
6.863J Natural Language Processing

Lecture 12: Semantics

Robert C. Berwick

The Menu Bar
• Administrivia:

•	 Schedule alert: Lab 3 due today
•	 Lab 4: posted later today – due April 7

•	 Agenda:
•	 Semantics: why & how
•	 The great divide: information extraction

vs. text understanding

6.863J/9.611J Lecture 12 Sp03

Example of what we might do: text

understanding via q-answering

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6.863J/9.611J Lecture 12 Sp03

How: recover meaning from
structure

S or IP VP(NP)= ate (john , icecream)

john
NP VP= ly.ate (y, ice-cream)

V NP ice-cream
lxly.ate (y, x) John

ate ice-cream

6.863J/9.611J Lecture 12 Sp03

“Logical” semantic interpretation

• Four basic principles
1.	 Rule-to-Rule semantic interpretation [aka “syntax

directed translation”]: pair syntax, semantic rules. (GPSG:
pair each cf rule w/ semantic ‘action’; as in compiler theory
– due to Knuth, 1968)

2.	 Compositionality: Meaning of a phrase is a function of
the meaning of its parts and nothing more e.g., meaning of
SfiNP VP is f(M(NP)• M(VP)) (analog of ‘context-freeness’
for semantics – local)

3.	 Truth conditional meaning: meaning of S equated with
conditions that make it true

4.	 Model theoretic semantics: correlation betw. Language
& world via set theory & mappings

6.863J/9.611J Lecture 12 Sp03

Answer 1: translation – from ‘syntactic’
rep to ‘semantic’ rep, aka “Deep”

• Mirrors the progamming language approach
• When is it used?
• DB Q&A (but answer 2 can be used here…when

and how?)
• Text understanding: when all the text is

relevant - voice, inference, paraphrase,
important

• Intentions, beliefs, desires (non-extensional=
not just sets of items)

6.863J/9.611J Lecture 12 Sp03

Answer 2 – ‘Shallow’ –
information extraction

• What do we need to know to get this task

done?

• Slot-and-filler semantics
• Limited parsing, limited predicate-

arguments

• Let’s see what we need to know about

‘meaning’ by looking at an example

6.863J/9.611J Lecture 12 Sp03

Example – news stories/MUC

Bridgestone Sports Co.
Japanese trading house

said Friday it has set up a joint venture in Taiwan with a local concern and a
to produce golf clubs to be shipped to Japan. The joint venture , Bridgestone

Sports Taiwan Co., capitalized at 20 million new Taiwan dollars, will start production in January 1990
with production of 20,000 iron and "metal wood" clubs a month.
TIE-UP-1:
Relationship: TIE-UP
Entities: "Bridgestone Sports Co."

"a local concern“
"a Japanese trading house"

Joint Venture Company: "Bridgestone Sports Taiwan Co."

Activity: ACTIVITY-1

Amount: NT$20000000

ACTIVITY-1:

Activity: PRODUCTION

Company: "Bridgestone Sports Taiwan Co."

Product: "iron and `metal wood' clubs"

Start Date: DURING: January 1990

6.863J/9.611J Lecture 12 Sp03

Vs. this task…

Person: Put the blue block on the pyramid
System: I’m going to have to clear off the

pyramid. Oops, I can’t do that – a
pyramid can’t support the block.

OK, move it onto the red block.
OK.
What supports the blue block?
The red block.

6.863J/9.611J Lecture 12 Sp03

Key questions

• What do we have to know in order to get
the job done?

• And then – how do we represent this
knowledge?

• And then – how do we compute with this
representation?

• (cf. David Marr’s notions)

6.863J/9.611J Lecture 12 Sp03

Answers defined in terms of characteristics
of ‘the task’

• Information extraction
• Function is communication of factual

information

• Typically only parts of the text are relevant
• Typically only part of a relevant sentence is

relevant
structure needed (at• Only predicate-argument

a superficial level)
• No modeling of author or audience

6.863J/9.611J Lecture 12 Sp03

‘Shallow’ or IE task

• Predicate-arguments: ‘who did what to
whom’ – in fact, just a core set of verbs
that are relevant (e.g., if business merger,
‘set up’, ‘produce’,… etc.)

• Extract simple relationships among
singular entities

• E.g., `X set up a joint-venture with Y’

6.863J/9.611J Lecture 12 Sp03

Example – news stories/MUC
Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern and a
Japanese trading house to produce golf clubs to be shipped to Japan. The joint venture , Bridgestone
Sports Taiwan Co., capitalized at 20 million new Taiwan dollars, will start production in January 1990
with production of 20,000 iron and "metal wood" clubs a month.
TIE-UP-1:
Relationship: TIE-UP
Entities: "Bridgestone Sports Co."

