
1 6.867 Machine learning, lecture 13 (Jaakkola)

Lecture topics:

• Boosting, margin, and gradient descent

• complexity of classifiers, generalization

Boosting

Last time we arrived at a boosting algorithm for sequentially creating an ensemble of
base classifiers. Our base classifiers were decision stumps that are simple linear classifiers
relying on a single component of the input vector. The stump classifiers can be written
as h(x; θ) = sign(s(xk − θ0)) where θ = {s, k, θ0} and s ∈ {−1, 1} specifies the label to
predict on the positive side of xk − θ0. Figure 1 below shows a possible decision boundary
from a stump when the input vectors x are only two dimensional.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Figure 1: A possible decision boundary from a trained decision stump. The stump in the
figure depends only on the vertical x2-axis.

The boosting algorithm combines the stumps (as base learners) into an ensemble that, after

ensemble by α̂j after the fact. The simple Adaboost algorithm can be written in the

m rounds of boosting, takes the following form
m�

hm(x) = α̂j h(x; θ̂j) (1)
j=1

where α̂j ≥ 0 but they do not necessarily � m
sum to one. We can always normalize the

j=1
following modular form:

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� �

� � �

� �

2 6.867 Machine learning, lecture 13 (Jaakkola)

(0) Set W0(t) = 1/n for t = 1, . . . , n.

(1) At stage m, find a base learner h(x; θ̂m) that approximately minimizes

m

− W̃m−1(t)yth(xt; θm) = 2�m − 1 (2)
t=1

where �m is the weighted classification error (zero-one loss) on the training examples,
weighted by the normalized weights W̃m−1(t).

(2) Given θ̂m, set

α̂m = 0.5 log
1 − �̂m

(3)
�̂m

where �̂m is the weighted error corresponding to θ̂m chosen in step (1). For binary
{−1, 1} base learners, α̂m exactly minimizes the weighted training loss (loss of the
ensemble):

n

J(αm, θ̂m) = W̃m−1(t) exp −ytαmh(xt; θ̂m) (4)
t=1

In cases where the base learners are not binary (e.g., return values in the interval
[−1, 1]), we would have to minimize Eq.(4) directly.

(3) Update the weights on the training examples based on the new base learner:

W̃m(t) = cm · W̃m−1(t) exp −ytα̂mh(xt; θ̂m) (5)

where cm is the normalization constant to ensure that W̃m(t) sum to one after the
update. The new weights can be again interpreted as normalized losses for the new
ensemble hm(xt) = hm−1(x) + α̂mh(x; θ̂m).

Let’s try to understand the boosting algorithm from several different perspectives. First
of all, there are several different types of errors (errors here refer to zero-one classification
losses, not the surrogate exponential losses). We can talk about the weighted error of base
learner m, introduced at the mth boosting iteration, relative to the weights W̃m−1(t) on
the training examples. This is the weighted training error �̂m in the algorithm. We can
also measure the weighted error of the same base classifier relative to the updated weights,

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

3 6.867 Machine learning, lecture 13 (Jaakkola)

i.e., relative to W̃m(t). In other words, we can measure how well the current base learner
would do at the next iteration. Finally, in terms of the ensemble, we have the unweighted
training error and the corresponding generalization (test) error, as a function of boosting
iterations. We will discuss each of these in turn.

Weighted error. The weighted error achieved by a new base learner h(x; θ̂m) relative to
W̃m−1(t) tends to increase with m, i.e., with each boosting iteration (though not monoton
ically). Figure 2 below shows this weighted error �̂m as a function of boosting iterations.
The reason for this is that since the weights concentrate on examples that are difficult to
classify correctly, subsequent base learners face harder classification tasks.

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

w
ei

gh
te

d
tr

ai
ni

ng
 e

rr
or

number of iterations

Figure 2: Weighted error �̂m as a function of m.

