
6.867 Machine learning 

Mid-term exam 

October 13, 2004 

(2 points) Your name and MIT ID: 

T. Assistant, 968672004
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1.	 (6 points) Each plot above claims to represent prediction errors as a function of 
x for a trained regression model based on some dataset. Some of these plots could 
potentially be prediction errors for linear or quadratic regression models, while oth­
ers couldn’t. The regression models are trained with the least squares estimation 
criterion. Please indicate compatible models and plots. 

A B C 
linear regression ( x ) ( x ) ( ) 
quadratic regression ( x ) ( ) ( ) 
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Problem 2 

Here we explore a regression model where the noise variance is a function of the input 
(variance increases as a function of input). Specifically 

y = wx + � 

where the noise � is normally distributed with mean 0 and standard deviation σx. The 
value of σ is assumed known and the input x is restricted to the interval [1, 4]. We can 
write the model more compactly as y ∼ N(wx, σ2x2). 

If we let x vary within [1, 4] and sample outputs y from this model with some w, the 
regression plot might look like 
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1. (2 points) How is the ratio y/x distributed for a fixed (constant) x?


Since y ∼ N(wx, σ2x2), for any constant x, y/x is also Gaussian with mean wx/x = 
w and variance σ2x2/x2 = σ2 . So, y/x ∼ N(w, σ2). 

2. Suppose we now have	 n training points and targets {(x1, y1), (x2, y2), . . . , (xn, yn)}, 
where each xi is chosen at random from [1, 4] and the corresponding yi is subsequently 
sampled from yi ∼ N(w∗xi, σ

2xi 
2) with some true underlying parameter value w∗; the 

value of σ2 is the same as in our model. 
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(a) (3 points) What is the maximum-likelihood estimate of w as a function of the 
training data? 

We know that y/x ∼ N(w, σ2). We can therefore estimate w by interpreting yi/xi 

as observations. The maximum likelihood estimate of w is simply the mean 

1 
ŵn = yi/xi 

n 

(b)	 (3 points) What is the variance of this estimator due to the noise in the target 
outputs as a function of n and σ2 for fixed inputs x1, . . . , xn? For later utility 
(if you omit this answer) you can denote the answer as V (n, σ2). 

The variance of the estimator of a mean of a gaussian is σ2/n. 

Some potentially useful relations: if z ∼ N(µ, σ2), then az ∼ N(aµ, σ2a2) for a 
fixed a. If z1 ∼ N(µ1, σ

2) and z2 ∼ N(µ2, σ
2) and they are independent, then1 2


Var(z1 + z2) = σ1
2 + σ2

2 .


3. In sequential active learning we are free to choose the next training input xn+1, here 
within [1, 4], for which we will then receive the corresponding noisy target yn+1, sam­
pled from the underlying model. Suppose we already have {(x1, y1), (x2, y2), . . . , (xn, yn)}
and are trying to figure out which xn+1 to select. The goal is to choose xn+1 so as to 
help minimize the variance of the predictions f(x; ŵn) = ŵnx, where ŵn is the maxi­
mum likelihood estimate of the parameter w based on the first n training examples. 

(a)	 (2 points) What is the variance of f(x; ŵn) due to the noise in the training out­
puts as a function of x, n, and σ2 given fixed (already chosen) inputs x1, . . . , xn? 

f(x; ŵn) is xw, and we know that the variance of w is σ2/n (from the previous part). 
Thus the variance of f(x; ŵn) is x2σ2/n. 

(b) (2 points) Which xn+1 would we choose (within [1, 4]) if we were to next select 
x with the maximum variance of f(x; ŵn)? 

The variance is maximized when x2 is maximum, that is x = 4. 

(c)	 (T/F – 2 points) Since the variance of f(x; ŵn) only depends on x, 
n, and σ2, we could equally well select the next point at random from 
[1, 4] and obtain the same reduction in the maximum variance. 
The variance at x = 4 is 16σ2/n. This does not depend on the actual 
choice of the queried points, but only on the number of points queried. 
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Figure 1: Two possible logistic regression solutions for the three labeled points. 

Problem 3 

Consider a simple one dimensional logistic regression model 

P (y = 1 x, w) = g(w0 + w1x)|

where g(z) = (1 + exp(−z))−1 is the logistic function. 

1. Figure 1 shows two possible conditional distributions P (y = 1 x, w), viewed as a |
function of x, that we can get by changing the parameters w. 

(a) (2 points) Please indicate the number of classification errors for each condi­
tional given the labeled examples in the same figure 

Conditional (1) makes ( 1 ) classification errors 

Conditional (2) makes ( 1 ) classification errors 

(b) (3 points) One of the conditionals in Figure 3 corresponds to the 1 
maximum likelihood setting of the parameters ŵ based on the labeled 
data in the figure. Which one is the ML solution (1 or 2)? 
The likelihood under model (2) is 0, because model (2) assigns 0 proba­
bility to the sample at 1. The likelihood under model (1) is 2/3·1/3·2/3. 