"a local concern“
"a Japanese trading house"

Joint Venture Company: "Bridgestone Sports Taiwan Co."

Activity: ACTIVITY-1

Amount: NT$20000000

ACTIVITY-1:

Activity: PRODUCTION

Company: "Bridgestone Sports Taiwan Co."

Product: "iron and `metal wood' clubs"

Start Date: DURING: January 1990

6.863J/9.611J Lecture 12 Sp03

Even the parsing is shallow

• Chunking – no recursion, just p.o.s
brackets

•	 [Bridgestone Sports Co.][said [Friday]] [it] has [set up [a joint
venture]] in Taiwan with a local concern and a Japanese trading
house to produce golf clubs to be shipped to Japan. The joint venture,
Bridgestone Sports Taiwan

Can use simple linear patterns:
chunk: NP -> D? N+;

VP -> V-tns | Aux V-ing
clause: S -> PP* NP PP* VP PP*

6.863J/9.611J Lecture 12 Sp03

6.863J/9.611J Lecture 12 Sp03

‘big picture’

wordsfi morph

Tag,parse

PP, adv
attachment quantifiers

Tense, time

modals

meaning
Direct speech

act

indirect speech
act

What we give up – in terms of

pred-args

Non-literal

IE or Shallow

• Parsing:
• PP attachment – ignored, except for arguments of

domain relevant verbs
“set up a joint venture” vs. “a joint venture in Japan” vs. “a

joint venture in their home office”

• Adverbials – only locatives, temporal adverbs; others
ignored (why?)

• Semantics:
• No modals (might, will, could…)
• No propositional attitudes, possible worlds, user

intentions, etc. (believe, want, unicorns,…)
• Non-literal meaning

6.863J/9.611J Lecture 12 Sp03

What’s all this stuff that’s added?

• Parsing
• Details of all phrase attachments - exact

• Logical Semantic additions:
• All arguments to all predicate-argument structure
• Adjunct modifiers
• Quantifiers
• Detailed, accurate tense representation
• Modal verbs
• Propositional attitudes, belief contexts
• Direct and indirect speech acts

6.863J/9.611J Lecture 12 Sp03

What’s all this stuff??

• Quantifiers
• John ate an ice-cream

a constant• Ice-cream now not
• John ate an ice-cream and Mary ate an ice-

cream
• In the set of ice-creams, there exists one

eaten by John
• Ice-cream a predicate on entities
• (extensional)Can compute using sets

6.863J/9.611J Lecture 12 Sp03

What’s all this stuff?

• Tense
• “There was an event some time in the past

such that an ice-cream was among the
objects eaten by John at that time”

• Could just use a variable t
• We will improve this representation later

• Why stop there? Events have other
properties

6.863J/9.611J Lecture 12 Sp03

This gets complex

• John ate an ice-cream in a booth
• Event representation
• $e past(e), act(e,eating), eater(e,John),

exists(ice-cream, eatee(e)), exists(booth,
location(e))

• John ate an ice-cream in every booth
• $e past(e), act(e,eating), eater(e,John),

exists(ice-cream, eatee(e)), all(booth,

location(e)),

$g ice-cream(g), eatee(e,g) "b booth(b)�location(e,b)

6.863J/9.611J Lecture 12 Sp03

So this means..

•	 This means $e "b which means same event for every
booth

•	 False unless John can be in every booth during his
eating of a single ice-cream

•	 Which order do we want?
•	 $b "e: “for all booths b, there was such an event in b”

•	 Figuring this out requires a notion of scope (and so,
structure…)

•	 But wait, there’s more… what about all, none, …

6.863J/9.611J Lecture 12 Sp03

Beliefs, Desires and Intentions

• How do we represent internal speaker states
like believing, knowing, wanting, assuming,
imagining..?
•	 Not well modeled by a simple DB lookup approach

• Truth in the world vs. truth in some possible world

George imagined that he could dance.

Geroge believed that he could dance.