Weighted error relative to updated weights. We claim that the weighted error of the
base learner h(x; θ̂m) relative to the updated weights W̃m(t) is exactly 0.5. This means that
the base learner introduced at the mth boosting iteration will be useless (at chance level)
for the next boosting iteration. So the boosting algorithm would never introduce the same
base learner twice in a row. The same learner might, however, reappear later on (relative
to a different set of weights). One reason for this is that we don’t go back and update
α̂j ’s for base learners already introduced into the ensemble. So the only way to change the
previously set coefficients is to reintroduce the base learners. Let’s now see that the claim
is indeed true. We can equivalently show that the weighted agreement relative to W̃m(t) is
exactly zero:

m

W̃m(t)yth(xt; θ̂m) = 0 (6)
t=1

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

�

� �

� �

�

4 6.867 Machine learning, lecture 13 (Jaakkola)

Consider the optimization problem for αm after we have already found θ̂m:
n � �

J(αm, θ̂m) = W̃m−1(t) exp −ytαmh(xt; θ̂m) (7)
t=1

The derivative of J(αm, θ̂m) with respect to αm has to be zero at the optimal value α̂m so
that

n

dα

d

m
J(αm, θ̂m)��

αm =α̂m
= −

�
W̃m−1(t) exp

�
−ytα̂mh(xt; θ̂m)

�
yth(xt; θ̂m) (8)

t=1
n

= −cm W̃m(t)yth(xt; θ̂m) = 0 (9)
t=1

where we have used Eq.(5) to move from W̃m−1(t) to W̃m(t). So the result is an optimality
condition for αm.

Ensemble training error. The training error of the ensemble does not necessarily de
crease monotonically with each boosting iteration. The exponential loss of the ensemble
does, however, decrease monotonically. This should be evident since it is exactly the loss
we are sequentially minimizing by adding the base learners. We can also quantify, based on
the weighted error achieved by each base learner, how much the exponential loss decreases
after each iteration. We will need this to relate the training loss to the classification error.
In fact, the amount that the training loss decreases after iteration m is exactly cm, the nor
malization constant for the updated weights (we have to normalize the weights precisely
because the exponential loss over the training examples decreases). Note also that cm is
exactly J(α̂m, θ̂m). Now,

n � �
J(α̂m, θ̂m) = W̃m−1(t) exp −ytα̂mh(xt; θ̂m) (10)

t=1

= W̃m−1(t) exp (−α̂m) + W̃m−1(t) exp (α̂m) (11)
t: yt =h(xt;θ̂m) t: yt �=h(xt;θ̂m)

= (1 − �̂m) exp (−α̂m) + �̂m exp (α̂m) (12)

= (1 − �̂m)
1 −

�̂m

�̂m
+ �̂m

1 −
�̂m

�̂m
(13)

= 2 �̂m(1 − �̂m) (14)

Note that this is always less than one for any �̂m < 1/2. The training loss of the ensemble
after m boosting iterations is exactly the product of these terms (renormalizations). In

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� � �

5 6.867 Machine learning, lecture 13 (Jaakkola)

other words,
m m

exp (−ythm(xt)) = 2 �̂k(1 − �̂k) (15)
t=1 k=1

This and the observation that

step(z) ≤ exp(z) (16)

for all z, where the step function step(z) = 1 if z > 0 and zero otherwise, suffices for our
purposes. A simple upper bound on the training error of the ensemble, errn(hm), follows
from

1
n�

errn(hm) =
n

step (−ythm(xt)) (17)
t=1

1
n�

≤
n

exp (−ythm(xt)) (18)
t=1

1
m� �

=
n

2 �̂k(1 − �̂k) (19)
k=1

Thus the exponential loss over the training examples is an upper bound on the training error
and this upper bound goes down monotonically with m provided that the base learners are
learning something at each iteration (their weighted errors less than half). Figure 3 shows
the training error as well as the upper bound as a function of the boosting iterations.

Ensemble test error. We have so far discussed only training errors. The goal, of course, is
to generalize well. What can we say about the generalization error of ensemble generated by
the boosting algorithm? We have repeatedly tied the generalization error to some notion
of margin. The same is true here. Consider figure 5 below. It shows a typical plot of
the ensemble training error and the corresponding generalization error as a function of
boosting iterations. Two things are notable in the plot. First, the generalization error
seems to decrease (slightly) even after the ensemble has reached zero training error. Why
should this be? The second surprising thing seems to be the fact that the generalization
error does not increase even after a large number of boosting iterations. In other words, the
boosting algorithm appears to be somewhat resistant to overfitting. Let’s try to explain
these two (related) observations.

