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6.867 Machine learning 

Mid-term exam 

October 8, 2003 

(2 points) Your name and MIT ID: 

Problem 1 

We are interested here in a particular 1-dimensional linear regression problem. The dataset 
corresponding to this problem has n examples (x1, y1), . . . , (xn, yn), where xi and yi are real 
numbers for all i. Part of the difficulty here is that we don’t have access to the inputs or 
outputs directly. We don’t even know the number of examples in the dataset. We are, 
however, able to get a few numbers computed from the data. 

Let w∗ = [w0
∗, w1

∗]T be the least squares solution we are after. In other words, w∗ minimizes 

n
1 � 

J(w) = (yi − w0 − w1xi)
2 

n 
i=1 

You can assume for our purposes here that the solution is unique. 

1.	 (4 points) Check each statement that must be true if w∗ = [w0
∗, w1

∗]T is indeed the 
least squares solution 

(	 ) (1/n) i
n 
=1(yi − w0 

∗ − w1
∗xi)yi = 0 

( ) (1/n) �i
n 
=1(yi − w0 

∗ − w1
∗xi)(yi − ȳ) = 0 

( ) (1/n) �i
n 
=1(yi − w0 

∗ − w1
∗xi)(xi − x̄) = 0 

( ) (1/n) n (yi − w0 
∗ − w1

∗xi)(w0 
∗ + w1

∗xi) = 0 i=1

where x̄ and ȳ are the sample means based on the same dataset. 
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2. (4 points) There are several numbers (statistics) computed from the data that we 
can use to infer w∗. These are 

x̄ = 
1 
n 

n� 
xi, ȳ = 

1 
n 

n� 
yi, Cxx = 

1 
n 

n� 
(xi − x̄)2 

i=1 i=1 i=1 
n	 n

1 �	 1 � 
Cxy = (xi − x̄)(yi − ȳ), Cyy = (yi − ȳ)2 

n	 n 
i=1	 i=1 

Suppose we only care about the value of w1
∗. We’d like to determine w1 

∗ on the basis 
of only two numbers (statistics) listed above. Which two numbers do we need for 
this? 

3. Here we change the rules governing our access to the data.	 Instead of simply get
ting the statistics we want, we have to reconstruct these from examples that we 
query. There are two types of queries we can make. We can either request additional 
randomly chosen examples from the training set, or we can query the output corre
sponding to a specific input that we specify. (We assume that the dataset is large 
enough that there is always an example whose input x is close enough to our query). 

The active learning scenario here is somewhat different from the typical one. Normally 
we would assume that the data is governed by a linear model and choose the input 
points so as to best recover this assumed model. Here the task is to recover the best 
fitting linear model to the data but we make no assumptions about whether the linear 
model is appropriate in the first place. 

(2 points) Suppose in our case the input points are constrained to lie in the interval 
[0, 1]. If we followed the typical active learning approach, where we assume that the 
true model is linear, what are the input points we would query? 

(3 points) In the new setting, where we try to recover the best fitting linear model 
or parameters w∗, we should (choose only one): 

( ) Query inputs as you have answered above 

( ) Draw inputs and corresponding outputs at random from the dataset 

( ) Use another strategy since neither of the above choices would yield satisfactory 
results 
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(4 points) Briefly justify your answer to the previous question


Problem 2 

In this problem we will refer to the binary classification task depicted in Figure 1(a), which 
we attempt to solve with the simple linear logistic regression model 

1 
P̂ (y = 1 x, w1, w2) = g(w1x1 + w2x2) = |

1 + exp(−w1x1 − w2x2) 

(for simplicity we do not use the bias parameter w0). The training data can be separated 
with zero training error - see line L1 in Figure 1(b) for instance. 

0

0

x

x

1

2

(a) The 2-dimensional data set used in Prob
lem 1 
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(b) The points can be separated by L1 (solid 
line). Possible other decision boundaries are 
shown by L2, L3, L4. 
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1.	 (6 points) Consider a regularization approach where we try to maximize 
n� C 

log p(yi|xi, w1, w2) − 
2 

w 2 
2 

i=1 

for large C. Note that only w2 is penalized. We’d like to know which of the four 
lines in Figure 1(b) could arise as a result of such regularization. For each potential 
line L2, L3 or L4 determine whether it can result from regularizing w2. If not, explain 
very briefly why not. 

L2• 

L3• 

L4• 

2.	 (4 points)If we change the form of regularization to one-norm (absolute value) and 
also regularize w1 we get the following penalized log-likelihood 

n� C 
log p(yi|xi, w1, w2) − 

2
(|w1| + |w2|) . 

i=1 

Consider again the problem in Figure 1(a) and the same linear logistic regression 
model P̂ (y = 1|x, w1, w2) = g(w1x1 + w2x2). As we increase the regularization 
parameter C which of the following scenarios do you expect to observe (choose only 
one): 

( ) First w1 will become 0, then w2. 

( ) w1 and w2 will become zero simultaneously 

( ) First w2 will become 0, then w1. 