• Augment FOPC with special modal operators
that take logical formulae as arguments, e.g.
believe, know

6.863J/9.611J Lecture 12 Sp03

Intensional Arguments

• John wants a unicorn (cf., John wants an ice-cream)
• “there is a unicorn u that Willy wants ”
• here the wantee is an individual entity
• “Willy wants any entity u that satisfies the unicorn predicate”
• of entityhere the wantee is a type

• Problem
• ‘unicorn’ is defined by the set of unicorns – its extension
• BUT this set is empty
• All empty sets are equal (but some are more equal than others…)
• So, John wants a unicorn ” John wants a dodo
• What’s wanted (wantee) should be intension or criteria for being a

unicorn

• (One) solution: possible world semantics:
• Can imagine other worlds where set of unicorn „ set of dodos

6.863J/9.611J Lecture 12 Sp03

• Mutual belief: I believe you believe I
believe….
• Practical importance: modeling belief in

dialogue

6.863J/9.611J Lecture 12 Sp03

Non-literal meaning (source of

60% of old Star Trek plots)
• Kirk: Spock, are there any Romulans in Sector

6471?
• Spock: None, captain.
• Kirk: Are you certain, Spock?
• Spock: A 100% probability, Captain
• [camera rolls] Kirk: Damn your Vulcan ears,

Spock, I thought you said there were no
Vulcans in sector 6471!!&*(!&

• Spock: But there is no sector 6471…Logic
dictates… [Fadeout to commercial]

6.863J/9.611J Lecture 12 Sp03

6.863J/9.611J Lecture 12 Sp03

‘big picture’

wordsfi morph

Tag,parse

PP, adv
attachment quantifiers

Tense, time

modals

meaning
Direct speech

act

indirect speech
act

What we give up – in terms of

pred-args

Non-literal

Illustrations – indirect speech act

• It’s cold in here
• What would ‘shallow approach’ do?
• What about ‘full understanding’ – indirect

speech act
• What about discourse:
• Guiliani left Bloomberg to be mayor of a

city with a big budget problem. It’s
unclear how he’ll be able to handle it
during his term.

6.863J/9.611J Lecture 12 Sp03

Why lunch at Lobdell is slow

“Do you have the salt” fi “Please pass the
salt”

6.863J/9.611J Lecture 12 Sp03

Some complications

• Temporal logic
eight goldfish

the bowl
pregnant
pregnant.”

• Gilly had swallowed
before Milly reached

• Billy said my pet fish was
• Billy said, “my pet fish is

• Generics
• Typhoons arise in the Pacific
• Children must be carried

• Presuppositions
• The king of France is bald.

• Pronoun-Quantifier Interaction (“bound anaphora”)
.

in the meter.
mother.

does Billy.

• Every farmer who owns a donkey beats it
• If you have a dime, put it
• The woman who every Englishman loves is his
• I love my mother and so

6.863J/9.611J Lecture 12 Sp03

Classical (logical) semantic

interpretation

• Four basic principles
1.	 Rule-to-Rule semantic interpretation [aka “syntax

directed translation”]: pair syntax, semantic rules. (GPSG:
pair each cf rule w/ semantic ‘action’; as in compiler theory
– due to Knuth, 1968)

2.	 Compositionality: Meaning of a phrase is a function of
the meaning of its parts and nothing more e.g., meaning of
SfiNP VP is f(M(NP)• M(VP)) (analog of ‘context-freeness’
for semantics – local)

3.	 Truth conditional meaning: meaning of S equated with
conditions that make it true

4.	 Model theoretic semantics: correlation betw. Language
& world via set theory & mappings (extensional)

6.863J/9.611J Lecture 12 Sp03

Components

• Semantic representation (“logical form”)
• Start w/ lambda calculus, predicates

as we encounter phenomena in• Patch
language: quantifiers,

6.863J/9.611J Lecture 12 Sp03

6.863J/9.611J Lecture 12 Sp03

big picture

Inference/Model

of Intentions

(type hierarchy)

Syntax

struction

message phrase lists

Thematic role

frames

Thematic

role interpreter

Planner

object actions

parser

Syntactic structures

No

(a)
Planner

Inference/Model

of Intentions

(type hierarchy)

Syntax

struction

Thematic

role interpreter

s parser

(b)

-directed

message con

selectional restrictions Yes-No

semantic restrictions Yes-No

semantic restrictions Yes-No

PP Attachment decisions Yes-

-directed

message con

How: recover meaning from
structure

S or IP VP(NP)= ate (john , icecream)

john
NP VP= ly.ate (y, ice-cream)

V NP ice-cream
lxly.ate (y, x) John

ate ice-cream

6.863J/9.611J Lecture 12 Sp03

What Counts as Understanding?
some notions

• We understand if we can respond appropriately
• ok for commands, questions (these demand response)
• “Computer, warp speed 5”
• “throw axe at dwarf”
• “put all of my blocks in the red box”
• imperative programming languages
• database queries and other questions

• We understand statement if we can determine its
truth
• ok, but if you knew whether it was true, why did

anyone bother telling it to you?
• comparable notion for understanding NP is to compute

what the NP refers to, which might be useful
6.863J/9.611J Lecture 12 Sp03

Representing Meaning

• What requirements do we have for
meaning representations?

