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Problem Set 3 
Due Date: Monday, Oct 30, 1:05pm


You may submit your solutions in class or in the box.

1. We will examine here leave-one-out cross-validation as a model selection tool. Let Sn = {(x1, y1), . . . , (xn, yn) 
denote our training set and Sn

−i the corresponding set with the ith training example and label removed. 
LOOCV is performed as follows: for each (xi, yi) in the training set, we train the classifier on the re­
maining n − 1 points S−i and test our prediction on the left-out pair (xi, yi). More formally, when using n

the squared loss, we define errorLOOCV as


n

errorLOOCV (Sn) = 
1 � 

(yi − f̂  −i(xi))2 (1) 
n 

i=1 

where f̂  −i is the estimator trained on S−i .n 

(a) Let’s start with a simpler strategy. We only leave out the first point, i.e., train with Sn
−1, and test 

on (x1, y1). The error is now 

error1(Sn) = (y1 − f̂  −1(x1))2 (2) 

Assuming each training example and label is sampled independently from some underlying distri­
bution P (x, y), show that 

E{error1(Sn)} = E{(y − f̂Sn−1 (x))}2 (3) 

where the expectation on the left is over all random quantities and, on the right hand side, it is 
over both (x, y) (test example) as well as a dataset Sn−1 of size n − 1 sampled from the same 
distribution. In other words, on average, error1(Sn) gives us the test error! 

(b) Now, using the above result, show that errorLOOCV (Sn) also has this property, i.e., 

E{errorLOOCV (Sn)} = E{(y − f̂Sn−1 (x))2} (4) 

(c) Parts a) and b) seem to indicate that both LOOCV and the single test set approximation are unbi­
ased estimates of the test error based on n − 1 training examples. Are the variances of errorLOOCV 

and error1 the same as well? 

We now consider a situation where cross-validation can be ineffective as a model selection strategy. Sup­
pose we have a classification task where we have binary-valued labels and binary-valued d-dimensional 
examples. In other words, xi ∈ {−1, 1}d and yi ∈ {−1, 1}. There are d models, each making use of 
only one feature (coordinate) of x. Model Mk corresponding to coordinate k can produce one of two 
possible estimators: 
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Mk = {fk 
flip}	 (5)keep, f
k 

fk (x) = xk (6)keep

fk 
flip(x) = −xk	 (7) 

where xk is the k-th feature/coordinate of x.


Given any dataset Sn, the model Mk chooses the estimator (fk or fk ) which results in the lowest
flip keep

training error, i.e., the final estimator f̂k is selected on the basis of whether xk or −xk better agrees Sn 

with y. 

Now, suppose that the data was generated is as follows: Pr(xk = 1) = 0.5 for all k = 1, . . . , d, i.e, 
the coordinates of x are sampled uniformly at random from {−1, 1}d . The y values are generated from 
the x values (based on only one coordinate) in a probabilistic fashion, the details of which are not known. 

Our goal is to use LOOCV to identify the best model Mk for classification. 

(d) What is the probability that model	Mr relying on an irrelevant coordinate r will produce an 
estimator with zero training error? 

Hint: What value(s) must the vector (x1r, x2r, . . . , xnr)take to ensure that no mistakes occur during 
training? Here xir is the rth coordinate of the ith example. 

(e) For any Mr with training error � (where � �
Hint: what can you say about the estimator f̂k 

1 
2) show that the training error = errorLOOCV . 

−i produced in a LOOCV step? 

1 
(f) How many dimensions d do we need so that with probability 1/2 at least one model Mr 

an irrelevant coordinate would have errorLOOCV < � (again, assume � �
based on


2)? An upper bound

suffices.


2. We will explore here the use of marginal likelihood for feature selection with a simple “voting” classifier. 
Suppose we have d−dimensional binary input examples x where each coordinate xj ∈ {−1, 1}. Our goal 
is to select a subset of features (coordinates of x) so as to ensure that the classifier generalizes well. In 
particular, we are interested in how marginal likelihood might be able to guide us in this process. If J
denotes the indexes of features we have chosen, then the discriminant function takes the form 

1 � 
f(x; θ, J ) = θj xj (8) 

|J | 
j∈J 

We will assume for simplicity that the parameters are also binary so that θj ∈ {−1, 1}. The product 
θj xj in this case specifies the ±1 label that the jth coordinate is voting for. We can define a probability 
distribution over y based on the value of the discriminant function according to 

1
� � 

1 � 
P (y|x, θ, J ) = 

2 
1 + yf(x; θ, J ) = (1 + yθj xj )/2 (9)

|J | 
j∈J 

In other words, the probability distribution over the labels is based on counting how many of the 
coordinate predictions agree with the label. Note that (1 + yθj xj )/2 = 1 if the jth coordinate prediction 
agrees with y and zero otherwise. 
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� �

� � 

We will try to use the marginal likelihood to select the appropriate coordinates, i.e., to find J . Before 
we can evaluate the marginal likelihood we have to specify a prior distribution P (θ) over the binary 
parameters θ. If we have no reason to prefer one set of parameter values over another, we can just 
assume that all binary parameter vectors are equally likely: 

P (θ|J ) = 
1 |J |	

(10)
2 

Now, given a training set Sn = {(x1, y1), . . . , (xn, yn)} of examples and labels, we can in principle 
evaluate the marginal likelihood for any subset J ⊆ {1, . . . , d}: 

n

P (Sn|J ) = P (θ|J ) P (yt|xt, θ, J )	 (11) 
θ∈{−1,1}|J | t=1 ⎡	 ⎤ � � n� 1 |J | � 1 � 

=	 ⎣ (1 + ytθj xtj )/2⎦ (12) 
θ∈{−1,1}|J | 

2 
t=1 

|J | 
j∈J 

where xtj is the jth coordinate of xt. 

(a) Evaluate an expression for	 P (Sn|J ) when J is a singleton set, i.e., when J = {l} for some 
l ∈ {1, . . . , d}. 

(b) Do you see a problem? Can you propose how we should fix it? 

(c) In directory	 hw3 you can find a MATLAB function logmarlikel(X,y,idx) that evaluates the 
logarithm of the above marginal likelihood (and includes a particular “fix” to the problem). The 
matrix argument X contains the input vectors as rows, y is a vector of corresponding labels, and idx 
specifies the columns of X we care about. Let’s try to see that our score behaves reasonably. Load 
Xrand.dat and yrand.dat. These are randomly generated and should not contain any real rela­
tionship between x and y. Plot the log-marginal likelihoods corresponding to the following feature 
sets (1), (1:2), . . . , (1:10). What can you say about how the log-marginal likelihood behaves as a 
function of the size of the set? Is the behavior reasonable? Try using logmarlikel(X,y,idx,0.4) 
(assuming high label noise). 

(d) It is hard to search over all possible subsets of features but we can do it sequentially.	 That is, we 
can find the best single feature first, then find another one to add that works best in combination 
with the first, and so on. When would we stop? 

(e) Set Xrand(:,2) = Yrand so that the second column of Xrand now contains the labels to be pre­
dicted. Rerun part a) with this data. Explain the result. 
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