

1. Scan: move forward, consuming a token (word class) what if this is a phrase name, though?
2. Predict (push): start building a phrase (tree) at this point in the input; or jump to subnetwork;
3. Complete (pop): finish building a phrase (tree) at this point; pop stack and return from subnet (which also says where the subphrase gets attached)
Scan = linear precedence;
Predict, complete: dominance

Another way to view it

Scan NP

Definitions - words \& symbols

- Scan

Suppose current edge e is not finished \& part of speech tag X follows the dot in the rule for e
Scan examines next word in input If word has pos X, create new edge e', identical to e except dot is moved one place to the right \& length increment by 1 Add e^{\prime} to $\mathrm{S}_{\mathrm{i}+1}$

Scan - formally

- Scan: (jump over a token)
- Before: $[A \rightarrow \alpha \bullet t \beta, k, i]$ in State Set $S_{i} \&$ word $i=t$
- Result: Add [A $\rightarrow \alpha \mathrm{t} \bullet \beta, \mathrm{k}, \mathrm{i}+1$] to State Set S_{i+1}

Picture: Scan adds the 'jumps'

Predict operation

- Suppose current edge e is not finished
- Predict extracts next item X needed by e the phrase after the dot in the edge
- Find all rules in grammar whose lefthand side is X
- For each of these, make a new edge with the dot on the left, and add edges to $\mathrm{S}_{\mathrm{i}+1}$

And again...

- Predict (Push):
- Before: [$A \rightarrow \alpha \bullet B \beta, k, i], B=n o n t e r m i n a l$, in S_{i} then
- After: Add all new edges of form $[\mathrm{B} \rightarrow \bullet \gamma, \mathrm{i}+1, \mathrm{i}+1]$ to State Set $\mathrm{S}_{\mathrm{i}+1}$

Picture: Predict adds the 'loops'

Complete (finish phrase)

- Suppose current edge e is finished (dot at rh end). Suppose e looks like:
$X \rightarrow y_{1} y_{2} \ldots y_{p}$ • from start pos k, length m
- Check if X is already in chart cell (k, m). If so, add e to set of derivations for this phrase X.
- If X is not already in cell (k, m) then:
- Examine each edge E in D_{k} If E is incomplete, and the next item needed for E is X, create a new edge E^{\prime} with dot hopped over X to the right
- Length of E^{\prime} is sum of lengths of $E+e$
- Add E' to S_{i}

Picture of this - 'pasting' $\mathrm{X}+\mathrm{Y}$ together

j E k e m

j
E'
m

"The fundamental rule"

start pos=1, len 1 start= 2, len=2

Adding to chart...

Position

This new edge E' will itself be processed... since dot is at end...

Go back to state set 1 \& see what rule was looking for a VP
It's the rule $\mathrm{S} \rightarrow \mathrm{NP} \cdot \mathrm{VP} . .$. so we can paste these two subtrees together to get a complete S, "I shot an elephanti"

Adding the S

More precisely

- Complete(Pop): (finish w/ phrase)
- Before: If S_{i} contains e in form [$\left.B \rightarrow \gamma \bullet, \mathrm{k}, \mathrm{i}\right]$ then go to state set S_{k} and for all rules of form $[A \rightarrow \alpha \bullet B \beta, k, j]$, add $E^{\prime}[A \rightarrow \alpha B \bullet \beta, j, i]$ to state set S_{i}

Picture: Complete combines edges

Scan examples
$N \mathrm{P} \rightarrow$ Det Noun \bullet

$\left[\mathrm{A} \rightarrow \alpha \mathrm{tt} \cdot \bullet \beta^{\prime \prime}, \mathrm{k}, \mathrm{i}+1\right]$

Predict ('wish') example

$$
\begin{aligned}
& \mathrm{S} \rightarrow \bullet \mathrm{NP} \text { VP } \\
& \mathrm{NP} \rightarrow \bullet \text { Det Noun } \\
& \mathrm{NP} \rightarrow \bullet \mathrm{~N} \text { ame }
\end{aligned}
$$

- Det.... Name...
the book
$A \rightarrow \alpha \bullet B \beta, k, i-1$
$\mathrm{B} \rightarrow \bullet \gamma, \mathrm{i}, \mathrm{i}$

‘Complete’ example

...ate the icecream •
$[B \rightarrow \gamma \bullet, k, i]$
$\left[\mathrm{A} \rightarrow \alpha \mathrm{B} \bullet \beta_{6.863}, \mathrm{k}, \mathrm{i}, 61\right.$

At the end..

