
�

1 6.867 Machine learning, lecture 17 (Jaakkola)

Lecture topics:

• Mixture models and clustering, k-means

• Distance and clustering

Mixture models and clustering

We have so far used mixture models as flexible ways of constructing probability models for
prediction tasks. The motivation behind the mixture model was that the available data
may include unobserved (sub)groups and by incorporating such structure in the model we
could obtain more accurate predictions. We are also interested in uncovering that group
structure. This is a clustering problem. For example, in the case of modeling exam scores it
would be useful to understand what types of students there are. In a biological context, it
would be useful to uncover which genes are active (expressed) in which cell types when the
measurements are from tissue samples involving multiple cell types in unknown quantities.
Clustering problems are ubiquitous.

There are many different types of clustering algorithms. Some generate a series of nested
clusters by merging simple clusters into larger ones (hierarchical agglomerative clustering),
while others try to find a pre-specified number of clusters that best capture the data (e.g.,
k-means). Which algorithm is the most appropriate to use depends in part on what we are
looking for. So it is very useful to know more than one clustering method.

Mixture models as generative models require us to articulate the type of clusters or sub­
groups we are looking to identify. The simplest type of clusters we could look for are
spherical Gaussian clusters, i.e., we would be estimating Gaussian mixtures of the form

m

P (x; θ,m) = P (j)N(x; µj , σj
2I) (1)

j=1

where the parameters θ include {P (j)}, {µj }, and {σj
2}. Note that we are estimating the

mixture models with a different objective in mind. We are more interested in finding where
the clusters are than how good the mixture model is as a generative model.

There are many questions to resolve. For example, how many such spherical Gaussian
clusters are there in the data? This is a model selection problem. If such clusters exist,
do we have enough data to identify them? If we have enough data, can we hope to find
the clusters via the EM algorithm? Is our approach robust, i.e., does our method degrade

 Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

2 6.867 Machine learning, lecture 17 (Jaakkola)

gracefully when data contain “background samples” or impurities along with spherical
Gaussian clusters? Can we make the clustering algorithm more robust? Similar questions
apply to other clustering algorithms. We will touch on some of these issues in the context
of each algorithm.

Mixtures and K-means

It is often helpful to try to search for simple clusters. For example, consider a mixture of
two Gaussians where the variances of the spherical Gaussians may be different:

2

P (x; θ) = P (j)N(x; µj , σj
2I) (2)

j=1

Points far away from the two means, in whatever direction, would always be assigned to
the Gaussian with the larger variance (tails of that distribution approach zero much slower;
the posterior assignment is based on the ratio of probabilities). While this is perfectly fine
for modeling the density, it does not quite agree with the clustering goal.

To avoid such issues (and to keep the discussion simpler) we will restrict the covariance
matrices to be all identical and equal to σ2I where σ2 is common to all clusters. Moreover,
we will fix the mixing proportions to be uniform P (j) = 1/m. With such restrictions we
can more easily understand the type of clusters we will discover. The resulting simplified
mixture model has the form

m
1 �

P (x; θ) = N(x; µj , σ
2I) (3)

m
j=1

Let’s begin by trying to understand how points are assigned to clusters within the EM
algorithm. To this end, we can see how the mixture model partitions the space into
regions where within each region a specific component has the highest posterior prob­
ability. To start with, consider any two components i and j and the boundary where
P (i|x, θ) = P (j|x, θ), i.e., the set of points for which the component i and j have the same
posterior probability. Since the Gaussians have equal prior probabilities, this happens when
N(x; µj , σ

2I) = N(x; µi, σ
2I). Both Gaussians have the same spherical covariance matrix

so the probability that they assign to points is based on the Euclidean distances to their
mean vectors. The posteriors therefore can be equal only when the component means are
equidistant from the points:

2 2 2 2�x − µi� = �x − µj � or 2x T (µj − µi) = �µj � − �µj � (4)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

3 6.867 Machine learning, lecture 17 (Jaakkola)

The boundary is therefore linear1 in x. We can draw such boundaries between any pair of
components as illustrated in Figure 1. The pairwise comparisons induce a Voronoi partition
of the space where, for example, the region enclosing µ1 in the figure corresponds to all the
points whose closest mean is µ1. This is also the region where P (1|x, θ) takes the highest
value among all the posterior probabilities.

µ2
2 x 21

3

x
µ1 x

µ3

1 3

Figure 1: Voronoi regions resulting from pairwise comparison of posterior assignment prob­
abilities. Each line corresponds to a decision between posterior probabilities of two compo­
nents. The line is highlighted (solid) when the boundary is an active constraint for deciding
the highest probability component.