The votes {α̂j } generated by the boosting algorithm won’t sum to one. We will therefore
renormalize ensemble

h̃m(x) =
α̂1h(x; θ̂1) + . . . α̂mh(x; θ̂m)

(20)
α̂1 + . . . + α̂m

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6 6.867 Machine learning, lecture 13 (Jaakkola)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of iterations

tr
ai

ni
ng

 e
rr

or

Figure 3: The training error of the ensemble as well as the corresponding exponential loss
(upper bound) as a function of the boosting iterations.

so that h̃m(x) ∈ [−1, 1]. As a result, we can define a “voting margin” for training examples
as margin(t) = yth̃m(xt). The margin is positive if the example is classified correctly by the
ensemble. It represents the degree to which the base classifiers agree with the correct clas
sification decision (negative value indicates disagreement). Note that margin(t) ∈ [−1, 1].
It is a very different type of margin (voting margin) than the geometric margin we have
discussed in the context linear classifiers. Now, in addition to the training error errn(hm)
we can define a margin error errn(hm; ρ) that is the fraction of example margins that are at
or below the threshold ρ. Clearly, errn(hm) = errn(hm; 0). We now claim that the boosting
algorithm, even after errn(hm; 0) = 0 will decrease errn(hm; ρ) for larger values of ρ > 0.
Figure 4a-b provide an empirical illustration that this is indeed happening. This is perhaps
easy to understand as a consequence of the fact that exponential loss, exp(−margin(t)),
decreases as a function of the margin, even after the margin is positive.

The second issue to explain is the apparent resistance to overfitting. One reason is that the
complexity of the ensemble does not increase very quickly as a function of the number of
base learners. We will make this statement more precise later on. Moreover, the boosting
iterations modify the ensemble in sensible ways (increasing the margin) even after the
training error is zero. We can also relate the margin, or the margin error errn(hm; ρ) directly
to generalization error. Another reason for resistance to overfitting is that the sequential
procedure for optimizing the exponential loss is not very effective. We would overfit much
more quickly if we reoptimized {αj }’s jointly rather than through the sequential procedure
(see the discussion of boosting as gradient descent below).

Boosting as gradient descent. We can also view the boosting algorithm as a simple

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

7 6.867 Machine learning, lecture 13 (Jaakkola)

a) −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c) −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: The margin errors errn(hm; ρ) as a function of ρ when a) m = 10 b) m = 50.

gradient descent procedure (with line search) in the space of discriminant functions. To
understand this we can view each base learner h(x; θ) as a vector based on evaluating it
on each of the training examples: ⎡ ⎤

h(x1; θ)
�h(θ) = ⎣ ⎦ (21) · · ·

h(xn; θ)

The ensemble vector �hm, obtained by evaluating hm(x) at each of the training examples,
is a positive combination of the base learner vectors:

m

�hm = α̂m
�h(θ̂m) (22)

j=1

The exponential loss objective we are trying to minimize is now a function of the ensemble
vector �hm and the training labels. Suppose we have �hm−1. To minimize the objective, we
can select a useful direction, �h(θ̂m), along which the objective seems to decrease. This is
exactly how we derived the base learners. We can then find the minimum of the objective
by moving in this direction, i.e., evaluating vectors of the form �hm−1 + αm

�h(θ̂m). This is a
line search operation. The minimum is attained at α̂m, we obtain �hm = �hm−1 + α̂m

�h(θ̂m),
and the procedure can be repeated.

Viewing the boosting algorithm as a simple gradient descent procedure also helps us un
derstand why it can overfit if we continue with the boosting iterations.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

8 6.867 Machine learning, lecture 13 (Jaakkola)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of iterations

tr
ai

ni
ng

/te
st

 e
rr

or

Figure 5: The training error of the ensemble as well as the corresponding generalization
error as a function of boosting iterations.

Complexity and generalization

We have approached classification problems using linear classifiers, probabilistic classifiers,
as well as ensemble methods. Our goal is to understand what type of performance guaran
tees we can give for such methods based on finite training data. This is a core theoretical
question in machine learning. For this purpose we will need to understand in detail what
“complexity” means in terms of classifiers. A single classifier is never complex or simple;
complexity is a property of the set of classifiers or the model. Each model selection criterion
we have encountered provided a slightly different definition of “model complexity”.