Position

At the end...

Corresponding to Marxist analysis

Please note:

- How ambiguity is handled
- Multiple attachments, with dynamic programming principle: once we have built a PP spanning positions $[3,7]$ we use it twice
- This is the key to sub-exponential parsing: we don't have to enumerate all the possibilities explicitly
- Why we don't have to list identical items twice (another part of the same rule)
- For parsing, we use backpointers to keep track of which item causes a new item to be added this gives us a chain for the state sequence $=$ the path

So time complexity picture looks like this:

Time complexity

- Decompose this in turn into:

1. time to process a single edge in the set
2. times maximum \# distinct edges possible in one state set (assuming no duplicates!)

- Worst case: max. \# of distinct edges:
- Max \# of distinct dotted rules x max \# of distinct return values, i.e., |G|x n
- (Why is this?)
- (Edges have form: dotted rule, start, len)
- Note use of grammar size here: amount of 'chalk' $=\Sigma$ \# symbols in G.

Max \# distinct edges: loops, incoming from scans. incomina from naste:

From complete - could come from any preceding state - at most $\mathrm{n} \bullet|\mathrm{G}|$

Time complexity, continued

- The time to process a single edge is found by separately considering time to process scan, predict, and complete operations
- Claim: Scan, predict constant time (in |G| and n, $\mathrm{n}=$ length of sentence)
- Because we can build in advance all next-state transitions, given the Grammar
- Only action that takes more time is complete!
- For this, we have to go back to previous state set and look at all (in worst case) edges in that state set - and we just saw that in the worst case this could be $0(|\mathrm{G}| \times \mathrm{n})$

So time complexity picture looks

like thic.

Grand total

- $O\left(|G|^{2} n^{3}\right)$ - depends on both grammar size and sentence length (which matters more?)
- Lots of fancy techniques to precompute \& speed this up
- We can extend this to optional elements, and free variation of the 'arguments' to a verb

How do we recover parses?

State set pointer structure that represents both parses

- Just like fruit flies like a banana
- Keep multiple backpointers to keep track of multiple ways that we use a 'completed' item (a whole phrase)
- The actual backpointer structure looks something like the following (one can show that it takes just $\log (\mathrm{n})$ extra time to construct this)

Backpointer structure

Recovering parses (structure, state sequence)

- Two basic methods: online \& offline
- Simple offline method can build parse ptrs for all possible parses in time $O\left(n^{3}\right)$ - key is to build a 'pruned' collection of items (triples) in the state sets
- Why do we want to prune the state sets?
- Many items 'die out' because they fit the first part of an input sentence, but not the rest: e.g., I think that blocks the light
- Here we predict an NP for that and an NP for that blocks - one or more might die out.

Recovering parses

- Since semantic interpretation routines will run on syntactic structure and these are often more costly (why?) we want to reduce false paths ASAP

Simple queue algorithm to do this, based on

 the notion of 'useful' items- those that actually cause others to get added[s,i] in state set j

-Any item
in final state set is useful:
-If item $s=[\mathrm{A} \rightarrow \alpha \bullet \mathrm{B}, \mathrm{i}]$
is in state set k \& useful
-then item $\mathrm{q}=[\mathrm{A} \rightarrow \alpha \mathrm{B} \bullet, \mathrm{k}]$ \& item $r==[B \rightarrow \gamma \bullet, j]$ are useful

Let [s,i] denote an item with a dotted rule s \& return pointer i .

