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1 6.867 Machine learning, lecture 14 (Jaakkola) 

Lecture topics: 

• margin and generalization 

– linear classifiers 

– ensembles 

mixture models • 

Margin and generalization: linear classifiers 

As we increase the number of data points, any set of classifiers we are considering may no 
longer be able to label the points in all possible ways. Such emerging constraints are critical 
to be able to predict labels for new points. This motivates a key measure of complexity of 
the set of classifiers, the Vapnik-Chervonenkis dimension. The VC-dimension is defined as 
the maximum number of points that a classifier can shatter. The VC-dimension of linear 
classifiers on the plane is three (see previous lecture). Note that the definition involves a 
maximum over the possible points. In other words, we may find less than dV C points that 
the set of classifiers cannot shatter (e.g., linear classifiers with points exactly on a line in 
2 − d) but there cannot be any set of more than dV C points that the classifier can shatter. 

The VC-dimension of the set of linear classifiers in d−dimensions is d+1, i.e., the number of 
parameters. This relation to the number of parameters is typical albeit certainly not always 
true (e.g., the VC-dimension may be infinite for a classifier with a single real parameter!). 

The VC-dimension immediately generalizes our previous results for bounding the expected 
error from a finite number of classifiers. There are a number of technical steps involved that 
we won’t get into, however. Loosely speaking, dV C takes the place of the logarithm of the 
number of classifiers in our set. In other words, we are counting the number of classifiers 
on the basis of how they can label points, not based on their identities in the set. More 
precisely, we have for any set of classifiers F : with probability at least 1 − δ over the choice 
of the training set, 

R(f) ≤ Rn(f) + �(n, dV C , δ), uniformly for all f ∈ F (1) 

where the complexity penalty is now a function of dV C = dV C (F): 

dV C (log(2n/dV C ) + 1) + log(1/(4δ))
�(n, dV C , δ) = (2) 

n 
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The result is problematic for kernel methods. For example, the VC-dimension of kernel 
classifiers with the radial basis kernel is ∞. We can, however, incorporate the notion of 
margin in the classifier “dimension”. One such definition is Vγ dimension that measures 
the VC-dimension with the constraint that distinct labelings have to be obtained with 
a fixed margin γ. Suppose all the examples fall within an enclosing sphere of radius R. 
Then, as we increase γ, there will be very few examples we can classify in all possible ways 
with this constraint (especially when γ R; cf. Figure 1). Put another way, the VC→
dimension of a set of linear classifiers required to attain a prescribed margin can be much 
lower (decreasing as a function of the margin). In fact, Vγ dimension for linear classifiers 
is bounded by R2/γ2, i.e., inversely proportional to the squared margin. Note that this 
result is independent of the dimension of input examples, and is exactly the mistake bound 
for the perceptron algorithm! 

x

o

o
o

o
o

oo
o

o x x
x

x
x

x
x

Figure 1: The set of linear classifiers required to obtain a specific geometric margin has a 
lower VC-dimension when the examples remain within an enclosing sphere. 

The previous generalization guarantees can be used with Vγ dimension as well so long as 
we replace the training error with margin violations, i.e., we count the fraction of examples 
that cannot be separated with margin at least γ. 

Margin and generalization: ensembles 

An ensemble classifier can be written as a convex combination of simpler base classifiers 

m

hm(x) = αj h(x; θj ) (3) 
j=1 
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where αj ≥ 0 and m αj = 1. Boosting generates such ensembles but does not normalized j=1 
the coefficients αj to sum to one. The normalization can be easily performed after the fact. 

We are interested in understanding the complexity of such ensembles and how generalization 
guarantees depends on the voting margin achieved, e.g., through boosting algorithm. Note 
that our discussion here will not refer to how such ensembles are generated. 

Let’s start by defining what the ensembles are not. They are not decision trees. A decision 
(classification) tree is a method of recursively partitioning the set of examples into regions 
such that within each region the examples would have as uniform labels as possible. The 
partitioning in a decision tree could be based on the same type of decision stumps as we 
have used for the ensemble. In the ensemble, however, the domain for all the stumps is 
the whole space. In other words, you cannot restrict the application of the stump within 
a specific partition. In the ensemble, each stump contributes to the classification of all the 
examples. 

How powerful are ensembles based on the decision stumps? To understand this further let’s 
show how we can shatter any n points with 2n stumps even in one dimensions. It suffices 
to show that we can find an ensemble with 2n stumps that reproduces any specific labeling 
y1, . . . , yn of n points x1, . . . , xn (now real numbers). To do so, we will construct an ensemble 
of two stumps to reproduce the label yt for xt but without affecting the classification of 
other training examples. If � is less than the smallest distance between any two training 
examples, then 

1 1 
hpair(x; xt, yt) = sign (yt(x − xt + �)) + sign (−yt(x − xt − �)) (4) 

2 2

has value yt within interval [xt − �, xt + �] is zero everywhere else. Thus, setting αt = 1/n, 

h2n(x) = αthpair(x; xt, yt) (5) 
t=1 

has the correct sign for all the training examples. The ensemble of 2n components therefore 
has VC-dimension at least n. Ensembles are powerful as classifiers in this sense and their 
VC-dimension poorly explains their success in practice. 

Each example in the above construction only has a very low voting margin 1/n, however. 
Perhaps we can similarly refine the analysis to incorporate the voting margin as we did 
above with linear classifiers and the geometric margin. The key idea is to reduce an 
ensemble with many components to a coarse ensemble with few components but one that 
nevertheless classifies the examples in the same way. When the original ensemble achieves 
a large voting margin this is indeed possible, and the size of the coarse approximation that 
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we need decreases with increasing voting margin. In other words, if we achieve a large 
voting margin, we could have solved the same classification problem with much smaller 
ensemble insofar as we only pay attention to the classification error. 