6.863J/9.611J Lecture 12 Sp03

What requirements must

meaning representations fulfill?

• Verifiability: The system should allow us to
compare representations to facts in a
Knowledge Base (KB)
• Cat(Huey)

• Ambiguity: The system should allow us to
represent meanings unambiguously
• German teachers has 2 representations

• Vagueness: The system should allow us to
represent vagueness
• He lives somewhere in the south of France.

6.863J/9.611J Lecture 12 Sp03

Requirements: Inference

• Draw valid conclusions based on the
meaning representation of inputs and its
store of background knowledge.
Does Huey eat kibble?

thing(kibble)

Eat(Huey,x) ^ thing(x)

6.863J/9.611J Lecture 12 Sp03

What Counts as Understanding?

• Be able to translate
• Depends on target language
• English to English? bah humbug!

• English to French? reasonable

• English to Chinese? requires deeper understanding

• English to logic? deepest

all humans are mortal = "x [human(x) �mortal(x)]

• Assume we have logic-manipulating rules to tell us
how to act, draw conclusions, answer questions …

6.863J/9.611J Lecture 12 Sp03

Requirements: Canonical Form

• Inputs that mean the same thing have the same
representation.
• Huey eats kibble.
• Kibble, Huey will eat.
• What Huey eats is kibble.
• It’s kibble that Huey eats.

• Alternatives
• Four different semantic representations
• Store all possible meaning representations in

Knowledge Base

6.863J/9.611J Lecture 12 Sp03

Requirements: Compositionality

• Can get meaning of “brown cow” from
separate, independent meanings of
“brown” and “cow”

• Brown(x)� Cow(x)

• I’ve never seen a purple cow, I never
hope to see one…

6.863J/9.611J Lecture 12 Sp03

Barriers to compositionality

• Ce corps qui s’appelait e qui s’appelle
encore le saint empire romain n’etait en
aucune maniere ni saint, ni romain, ni
empire.

• This body, which called itself and still calls
itself the Holy Roman Empire, was neither
Holy, nor Roman, nor an Empire -Voltaire

6.863J/9.611J Lecture 12 Sp03

Need some kind of logical

calculus

• Not ideal as a meaning representation and
doesn't do everything we want - but close
• Supports the determination of truth
• Supports compositionality of meaning
• Supports question-answering (via variables)
• Supports inference

• What are its elements?
• What else do we need?

6.863J/9.611J Lecture 12 Sp03

The elements

Three major kinds of objects
1. Booleans

•	 Roughly, the semantic values of sentences

2. Entities
•	 Values of NPs, i.e., objects
•	 Maybe also other types of entities, like times

3. Functions of various types
•	 A function returning a boolean is called a

“predicate” – e.g., frog(x), green(x)

•	 Functions might return other functions!
•	 Function might take other functions as

arguments!
6.863J/9.611J Lecture 12 Sp03

Syntax for this calculus

• Terms: constants, functions, variables
• Constants: objects in the world, e.g. Huey
• Functions: concepts, e.g. sisterof(Huey)
• Variables: x, e.g. sisterof(x)

• Predicates: symbols that refer to relations that
hold among objects in some domain or
properties that hold of some object in a domain
likes(Huey, kibble)

cat(Huey)

6.863J/9.611J Lecture 12 Sp03

• Logical connectives permit compositionality of
meaning

kibble(x) fi likes(Huey,x)

cat(Vera) ^ weird(Vera)

sleeping(Huey) v eating(Huey)

• Expressions can be assigned truth values, T
or F, based on whether the propositions they
represent are T or F in the world
• Atomic formulae are T or F based on their

presence or absence in a DB (Closed World

Assumption?)

• Composed meanings are inferred from DB and

meaning of logical connectives

6.863J/9.611J Lecture 12 Sp03

• cat(Huey)
• sibling(Huey,Vera)
• sibling(x,y) ^ cat(x) fi cat(y)
• cat(Vera)??

• Limitations:
• Do ‘and’ and ‘or’ in natural language really

mean ‘^’ and ‘v’?

Mary got married and had a baby.

Your money or your life!

He was happy but ignorant.

• Does ‘fi’ mean ‘if’?

I’ll go if you promise to wear a tutu.