(c) (2 points) Would adding a regularization penalty |w1|2/2 to the log-
likelihood estimation criterion affect your choice of solution (Y/N)? 

N 

At maximum likelihood ŵ1 = 0 (cf. Conditional (1)), thus | ̂w1|2/2 is 
minimal even without a regularization penalty. 
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Figure 2: The expected log-likelihood of test labels as a function of the number of training 
examples. 

2.	 (4 points) We can estimate the logistic regression parameters more accurately with 
more training data. Figure 2 shows the expected log-likelihood of test labels for a 
simple logistic regression model as a function of the number of training examples and 
labels. Mark in the figure the structural error (SE) and approximation error (AE), 
where “error” is measured in terms of log-likelihood. 

SE is the distance from the horizontal part of the graph to y = 0. AE is everything 
below the horizontal part of the graph. 

3.	 (T/F – 2 points) In general for small training sets, we are likely 
to reduce the approximation error by adding a regularization penalty 
|w1|2/2 to the log-likelihood criterion. 

Regularization prevents over-fitting by constraining the input to the lo­
gistic function to be a smooth function of input. Such functions can be 
estimated with fewer samples. Put another way, you are reducing the 
variance of the estimator in favor of introducing some bias. Variance 
dominates when we have only few training samples. 

T
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Figure 3: Equally likely input configurations in the training set 

Problem 4 

Here we will look at methods for selecting input features for a logistic regression model 

P (y = 1 x, w) = g(w0 + w1x1 + w2x2)|

The available training examples are very simple, involving only binary valued inputs: 

Number of copies x1 x2 y

10 1 1 1

10 0 1 0

10 1 0 0

10 0 0 1


So, for example, there are 10 copies of x = [1, 1]T in the training set, all labeled y = 1. 
The correct label is actually a deterministic function of the two features: y = 1 if x1 = x2 

and zero otherwise. 

We define greedy selection in this context as follows: we start with no features (train only 
with w0) and successively try to add new features provided that each addition strictly 
improves the training log-likelihood. We use no other stopping criterion. 

1. (2 points) Could greedy selection add either x1 or x2 in this case? N 
Answer Y or N. 

We have equally many y = 1 and y = 0 examples under x1 = 1, and

the same is true for x1 = 0. Thus we cannot bias the probabilities in

any way based on the presence of x1 alone. The same is true for x2.
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2.	 (2 points) What is the classification error of the training examples that 0.25 
we could achieve by including both x1 and x2 in the logistic regression 
model? 

3.	 (3 points) Suppose we define another possible feature to include, a function of x1 

and x2. Which of the following features, if any, would permit us to correctly classify 
all the training examples when used in combination with x1 and x2 in the logistic 
regression model: 

( ) x1 − x2 

( x ) x1x2 

( ) x 22 

x1 − x2 is a linear combination of existing features, thus adding it does

not change the model in any way. The same is true for x2

2, because

x2

2 = x2 for x2 ∈ {0, 1}.

Now suppose we model the conditional by P (y = 1 x, w) = g(w0 +
|
w1x1 + w2x2 + w3x1x2). Let w1 and w2 be such that when w3 = 0 only

(1, 1) is misclassified. Since x1x2 = 0 except at (1, 1), w3 does not affect

the classification of the correctly classified training points. We can than

choose w3 such that (1, 1) is also correctly classified.


4.	 (2 points) Could the greedy selection method choose this feature as Y 
the first feature to add when the available features are x1, x2 and your 
choice of the new feature? Answer Y or N. 
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Problem 5
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Figure 4: Labeled training examples 

Suppose we only have four training examples in two dimensions (see Figure 4): 

positive examples at x1 = [0, 0]T , x2 = [2, 2]T and 
negative examples at x3 = [h, 1]T , x4 = [0, 3]T . 

where we treat 0 ≤ h ≤ 3 as a parameter. 

1. (2 points) How large can h ≥ 0 be so that the training points are still 
linearly separable? 

h ≤ 1 

2. (2 points) Does the orientation of the maximum margin decision 
boundary change as a function of h when the points are separable? 
Answer Y or N. 

N 
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3. (4 points)What is the margin achieved by the maximum margin boundary as a 
function of h? 

The margin is (1 − h)/
√

2, for 0 ≤ h ≤ 1, and 0 for h > 1.

One way to calculate the margin is as follows: since the orientation of the boundary

does not change as a function h, the margin is a linear function of h. The margin

is zero at h = 1 and 1/

√
2 at h = 0.


4.	 (3 points) Assume that h = 1/2 (as in the figure) and that we can 
only observe the x2-component of the input vectors. Without the other 
component, the labeled training points reduce to (0, y = 1), (2, y = 1), 
(1, y = −1), and (3, y = −1). What is the lowest order p of polynomial 
kernel that would allow us to correctly classify these points? 
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Additional set of figures
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