Based on this and other more technical ideas we can show that with probability at least 
1 − δ over the choice of the training data, 

Rn(ĥ) ≤ Rn(ĥ; ρ) + Õ dV C 

n

/ρ2 

, (6) 

where the Õ( ) notation hides constants and logarithmic terms, Rn(ĥ; ρ) counts the number ·
of training examples with voting margin less than ρ, and dV C is the VC-dimension of the 
base classifiers. Note that the result does not depend on the number of base classifiers in 
the ensemble ĥ. Note also that the effective dimension dV C /ρ

2 that the number of training 
examples is compared to has a similar form as before, decreasing with the margin ρ. See 
Schapire et al. (1998) for details. The paper is available from the course website as optional 
reading. 

Mixture models 

There are many problems in machine learning that are not simple classification problems 
but rather modeling problems (e.g., clustering, diagnosis, combining multiple information 
sources for sequence annotation, and so on). Moreover, even within classification problems, 
we often have unobserved variables that would make a difference in terms of classification. 
For example, if we are interested in classifying tissue samples into specific categories (e.g., 
tumor type), it would be useful to know the composition of the tissue sample in terms 
of cells that are present and in what proportions. While such variables are not typically 
observed, we can still model them and make use of their presence in prediction. 

Mixture models are simple probability models that try to capture ambiguities in the avail
able data. They are simple, widely used and useful. As the name suggests, a mixture model 
“mixes” different predictions on the probability scale. The mixing is based on alternative 
ways of generating the observed data. Let x be a vector of observations. A mixture model 
over vectors x is defined as follows. We assume each x could be of m possible types. If we 
knew the type, j, we would model x with a conditional distribution P (x|j) (e.g., Gaussian 
with a specific mean). If the overall frequency of type j in the data is P (j), then the 
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“mixture distribution” over x is given by 

m

P (x) = P (x|j)P (j) (7) 
j=1 

In other words, x could be generated in m possible ways. We imagine the generative 
process to be as follows: sample j from the frequencies P (j), then x from the corresponding 
conditional distribution P (x|j). Since we do not observe the particular way the example 
was generated (assuming the model is correct), we sum over the possibilities, weighted by 
the overall frequencies. 

We have already encountered mixture models. Take, for example, the Naive Bayes model 
P (x|y)P (y) over the feature vector x and label y. If we pool together examples labeled +1 
and those labeled −1, and throw away the label information, then the Naive Bayes model 
predicts feature vectors x according to 

d

P (x) = P (x|y)P (y) = P (xi|y) P (y) (8) 
y=±1 y=±1 i=1 

In other words, the distribution P (x) assumes that the examples come in two different 
varieties corresponding to their label. This type of unobserved label information is precisely 
what the mixtures aim to capture. 

Let’s start with a simple two component mixture of Gaussians model (in two dimensions): 

P (x|θ) = P (1)N(x; µ1, σ1
2 I) + P (2)N(x; µ2, σ2

2 I) (9) 

The parameters θ defining the mixture model are P (1), P (2), µ1, µ2, σ1
2, and σ2

2 . Figure 
2 shows data generated from such a model. Note that the frequencies P (j) (a.k.a. mixing 
proportions) control the size of the resulting clusters in the data in terms of how many 
examples they involve, µj ’s specify the location of cluster centers, and σj 

2’s control how 
spread out the clusters are. Note that each example in the figure could in principle have 
been generated in two possible ways (which mixture component it was sampled from). 

There are many ways of using mixtures. Consider, for example, the problem of predicting 
final exam score vectors for students in machine learning. Each observation is a vector 
x with components that specify the points the student received in a particular question. 
We would expect that different types of students succeed in different types of questions. 
This “student type” information is not available in the exam score vectors, however, but 
we can model it. Suppose there are n students taking the course so that we have n vector 
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Figure 2: Samples from a mixture of two Gaussians 

observations x1, . . . , xn. Suppose there are m underlying types of students (the number 
of types can be inferred from the data; this is a model selection problem). We also don’t 
know how many students taking the course are of particular type, i.e., we have to estimate 
the mixing proportions P (j) as well. The mixture distribution over a single example score 
vector is now given by 

m

P (x|θ) = P (x|j)P (j) (10) 
j=1 

We won’t concern ourselves at this point with the problem of deciding how to parameterize 
the conditional distributions P (x j). Suffice it to say that it wouldn’t be unreasonable to �d 

|
assume that P (x|j) = P (xi|j) as in the Naive Bayes model but each xi would take i=1 
values in the range of scores for the corresponding exam question. Now, our mixture model 
assumes that each student is of particular type. If someone gave us this information, i.e., 
jt for xt, then we would model the observations with the conditional distribution 

n

P (x1, . . . , xn j1, . . . , jn, θ) = P (xt jt) (11) |
t=1 

|

assuming each student obtains their score independently from others. But the type infor
mation is not present in the data so we will have to sum over the possible values of jt for 
each student, weighted by the prior probabilities of types, P (jt) (same for all students): 

n m n m

P (x1, . . . , xn θ) = P (xt jt)P (jt) = P (xt j)P (j) (12) |
t=1 jt=1 

|
t=1 j=1 

|
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This is the likelihood of the observed data according to our mixture model. It is important 
to understand that the model would be very different if we exchanged the product and the 
sum in the above expression, i.e., define the model as 

m n

P (x1, . . . , xn θ) = j) P (j) (13) |
j=1 t=1 

P (xt|

This is also a mixture model but one that assumes that all students in the class are of specific 
single type, we just don’t know which one, and are summing over the m possibilities (in 
the previous model there were mn possible assignments of types over n students). 
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