
Massachusetts Institute of Technology 

6.867 Machine Learning, Fall 2006 

Problem Set 5: Solutions 

1.	 (a) For the LM, there is no need to iterate; the maximum likelihood estimates are easy to derive; they 
are simply the normalized counts.


The updates for T and D are:


1 � D(aj = i | j, �, m)T (fj 
(k) 

| ei 
(k)

) 
T �(f | e) = 

ZT (e) i, j, k 
��

i�=0 D(aj = i� | j, �, m)T (fj 
(k) 

, e(
i� 
k)

) 
e (k)

=e, f
j 
(k)

=f
i 

D�(aj = i | j, �, m) = 
1 �

�� 

D(aj = i | j, �, m)T (fj 
(k) 

| 
(

e

k

i 
(

) 

k)
) 
(k) 

, 
ZD(j, �, m) 

k i�=0 D(aj = i� | j, �, m)T (fj , ei� ) 
|e(k)|=�, |f (k)|=m 

where ZT and ZD are normalization constants. One can derive this easily using the formal EM 
formulation; however, just using the soft counts is fine, as well. 

(b) Generally,	 a choice that has lots of zeros will be bad. Other choices that depend on a lot of 
symmetry in the data will also cause problems. This model is not convex by a long shot, so there 
are plenty of local extrema; it is nontrivial to find a nontrivial initial setting, but a trivial one is 
fine here. 

(c) My update to the code was this:


LM:


LM(m2m1,english(i,j)) = LM(m2m1,english(i,j)) + 1;

. . .

LM(m2m1,i) = LM(m2m1,i)/LMc(m2,m1);


EM updates: 

for j=1:m

a = [];

for i=1:l

a(i) = T(deutsch(idx,j),english(idx,i)) * D(indexpack(j,l,m),i); 

end 
a = a / sum(a); 
for i=1:l 
Tn(deutsch(idx,j),english(idx,i)) = Tn(deutsch(idx,j),english(idx,i)) + a(i); 
Dn(indexpack(j,l,m),i) = Dn(indexpack(j,l,m),i) + a(i); 

end 
end 

normalization: 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




T = sparse(de_vocab, en_vocab);

D = sparse((mmax+1) * 50 * 50, lmax);

for enword=1:en_vocab

nfactor = sum(Tn(:,enword));

for deword=find(Tn(:,enword))

T(deword, enword) = Tn(deword, enword)/nfactor;


end

end

Dnfactor = sum(Dn,2) * sparse(ones(1,size(D,2)));

idxpack = find(Dnfactor);

D(idxpack) = Dn(idxpack)./Dnfactor(idxpack);


Here is the output I got: 

Dear Klaus !

I have you . locked a small room .

You can read the books .

It


Some problems with this is that it tends to be somewhat sensitive to the start point; random 
was not the best choice, but it is ok. A better choice is to choose uniform for D and to use co
occurrence counts for T . In practice, one would train a simpler model (IBM Model 1) and transfer 
the probabilities. Also, a NULL word on the English side would help to “explain” common particle 
words in the German side. The last sentence is seven words long in German; this size does not 
appear in the corpus, so the translation is ridiculous. All in all, this method has many limitations, 
but considering its simplicity, the results are quite good and using this type of method is very 
appealing. 

(d) (i) It will reorder more freely. 

(ii) It will reorder less. 

(iii) This is (essentially) the same as (i). If there are spots that tend to have attractive words on 
the English side (words that explain a lot of the German words), then all of the words will try 
to reorder there. In general, however, it will have a smoothing effect on the alignments. 

2.	 (a) 4 points If the kernel is defined so as to encode a high covariance between two points x1 and x2, 
then the observations at those two values should be highly correlated (i.e. should have roughly 
similar values). Thus, if the covariance between neighboring points is high along a long stretch of 
the x-axis, the function value will remain roughly constant along that stretch. 

Using this intuition, we have the following set of matches: 1-d, 2-b, 3-a, 4-c. The kernels can also 
capture periodicity. For example, kernel (3) indicates that points which are t − t� = 2 apart will 
have low covariances while points which are t − t� = 4 will have higher covariances (i.e. roughly 
similar values). This introduces periodicity in the function values, as observed in Fig (a). Also, 
the (tt�)2 component of kernel (4) implies that the covariance between neighboring points increases 
with t, resulting in the curve moving in a single direction. 