6.863J/9.611J Lecture 12 Sp03

What Can Serve as a Meaning

Representation?

• Anything that serves the core practical purposes
of a program that is doing semantic processing
...
• Answer questions (What is the tallest building in the

world?)
• Determining truth (Is the blue block on the red

block?)
• Drawing inferences (If the blue block is on the red

block and the red block is on the tallest building in
the world, then the blue block is on the tallest
building in the world)

6.863J/9.611J Lecture 12 Sp03

Common Meaning
Representations
• First order predicate calculus (FOPC):

$x, yHaving(x) � Haver(S , x) � HadThing (y, x) � Car(y)

• Semantic Net:
having

haver had-thing
car

•
Car
� Poss-By
Speaker

speaker
Conceptual Dependency Diagram:

6.863J/9.611J Lecture 12 Sp03

• Frame
Having

Haver: S

HadThing: Car

• All represent ‘linguistic meaning’ of I
have a car

and state of affairs in some world
• All consist of structures, composed of

symbols representing objects and
relations among them

6.863J/9.611J Lecture 12 Sp03

Expressiveness

• Must accommodate wide variety of
meanings

6.863J/9.611J Lecture 12 Sp03

Predicate-Argument Structure

• Represents concepts and relationships among
them
• Nouns as concepts or arguments (red(ball))
• Adjectives, adverbs, verbs as predicates

(red(ball))

• Subcategorization (or, argument) frames
specify number, position, and syntactic
category of arguments
• NP likes NP
• NP likes [to eat ice-cream]

6.863J/9.611J Lecture 12 Sp03

Thematic Roles

• Subcat frames link arguments in surface
structure with their semantic roles
• Agent: George hit Bill. Bill was hit by George.
• Patient: George hit Bill. Bill was hit by George.

• Selectional Restrictions: constraints on the
types

of arguments verbs take
George assassinated the senator.
*The spider assassinated the fly.
assassinate: intentional (political?) killing

6.863J/9.611J Lecture 12 Sp03

What

• What representation do we want for
something like
John ate ice-cream fi

ate(John, ice-cream)

• Lambda calculus
• We’ll have to posit something that will do

the work
• Predicate of 2 arguments:

lx ly ate(y, x)
6.863J/9.611J Lecture 12 Sp03

What: Basic semantic representation:
or ‘thematic role’ frame

• Use of “Event structure” (recursive)
(EVENT :condition1 val1 :condition2 val2…

:condn valn)

Example:
• (see :agent John :patient Mary :tense past)
• Sometimes called a ‘thematic role frame’ or

(earlier): ‘case frame’ (Fillmore, 1965)

6.863J/9.611J Lecture 12 Sp03

More complex example

(cause :agent (bob) :effect (go :theme (book) :path
(path :oper (onto) :terminal+ (shelf))) :tense

past)

6.863J/9.611J Lecture 12 Sp03

Meaning of sentence

• Is the application of the lambda form associated
with the VP to the lambda form given by the
argument NP

• Words just return ‘themselves’ as values (from
lexicon)

• Given parse tree, then by working bottom up as
shown next, we get to the logical form
ate(John, ice-cream)

• This predicate can then be evaluated against a
database – this is model interpretation- to
return a value, or t/f, etc.

6.863J/9.611J Lecture 12 Sp03

Lambda application works

• Suppose John, ice-cream = constants,
i.e., lx.x, the identity function

• Then lambda substitution does give the
right results:
lx ly ate(y, x) (ice-cream)(John)fi
ly ate(y, ice-cream)(John)fi
ate(John, ice-cream)

But… where do we get the l-forms from?

6.863J/9.611J Lecture 12 Sp03

Example of what we now can do

athena>(top-level)
Shall I clear the database? (y or n) y
sem-interpret>John saw Mary in the park
OK.
sem-interpret>Where did John see Mary
IN THE PARK.
sem-interpret>John gave Fido to Mary
OK.
sem-interpret>Who gave John Fido
I DON'T KNOW
sem-interpret>Who gave Mary Fido
JOHN
sem-interpret >John saw Fido
OK.
sem-interpret>Who did John see
FIDO AND MARY

6.863J/9.611J Lecture 12 Sp03

How: to recover meaning from

structure

S

John=

John

lx.x, x=John

lxly ate(y,x) lx.x, x=ice-cream

NP VP

V NP

ate

*

* *

= V(NP*)=
lxl =

l

ice-cream

=ice-cream

y ate(y,x).ic
y ate(y, ic)