Note that the posterior assignment probabilities P (j|x, θ) evaluated in the E-step of the
EM algorithm do not vanish across the boundaries. The regions merely highlight when
one assignment has a higher probability than the others. The overall variance parameter
σ2 controls how sharply the posterior probabilities change when we cross each boundary.
Small σ2 results in very sharp transitions (e.g., from near zero to nearly one) while the
posteriors change smoothly when σ2 is large.

K-means. We can define a simpler and faster version of the EM algorithm by just assigning
each point to the component with the highest posterior probability (its closest mean).
Geometrically, the points within each Voronoi region are assigned to one component. The
M-step then simply repositions each mean vector to the center of the points within the
region. The updated means define new Voronoi regions and so on. The resulting algorithm
for finding cluster means is known as the K-means algorithm:

E-step: assign each point xt to its closest mean, i.e., jt = arg minj �xt − µj �2

M-step: recompute µj ’s as means of the assigned points.

1The linearity holds when the two Gaussians have the same covariance matrix, spherical or not.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

4 6.867 Machine learning, lecture 17 (Jaakkola)

This is a highly popular hard assignment version of the EM-algorithm. We can view
the algorithm as optimizing the complete log-likelihood of the data with respect to the
assignments j1, . . . , jn (E-step) as well as the means µ1, . . . , µm (M-step). This is equivalent
to minimizing the overall squared error (distortion) to the cluster means:

n

J(j1, . . . , jn, µ1, . . . , µm) = �xt − µjt �2 (5)
t=1

Each step of the algorithm, E or M-step, decreases the objective until convergence. The
algorithm can never come back to the same assignments j1, . . . , jn as it would result in the
same value of the objective. Since there are only O(nk) possible partitions of points with
k means, the algorithm has to converge in a finite number of steps. At convergence, the
cluster means µ̂1, . . . , µ̂m are locally optimal solutions to the minimum distortion objective

n

J(µ̂1, . . . , µ̂m) = min �xt − µ̂j �2 (6)
j

t=1

The speed of the K-means algorithm comes at a cost. It is even more sensitive to proper
initialization than a mixture of Gaussians trained with EM. A typical and reasonable
initialization corresponds to setting the first mean to be a randomly selected training point,
the second as the furthest training point from the first mean, the third as the furthest
training point from the two means, and so on. This initialization is a greedy packing
algorithm.

Identifiability. The k-means or mixture of Gaussians with the EM algorithm can only do
as well as the maximum likelihood solution they aim to recover. In other words, even when
the underlying clusters are spherical, the number of training examples may be too small for
the globally optimal (non-trivial) maximum likelihood solution to provide any reasonable
clusters. As the number of points increases, the quality of the maximum likelihood solution
improves but may be hard to find with the EM algorithm. A large number of training points
also makes it easier to find the maximum likelihood solution. We could therefore roughly
speaking divide the clustering problem into three regimes depending on the number of
training points: not solvable, solvable but hard, and easy. For a recent discussion on such
regimes, see Srebro et al., “An Investigation of Computational and Informational Limits in
Gaussian Mixture Clustering”, ICML 2006.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� �

5 6.867 Machine learning, lecture 17 (Jaakkola)

Distance and clustering

Gaussian mixture models and the K-means algorithm make use of the Euclidean distance
between points. Why should the points be compared in this manner? In many cases the
vector representation of objects to be clustered is derived, i.e., comes from some feature
transformation. It is not at all clear that the Euclidean distance is an appropriate way of
comparing the resulting feature vectors.

Consider, for example, a document clustering problem. We might treat each document x
as a bag of words and map it into a feature vector based on term frequencies:

nw(x) = number of times word w appears in x (7)

f(w|x) =
nw(x)�
w� nw� (x)

= term frequency (8)

� �
IDF�� ��

of docs
φw(x) = f(w|x) · log

of docs with word w
(9)

where the feature vector φ(x) is known as the TFIDF mapping (there are many variations
of this). IDF stands for inverse document frequency and aims to de-emphasize words that
appear in all documents, words that are unlikely to be useful for clustering or classification.
We can now interpret the vectors φ(x) as points in a Euclidean space and apply, e.g., the
K-means clustering algorithm. There are, however, many other ways of defining a distance
metric for clustering documents.

Distance metric plays a central role in clustering, regardless of the algorithm. For example,
a simple hierarchical agglomerative clustering algorithm is defined almost entirely on the
basis of the distance function. The algorithm proceeds by successively merging two closest
points or closest clusters (average squared distance) and is illustrated in Figure 2.