(b)	 5 points The log-likelihood of observing a set of values y1, . . . , yr at time-points t1, . . . , tr is simply 
the probability of sampling the r-dimensional vector (y1, . . . , yr) from N(0, G) where G is the Gram 
matrix corresponding to the time-points. The code looks as follows: 

function ll = log_likelihood_gp(params, t, Yobs) 

%Gram matrix 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




G =	 ... 

Ginv = inv(G);

detG = det(G);


ll	 = zeros(q,1); 
for i=1:q

y = reshape(Yobs(i,:), r, 1);

a = 0.5*(y’*Ginv*y);

b = (r/2) * log(2*pi) + (0.5*log(detG));

l = -a - b;

ll(i) = l;


end 

(c)	 7 points The Expectation code is shown below. Recall that Wij is the probability of gene i 
belonging to cluster j. 

function W_new = Expectation(t, Y_obs, k, W, V)

P = sum(W);

P = P/sum(P);


[n,T] = size(Y_obs);

W_new = zeros(n,k);


for j=1:k,

% get likelihood

ll = log_likelihood_gp(V(j,:), t, Y_obs);

% get posterior assignment probability

W_new(:,j) = ll + log(P(j));


end 

%normalize posterior

% a more sophisticated handling of very small

% number will be better, but the simplest

% normalization method will suffice

% for grading purposes


for i=1:n

W_new(i,:) = exp(W_new(i,:)) / sum(exp(W_new(i,:)));


end


(d)	 5 points The best results are obtained with k = 3 clusters. With higher k, some of the clusters 
are either empty or two different clusters have similar curves. With lower k (e.g. k = 2), one of 
the clusters contains two different kinds of curves. 

(e)	 4 points There are a few different ways of dealing with missing values. One approach would be to 
use the function curves estimated in the previous iteration of EM to compute the expected value 
of gene’s expression at the missing time-point (in the first iteration, we could just use the mean of 
the adjacent, non-missing values). 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� 

� 

�	 � 
� 

Here’s an alternative approach. Recall that the observations y1, . . . , yr play a role in our compu
tation only when we compute the likelihood of sampling that set of values from a multi-variate 
Gaussians. Clearly, if some values are missing, this probability can be computed on a reduced 
set. In such a case, we simply use whatever values are available (i.e., the non-missing values) to 
construct the Gram matrix and then evaluate the likelihood of seeing that set of values. The Gram 
matrix in such a case would have a smaller size. 

For example, if there are 10 time-points in total, you’d typically construct a 10x10 Gram matrix and 
then evaluate the probability of sampling a particular 10-dimensional vector from the corresponding 
10-dimensional Gaussian. If, on the other hand, you only have 8 points, you’d construct a 8x8 Gram 
matrix and then evaluate the probability of sampling a particular 8-dimensional vector from the 
corresponding 8-dimensional Gaussian. 

(f)	 Optional: 4 points There are many possible ways to guess an initial estimate of the gene clusters 
(for grading purposes, any reasonable approach is fine). Here we describe one such approach: 

•	 Between each pair of genes g1 and g2, define a distance measure. This distance measure may be 
the Euclidean distance between the observations: 

�r
i=1(y1i − y2i)2 . Another measure might 

be the Pearson correlation between these sets of observations. 

•	 Using these pairwise distances, perform Hierarchical Agglomerative Clustering between the 
genes, i.e., start with each gene as a singleton cluster and at each step, merge the two most 
similar clusters. For example, if we perform complete linkage clustering, the distance between 
two clusters will defined as the largest distance between any pair of genes, one from each 
cluster. 

(g)	 Optional: 6 points For notational convenience, we define the marginal likelihood for the case of 
a single cluster. The generalization to multiple clusters is straightforward.


Suppose there are r timepoints: t1, . . . , tr and let f(t) be the cluster mean curve. Then, for any

gene, the probability of seeing the observations [y(1), . . . , y(r)] in the cluster is the probability that

each y(l) is sampled from the Normal distribution N(f(tl), �n

2 ):


r 

N(y(l); f(tl), �n
2 ), or 

l=1 

r 
� 1 (y(l) − f(tl))

2 

2��n 
exp(−

�2 ) 
l=1	 n 

The prior probability of seeing a cluster mean curve f(t) is given by the probability of sampling 
the r-dimensional vector f = [f(t1), ...f(tr)] from the r-dimensional Gaussian formed by using the 
Gram matrix constructed from t1, . . . , tr. 

N(f ; 0, G)	 (1) 

where G is the Gram matrix as per the fixed GP.


The marginal likelihood is then:


� r 

N(y(l); f(tl), �n
2 ) N(f ; 0, G) df 

l=1 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