6.863J/9.611J Lecture 12 Sp03

How

ate(John, ic)
S*= VP*(NP*)=ly ate(y, ic).John=

John=

V* NP*=ice-cream

NP VP* *=ly ate(y, ic)

ate(John, ic)

John

lx.x, x=John
ate ice-cream

lxly ate(y,x) lx.x, x=ice-cream

6.863J/9.611J Lecture 12 Sp03

In this picture

• The meaning of a sentence is the
composition of a function VP* on an
argument NP*

• are l formsThe lexical entries
• Simple nouns are just constants
• Verbs are l forms indicating their argument

structure
• Verb phrases return l functions as their

results (in fact – higher order)

6.863J/9.611J Lecture 12 Sp03

How

• Application of the lambda form associated with
the VP to the lambda form given by the
argument NP

• Words just return ‘themselves’ as values (from
lexicon)

• Given parse tree, then by working bottom up as
shown next, we get to the logical form
ate(John, ice-cream)

• This predicate can then be evaluated against a
database – this is model interpretation- to
return a value, or t/f, etc.

6.863J/9.611J Lecture 12 Sp03

Code – sample rules

Syntactic rule Semantic rule
(root ==> s) (lambda (s)(PROCESS-SENTENCE s))

(s ==> np vp) (lambda (np vp)(funcall vp np)))

(vp ==> v+args) (lambda (v+args)(lambda (subj)
(funcall v+args subj))))

(v+args ==> v2 np)(lambda (v2 np)
(lambda (subj)

(v kiss)

(np-pro ==> name) #'identity)

6.863J/9.611J Lecture 12 Sp03 Verb arguments

(funcall v2 subj np))))

(lambda (agent beneficiary affcted-obj))

The semantic interpreter
procedure

(lambda (s) (process-sentence s)

Root (ate :agent John :patient ice-cream :tense past)

S (lambda (np vp)

John
NP VP

(funcall vp np)

(lambda (subj) (funcall v2+tns subj))

(lambda(x) x)

NP-pro V+args (lambda(v2+tns np)

NP

Name

NP-pro

(lambda (subj)John John V2+tns NP

(funcall v2+tns subj np))
Name

(lambda(x) x) ice-cream

lexical-semantics
 ice-cream

John
 lexical-semantics
ate

lexical-semantics
 ice-cream
(lambda (agent patient)(ate :agent agent :patient patient :tense past))

6.863J/9.611J Lecture 12 Sp03

How does this work?

• Top level lambda says to call procedure named VP
(whose value will be determined “from below”, ie, S-I of
VP) by using the arg NP (again whose meaning will be
provided “from below)

•	 In other words, to find the meaning of S, we call the
procedure VP using as an argument the subject NP

•	 These two values will be supplied by the (recursive)
semantic interpretation of the NP and VP nodes.

•	 At the very bottom, individual words must also contain
some paired ‘semantic’ value

•	 This is almost enough to do the code for the whole
example!

6.863J/9.611J Lecture 12 Sp03

Syntactic rule
Semantic rule

Code – sample rules
add-rule-semantics '(root ==> s)

'(lambda (s)
(PROCESS-SENTENCE s)))

(add-rule-semantics '(s ==> np vp)
#'(lambda (np vp)

(funcall vp np)))

(add-rule-semantics '(vp ==> v+args)
#'(lambda (v+args)

#'(lambda (subj)
(funcall v+args subj))))

(add-rule-semantics '(v+args ==> v2 np)
#'(lambda (v2 np)

#'(lambda (subj)
(funcall v2 subj np))))

(add-rule-sem '(np-pro ==> name) #'identity)
6.863J/9.611J Lecture 12 Sp03

Code – the interpreter
;;Parse rules into syntactic/semantic parts, recursively
(defun phrase-semantics (phrase)
(cond ((atom (second phrase)) ; find phrase name –a word?

(word-semantics (second phrase) (first phrase))) ; o.w.
(t (rule-apply (rule-semantics (first phrase) ; recurse

(mapcar
#’first(rest phrase)))

(mapcar #'phrase-semantics
(rest phrase))))))

;; now apply-eval loop for the semantic rules
(defun rule-apply (head args)
(let ((result (apply head args)))
(if (and (consp result)

(eq (first result) 'lambda))

(eval (list 'function result))

result)))

6.863J/9.611J Lecture 12 Sp03

Code for this

(defun word-semantics (word sense)
(let ((x (lookup2 word sense *lexical-semantics*)))

(if (and (consp x)
(eq (first x) 'lambda))

(eval (list 'function x))

x)))