Algorithm for recovering parses

[I nitialize] Mark all items in state set S_{n} in the form Start \rightarrow $\alpha S_{\bullet}, 0$
[Loop] for $\mathrm{j}=\mathrm{n}$ downto 0 do for $\mathrm{i}=0$ to j do for every marked [s,i] in state set j do for $i \leq k \leq j$, if $[q, i] \in S_{k} \&$ $[r, k] \in S_{j} \&$ $s=q \otimes r$ then mark [q, i] and $[r, k]$

This is called a 'parse forest'

- Exponential \# of paths, but we avoid building them all explicitly - we can recover any one parse efficiently

Worst case time for Earley algorithm

- Is the cubic bound ever reached in artificial or natural languages?
- Here is the artificial 'worst case' - \# of parses arbitrarily large with sentence length; infinite ambiguity
- Here is the grammar:
$\mathrm{S} \rightarrow \mathrm{SS}, \mathrm{SS} \rightarrow \mathrm{a}$
\{a, aa, aaa, aaaa,...\}
- \# of binary trees with n leaves= $1,1,2,5,14,42,132,429,1430,4862,16796, \ldots=$

Does this ever happen in natural languages?

- It does if you write cookbooks... this from an actual example (from 30M word corpus)
Combine grapefruit with bananas, straw berries and bananas, bananas and melon balls, raspberries or strawberries and melon balls, seedless white grapes and melon balls, or pineapple cubes with orange slices.
\# parses with 10 conjuncts is 103, 049
(grows as 6 \#conjuncts)

This does indeed get costly -Verb NP PP example

How this algorithm is clever

- Handling left-recursion
- Tail-recursion trick
- Example: John's brother's book
- NP \rightarrow NP NP | NP \rightarrow Noun | Noun 's
- Note how this loops on endless call to NP

Note tail recursion

- State set S_{0} :
- Add triples: [NP \rightarrow • Noun, 0, 0]

D uplicate!

N ote tail recursion: the call returns to itself - so no need to 'keep' return addresses in stack!

The edge loops to itself:

$$
[N P \rightarrow \bullet N P N P, 0,0]
$$

Anything else?

- If anything, Earley parsing is too good - it gets all the parses, even ones that people do not
- We shall see how to deal with this, using probabilities on rules; and
- Other parsing methods
- But first, what do people do?
- Consider the examples

Wouldn't matter so much - but it does seem to match what people do

- Both left- and right- branching 'structures' seem to be readily parseable by people without any sort of memory load (all other things being equal)
- John's brother's mother's aunt....
- I believed that Mary saw that Fred knew that Bill shoveled snow

Pictures of this..

John's brother's book

saw that Fred knew that Bill shoveled snow

So what's hard for people to process?

the dog bit "center-embedded"

Why is this hard?

- Model: people have to "hold onto" open predicates (definition: open if verb+arguments have not yet been put together)
- In the preceding example, we have to hold onto a stack of Subjects (the rat, the cat, the dog...) before the corresponding verbs are seen
- This even shows up in unexpected places speech intonational pattern actually seems to transduce center-embedded structures into leftor right- branching ones

Chomsky \& Miller, 1959-63 analıcic

the dog that chased the cat that bit the rat

Parsing vs. intonational contours

Syntactic str ucture is cetiter -t niveuueu:

But the intonational structure follows this:

Suggests 2-stage parser (proposed by C\&M):
Stage 1: parse into 'flat' structure
Stage 2: make $2^{\text {nd }}$ pass \& rearrangehierarchically

Also hints at how to do semantic interpretation - akin to syntax-driven translation

- Recall from compilers: if we complete the righthand side of a rule, we can now fire off any associated semantic action (because we now have the item and all its 'arguments'
- This amounts to getting left-most complete subtree at each point to interpret
- Example:
$\mathrm{VP} \rightarrow \mathrm{V} N$ • , e.g., "ate the ice-cream"
Can now 'interpret' this pair syntactic, 'semantic' rule:
$\mathrm{VP} \rightarrow \mathrm{V}$ NP, apply VP(NP)

One more search space enumeration that will be of some value

- Left-corner parsing
- Looks bottom-up in serial fashion for the first symbol (left-corner) of a phrase; and then tries to confirm the rest of the phrase top-down
- Tries to combine best features of $\mathrm{b}-\mathrm{u}$ and t-d
- Clearly geared to the way a particular language (eg English) is set up

A picture of left-corner parsing

This works well

- In a language like English:
- A head-first language (function-argument)
- What about German, Dutch, J apanese?
- dat het mesije van Holland houdt
- "that the girl from Holland liked"
- These are head-final languages

What about constructing grammars?