Our focus here is on performance guarantees that will eventually relate the margin we can
attain to the generalization error, especially for linear classifiers (geometric margin) and
ensembles (voting margin). Let’s start by motivating the complexity measure we need for
this purpose with an example.

Consider a simple decision stump classifier restricted to x1 coordinate of 2−dimensional
input vectors x = [x1, x2]

T . In other words, we consider stumps of the form

h(x; θ) = sign (s(x1 − θ0)) (23)

where s ∈ {−1, 1} and θ0 ∈ R and call this set of classifiers F1. Example decision bound
aries are displayed in Figure 6.

Suppose we are getting the data points in a sequence and we are interested in seeing when
our predictions for future points become constrained by the labeled points we have already

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

9 6.867 Machine learning, lecture 13 (Jaakkola)

a)

+1

x1

x2

x

x

+1

-1

x1

x2

x

x

+1

b)

+1

x1

x2

x

x

-1

?

x1

x2

x

x

-1

+1 x

c)

d) e) f)

-1

x1

x2

x

x

-1

h2

x1

x2

x

x

-1

-1 x
?

h1

Figure 6: Possible decision boundaries corresponding to decision stumps that rely only on
x1 coordinate. The arrow (normal) to the boundary specifies the positive side.

seen. Such constraints pertain to both the data and the set of classifiers F1. See Figure
6e. Having seen the labels for the first two points, −1 and +1, all classifiers h ∈ F1 that
are consistent with these two labeled points have to predict +1 for the next point. Since
the labels we have seen force us to classify the new point in only one way, we can claim
to have learned something. We can also understand this as a limitation of (the complexity
of) our set of classifiers. Figure 6f illustrates an alternative scenario where we can find two
classifiers h1 ∈ F1 and h2 ∈ F1, both consistent with the first two labels in the figure, but
make different predictions for the new point. We could therefore classify the new point
either way. Recall that this freedom is not available for all label assignments to the first
two points. So, the stumps in F1 can classify any two points (in general position) in all
possible ways (Figures 6a-d) but are already partially constrained in how they assign labels
to three points (Figure 6e). In more technical terms we say that F1 shatters (can generate
all possible labels over) two points but not three.

Similarly, for linear classifiers in 2−dimensions, all the eight possible labelings of three
points can be obtained with linear classifiers (Figure 7a). Thus linear classifiers in two
dimensions shatter three points. However, there are labels over four points that no linear
classifier can produce (Figure 7b).

VC-dimension. As we increase the number of data points, the set of classifiers we are
considering may no longer be able to label the points in all possible ways. Such emerging
constraints are critical to be able to predict labels for new points. This motivates a key

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

10 6.867 Machine learning, lecture 13 (Jaakkola)

a)

x x

x

x x

x

x x

x

x x

x

x x

x

x x

x

x x

x

x x

x

+-

+-

+-
+-

+ -

+- + - +-

b)

x

x

x

x

+ -

+-

Figure 7: Linear classifiers on the plane can shatter three points a) but not four b).

measure of complexity of the set of classifiers, the Vapnik-Chervonenkis dimension. The
VC-dimension is defined as the maximum number of points that a classifier can shatter.
So, the VC-dimension of F1 is two, denoted as dV C (F1), and the VC-dimension of linear
classifiers on the plane is three. Note that the definition involves a maximum over the
possible points. In other words, we may find less than dV C points that the set of classifiers
cannot shatter (e.g., linear classifiers with points exactly on a line in 2−d) but there cannot
be any set of more than dV C points that the classifier can shatter.

The VC-dimension of the set of linear classifiers in d−dimensions is d + 1, i.e., the number
of parameters. This is not a useful result for understanding how kernel methods work.
For example, the VC-dimension of linear classifiers using the radial basis kernel is ∞. We
can incorporate the notion of margin in VC-dimension, however. This is known as the Vγ

dimension. The Vγ dimension of a set of linear classifiers that attain geometric margin γ
when examples lie within an enclosing sphere of radius R is bounded by R2/γ2 . In other
words there are not that many points we can label in all possible ways if any valid labeling
has to be with margin γ. This result is independent of the dimension of the classifier, and
is exactly the mistake bound for the perceptron algorithm!

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