(defun rule-semantics (head args)
(let ((x (lookup2 head args *phrasal-semantics*)))

(if (and (consp x)
(eq (first x) 'lambda))

(eval (list 'function x))

x)))

6.863J/9.611J Lecture 12 Sp03

Construction step by step – on
NP side

john

S (IP)

VP

NP

cream)

-

john

root

name

john

V2

NP-pro

VP(NP)= ate (john , ice-

(root ==> s)(lambda (s)(PROCESS-SENTENCE s)))

(lambda (np vp)(funcall vp np)) s ==> np vp

V+args

John

ate name

np-pro ==> name
#'identity Word-semantics john

6.863J/9.611J Lecture 12 Sp03

In this picture

• The meaning of a sentence is the
composition of a function VP* on an
argument NP*

• The lexical entries are l forms
• Simple nouns are just constants
• Verbs are l forms indicating their argument

structure
• Verb phrases return a function as its

result

6.863J/9.611J Lecture 12 Sp03

Syntax & paired semantics

Item or rule Semantic translation
Verb ate lxly.ate(y, x)
propN lx.x
V V*= l for lex entry

S (or CP) S*= VP*(NP*)
NP N*
VP V*(NP*)

6.863J/9.611J Lecture 12 Sp03

Logic: Lambda Terms

• Lambda terms:
• A way of writing “anonymous functions”

• No function header or function name
• But defines the key thing: behavior of the function
• Just as we can talk about 3 without naming it “x”

• Let square = lp p*p
• Equivalent to int square(p) { return p*p; }
• But we can talk about lp p*p without naming it
• Format of a lambda term: l variable expression

6.863J/9.611J Lecture 12 Sp03

6.863J/9.611J Lecture 12 Sp03

Logic: Lambda Terms

• Lambda terms:
• lp p*p
• = (l
•
• But lx l l

(proving that these functions are equal
l

• lp (p mod 2 == 0) returns true/false

•
•
• l

• Just apply rules to get lx (even(x*x)) = lx (x*x mod 2 == 0)
•

Let square =
Then square(3) p p*p)(3) = 3*3
Note: square(x) isn’t a function! It’s just the value x*x.

square(x) = x x*x = p p*p = square
– and indeed they are,

as they act the same on all arguments: what is (x square(x))(y)?)

Let even = a predicate:

even(x) is true if x is even
How about even(square(x))?
x even(square(x)) is true of numbers with even squares

This happens to denote the same predicate as even does

Logic: Multiple Arguments

• All lambda terms have one argument
• But we can fake multiple arguments ...

• Suppose we want to write times(5,6)
• Remember: square can be written as lx square(x)
• Similarly, times is equivalent to lx ly times(x,y)

• Claim that times(5)(6) means same as times(5,6)
• times(5) = (lx ly times(x,y)) (5) = ly times(5,y)

• If this function weren’t anonymous, what would we call it?

• times(5)(6) = (ly times(5,y))(6) = times(5,6)
6.863J/9.611J Lecture 12 Sp03

Logic: Multiple Arguments

•	 All lambda terms have one argument
•	 But we can fake multiple arguments ...

•	 Claim that times(5)(6) means same as times(5,6)
•	 times(5) = (lx ly times(x,y)) (5) = ly times(5,y)

• If this function weren’t anonymous, what would we call it?

•	 times(5)(6) = (ly times(5,y))(6) = times(5,6)

�	 So we can always get away with 1-arg functions ...
� ... which might return a function to take the next

argument. Whoa.

�	 We’ll still allow times(x,y) as syntactic sugar, though
6.863J/9.611J Lecture 12 Sp03

Grounding out

•	 So what does times actually mean???
•	 How do we get from times(5,6) to 30 ?

•	 Whether times(5,6) = 30 depends on whether symbol times
actually denotes the multiplication function!

• Well, maybe times was defined as another lambda term,
so substitute to get times(5,6) = (blah blah blah)(5)(6)

•	 But we can’t keep doing substitutions forever!
•	 Eventually we have to ground out in a primitive term
•	 Primitive terms are bound to object code

•	 Maybe times(5,6) just executes a multiplication function
•	 What is executed by loves(john, mary) ?

6.863J/9.611J Lecture 12 Sp03

Logic: Interesting Constants

• Thus, have “constants” that name some of
the entities and functions (e.g., times):
• Eminem - an entity
• red – a predicate on entities

• holds of just the red entities: red(x) is true if x is red!

• loves – a predicate on 2 entities
• loves(Eminem,Detroit)
• Question: What does loves(Detroit) denote?