In solving clustering problems, the focus should be on defining the distance (similarity)
metric, perhaps at the expense of a specific algorithm. Most algorithms could be applied
with the chosen metric. One avenue for defining a distance metric is through model selec­
tion. Let’s see how this can be done. The simplest model over the words in a document is a
unigram model where each word is an independent sample from a multi-nomial distribution
{θw}, w θw = 1. The probability of all the words in document x is therefore

P (x|θ) = θw = θnw (x) (10) w
w∈x w

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� � �

6 6.867 Machine learning, lecture 17 (Jaakkola)

3
1 x

a) 2
x b)

4
x

x 2

x

x

1
3

c)
x 4 x 4

x

x 2

x

x

1
3

2 43d) 1

Figure 2: a-c) successive merging of clusters in a hierarchical clustering algorithm and d)
the resulting cluster hierarchy.

It is often a good idea to normalize the documents so they have the same length. We could,
for example, say that each document is of length one and word “counts” are given by term
frequencies f(w|x). Accordingly,

P (x̃|θ) = θf (w|x) (11) w
w

where x̃ denotes a normalized version of document x. Consider a cluster of documents C.
The unigram model that best describes the normalized documents in the cluster can be
obtained by maximizing the log-likelihood

l(C; θ) = log P (x̃|θ) = f(w|x) log θw (12)
wx∈C x∈C

The maximum likelihood solution is, as before, obtained through empirical counts (repre­
sented here by term frequencies):

1 �
θ̂w =

C
f(w|x) (13)

| |
x∈C

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

�

�

| | | | | �

| �
| �

| �

7 6.867 Machine learning, lecture 17 (Jaakkola)

The resulting log-likelihood value is

l(C; θ̂) = f(w|x) log θ̂w (14)
wx∈C

= C
� 1 �

f(w x) log θ̂w (15) | |
w

|C|
x∈C

|

= |C| θ̂w log θ̂w = −|C|H(θ̂) (16)
w

where H(θ̂) is the entropy of the unigram distribution.

We can now proceed to define a distance corresponding to the unigram model. Consider
any two clusters Ci and Cj and their combination C = Ci ∪Cj . When Ci and Cj are treated
as distinct clusters, we will use a different unigram model to capture their term frequencies.
The combined cluster C, on the other hand, is modeled with a single unigram model. We
can now treat the documents in the two clusters as observations and devise a model selection
problem for deciding whether the clusters should be viewed as separate or merged. To this
end, we will evaluate the resulting log-likelihoods in two ways corresponding to whether
the clusters are modeled as separate or combined. When separate:

l(Ci|θ̂·|i) + l(Cj |θ̂·|j) = −|Ci|H(θ̂·|i) − |Cj |H(θ̂·|j) (17)

= −(|Ci| + |Cj |) P̂ (y)H(θ̂·|y) (18)
y∈{i,j}

where P̂ (y = i) = |Ci|/(|Ci| + |Cj |) is the probability that a randomly drawn document
from C = Ci ∪ Cj is from cluster Ci. The parameter estimates θ̂w|i and θ̂w|j are obtained
as before. Similarly, when the two clusters are modeled with the same unigram:

l(Ci, Cj θ̂) = −(Ci + Cj)H(θ̂) (19)

where the parameter estimate θ̂w can be written as θ̂w = y∈{i,j} P̂ (y)θ̂w|y, i.e., as a cluster
size weighted combination of the estimates from the individual clusters.

We can now define a (squared) distance between Ci and Cj according to how much better
they are modeled as separate clusters (log-likelihood ratio statistic):

d2(Ci, Cj) = l(Ci θ̂·|i) + l(Cj θ̂·|j) − l(Ci, Cj θ̂) (20)

= (|Ci| + |Cj |) H(θ̂) − P̂ (y)H(θ̂·|y) (21)
y∈{i,j}

= (|Ci| + |Cj |) Î(w; y) (22)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

8 6.867 Machine learning, lecture 17 (Jaakkola)

where Î(w; y) is the mutual information between words w sampled from the combined
cluster C and the identity of the cluster (i or j). (Recall a similar derivation in the feature
selection context). More precisely, the mutual information is computed on the basis of
P̂ (w, y) = P̂ (y)θ̂w|y. Note that d2(Ci, Cj) is symmetric and non-negative but need not
satisfy all the properties of a metric. It nevertheless compares the two clusters in a very
natural way: we measure how distinguishable they are based on their word distributions.
In other words, Î(w; y) tells us how much a word sampled at random from a document in
the combined cluster C tells us about the cluster Ci or Cj that the sample came from. Low
information content means that the two clusters have nearly identical distributions over
words.

The (squared) metric d2(Ci, Cj) can be immediately used, e.g., in a hierarchical clustering
algorithm (the same algorithm derived from a different perspective is known as an agglom­
erative information bottleneck method). We could take the model selection idea further
and decide when to stop merging clusters rather than simply providing a scale for deciding
how different two clusters are.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