( ) None of the weights will become exactly zero, only smaller as C increases 
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Figure 1: A 2-dim classification problem, the resulting SVM decision boundary with a 
radial basis kernel, as well as the support vectors (indicated by larger circles around them). 
The numbers next to the support vectors are the corresponding coefficients α̂. 

Problem 3 

Figure 1 illustrates a binary classification problem along with our solution using support 
vector machines (SVMs). We have used a radial basis kernel function given by 

K(x, x�) = exp{−�x − x��2/2 } 

where � · � is a Euclidean distance and x = [x1, x2]
T . The classification decision for any x 

is made on the basis of the sign of 

ŵT φ(x) + ŵ0 = yjα̂j K(xj , x) + ŵ0 = f(x; α̂, ŵ0) 

j∈SV 

where ŵ, ŵ0, α̂i are all coefficients estimated from the available data displayed in the figure 
and SV is the set of support vectors. φ(x) is the feature vector derived from x corresponding 
to the radial basis kernel. In other words, K(x, x�) = φ(x)T φ(x�). While technically φ(x) 
is an infinite dimensional vector in this case, this fact plays no role in the questions below. 
You can assume and treat it as a finite dimensional vector if you like. 

The support vectors we obtain for this classification problem (indicated with larger circles 
in the figure) seem a bit curious. Some of the support vectors appear to be far away from 
the decision boundary and yet be support vectors. Some of our questions below try to 
resolve this issue. 
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1.	 (3 points) What happens to our SVM predictions f(x; α̂, ŵ0) with the radial basis 
kernel if we choose a test point xfar far away from any of the training points xj 

(distances here measured in the space of the original points)? 

2. (3 points) Let’s assume for simplicity that ŵ0 = 0. What equation do all the training 
points xj have to satisfy? Would xfar satisfy the same equation? 

3. (4 points) If we included xfar in the training set, would it become a support vector? 
Briefly justify your answer. 

4. (T/F – 2 points) Leave-one-out cross-validation error is always small 
for support vector machines. 

5. (T/F – 2 points) The maximum margin decision boundaries that 
support vector machines construct have the lowest generalization error 
among all linear classifiers 

6.	 (T/F – 2 points) Any decision boundary that we get from a generative 
model with class-conditional Gaussian distributions could in principle 
be reproduced with an SVM and a polynomial kernel of degree less 
than or equal to three 

.


7.	 (T/F – 2 points) The decision boundary implied by a generative 
model (with parameterized class-conditional densities) can be optimal 
only if the assumed class-conditional densities are correct for the prob
lem at hand 
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Problem 4 

Consider the following set of 3-dimensional points, sampled from two classes: 

x1 x2 x3	 x1 x2 x3 

1, 1, −1 1, 1, 2 
labeled ’1’: 0, 2, −2 labeled ’0’: 0, 2, 1 

0, −1, 1 1, −1, −1 
0, −2, 2 1, −2, −2 

We have included 2-dimensional plots of pairs of features in the “Additional set of figures” 
section (figure 3). 

1.	 (4 points) Explain briefly why features with higher mutual information with the 
label are likely to be more useful for classification task (in general, not necessarily in 
the given example). 

2. (3 points) In the example above, which feature (x1, x2 or x3) has the 
highest mutual information with the class label, based on the training 
set?


3. (4 points) Assume that the learning is done with quadratic logistic 
regression, where 

P (y = 1|x, w) = g(w0 + w1xi + w2xj + w3xixj + w4xi 
2 + w5xj 

2) 

for some pair of features (xi, xj ). Based on the training set given above, 
which pair of features would result in the lowest training error for the 
logistic regression model? 

4. (T/F – 2 points) From the point of view of classification it is always 
beneficial to remove features that have very high variance in the data 

5. (T/F – 2 points) A feature which has zero mutual information with 
the class label might be selected by a greedy selection method, if it 
happens to improve classifier’s performance on the training set 
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Problem 5
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Figure 2: h1 is chosen at the first iteration of boosting; what is the weight α1 assigned to 
it? 

1.	 (3 points) Figure 2 shows a dataset of 8 points, equally divided among 
the two classes (positive and negative). The figure also shows a particu
lar choice of decision stump h1 picked by AdaBoost in the first iteration. 
What is the weight α1 that will be assigned to h1 by AdaBoost? (Initial 
weights of all the data points are equal, or 1/8.) 

2. (T/F – 2 points) AdaBoost will eventually reach zero training error, 
regardless of the type of weak classifier it uses, provided enough weak 
classifiers have been combined.


3. (T/F – 2 points) The votes αi assigned to the weak classifiers in 
boosting generally go down as the algorithm proceeds, because the 
weighted training error of the weak classifiers tends to go up


4. (T/F – 2 points) The votes α assigned to the classifiers assembled 
by AdaBoost are always non-negative 
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Additional set of figures
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there’s more ...
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Figure 3: 2-dimensional plots of pairs of features for problem 4. Here ’+’ corresponds to 
class label ’1’ and ’o’ to class label ’0’. 
. 
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