• Constants used to define meanings of words
• Meanings of phrases will be built from the

constants & syntactic structure
6.863J/9.611J Lecture 12 Sp03

How: to recover meaning from
structure

S

John

lx.x, x=John

lxly ate(y,x) lx.x, x=ice-cream

NP VP

V NP

ate

*

* *

John= *= V*(NP*)=
lxl =

l

ice-cream

=ice-cream

y ate(y,x).ic
y ate(y, ic)

6.863J/9.611J Lecture 12 Sp03

How

ate(John, ic)
S*= VP*(NP*)=ly ate(y, ic).John=

John=

V* NP*=ice-cream

NP VP* *=ly ate(y, ic)

ate(John, ic)

John

lx.x, x=John
ate ice-cream

lxly ate(y,x) lx.x, x=ice-cream

6.863J/9.611J Lecture 12 Sp03

Processing options

• Off-line vs. on-line
• Off-line: do all syntax first, then pass to

semantic interpretation (via pass on
syntax tree(s))

• On-line: do it as each phrase is completed

6.863J/9.611J Lecture 12 Sp03

On-line

S 	� NP VP {VP*(NP*)}
•	 VP* has been stored in state representing VP
•	 NP* stored with the state for NP
• When rule completed, go get value of VP*, go get

NP*, and apply VP* to NP*
•	 Store result in S*.

•	 As fragments of input parsed, semantic
fragments created

• Can be used to block ambiguous
representations

6.863J/9.611J Lecture 12 Sp03

6.863J/9.611J Lecture 12 Sp03

Picture

S

NP

John

name

event

Conceptual interface
John

S-I

Processing order: online
•	 Interpret subtree as soon as it is built –eg, as soon as

RHS of rule is finished (complete subtree)
•	 Picture: “ship off” subtree to semantic interpretation as

soon as it is “done” syntactically
•	 Allows for off-loading of syntactic short term memory;

SI returns with ‘ptr’ to the interpretation
•	 Natural order to doing things (if process left to right)
•	 Has some psychological validity – tendency to interpret

asap & lower syntactic load
•	 Example: I told John a ghost story vs. I told John a

ghost story was the last thing I wanted to hear

6.863J/9.611J Lecture 12 Sp03

Drawback

• You also perform semantic analysis on
orphaned constituents that play no role in
final parse

•	 Worst case:
•	 Jump out the window,

• But not before you put on your parachute

• Hence, case for pipelined approach: Do
semantics after syntactic parse

6.863J/9.611J Lecture 12 Sp03

Doing Compositional Semantics

• To incorporate semantics into grammar we must
• Figure out right representation for a single

constituent based on the parts of that constituent
(e.g. Adj)

• Figuring out the right representation for a category of
constituents based on other grammar rules making
use of that constituent (e.g NP� Adj Noun)

• This gives us a set of function-like semantic
attachments incorporated into our CFG
• E.g. NP � Adj Noun* {lx Noun*(x) ^ Isa(x,Adj*)}

6.863J/9.611J Lecture 12 Sp03

What do we do with them?

• As we did with feature structures:
• Alter an Early-style parser so when

constituents (dot at the end of the rule) are
completed, the attached semantic function
applied and meaning representation created
and stored with state

• Or, let parser run to completion and then
walk through resulting tree running
semantic attachments from bottom-up

6.863J/9.611J Lecture 12 Sp03

What can we do with this

machinery?

• A lot (almost all): start adding phenomena
(figure out the representation) – and see

• To begin: wh-moved NPs (which book…),
which act just like other quantifiers

6.863J/9.611J Lecture 12 Sp03

Wh questions

• Part of process-sentence
• Wh form is placed by semantics in

template as, eg, ?which or ?who
• This will then correspond to the “for which

x, x a person” typed lambda calculus form
we wanted – explicitly in a procedural way

• Procedure prompts a search through db
for matching sets of items that can align
w/ the template

6.863J/9.611J Lecture 12 Sp03

Picture – wh-NP & trace exactly
in correct configuration

which

book
book/?which

see x

6.863J/9.611J Lecture 12 Sp03

Summing Up

• Hypothesis: Principle of Compositionality
• Semantics of NL sentences and phrases can be

composed from the semantics of their subparts

• Rules can be derived which map syntactic
analysis to semantic representation (Rule-to-
Rule Hypothesis)
• Lambda notation provides a way to extend FOPC to

this end
• But coming up with rule2rule mappings is hard

• Idioms, metaphors perplex the process

6.863J/9.611J Lecture 12 Sp03

