
� � �

� � �

� �

Massachusetts Institute of Technology

6.867 Machine Learning, Fall 2006

Problem Set 4
Due Date: Thursday, Nov 9, 12:00 noon

You may submit your solutions in class or in the box.

1. We will explore here the use of the Bayesian Information Criterion (BIC) for model selection, specifically
to select features for a Naive Bayes model. The input consists of d-dimensional binary feature vectors
x = [x1, . . . , xd]T where xi ∈ {−1, 1} and binary class labels y ∈ {−1, 1}.
A Naive Bayes model may be used, for example, to classify emails as spam (y = 1) or not-spam (y = −1).
The body of each email can be represented as a bag of words (i.e., we ignore frequency, placement, and
grammar etc.). We could restrict ourselves to a dictionary of d words {w1, . . . , wd}. and coordinate xi

could serve as an indicator of word wi: xi = 1 if wi is present in the email and xi = −1 if it is absent.

Recall that the Naive Bayes model assumes that the features are conditionally independent given the
label so that

d

P (x, y) = P (xi|y) P (y) (1)
i=1

We parameterize our model by introducing separate parameters for each component:

d

P (x|y, θ) = P (xi|y, θi) where (2)
i=1
xi+1 1−xi

2 2P (xi|y, θi) = θi|y (1 − θi|y) (3)

(4)

Here θ = [θ1, . . . , θd]T and θi = [θi|1, θi|−1]T so that

θi|1 = P (xi = 1|y = 1)
θi|−1 = P (xi = 1|y = −1)

In class, we have already discussed how to compute the Maximum Likelihood estimates of these param
eters. We will take a Bayesian approach, however, and introduce a prior probability over the parameters
θ as:

d

P (θ) = P (θi|y) (5)
i=1 y∈{1,−1}

Γ(r+ + r− + 2) +
P (θi|y) =

Γ(r+ + 1)Γ(r− + 1)
· θi

r
|y (1 − θi|y)

r−
(6)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

where r+ and r− are hyper-parameters, common across all the θi|y’s, and, for integer k, Γ(k + 1) = k!.
The hyper-parameters characterize our beliefs about the parameters prior to seeing any data. You may
assume here that r+ and r− are non-negative integers.

(a) Eqn 5 specifies the prior P (θi|y) as a Beta distribution. This choice of the prior is particularly
convenient, as we will see now. Show that the posterior distribution P (θ|D), given n training
examples {(xj , yj) | j = 1, . . . , n}, has the following form:

+�d � m
i|y)m−

P (θ|D) ∝ L(D; θ)P (θ) = θi|y (1 − θi|y i|y

i=1 y∈{−1,1}

where L(D; θ) is the likelihood function. What are m +
i|y and m−

i|y ? Your answer should use the
n̂y and n̂iy(xi, y) notation used in the lectures; e.g., n̂ky(1, −1) is the number of examples where
y = −1 and xk = 1.

You have just shown that the Beta distribution is a conjugate prior to the Binomial distribution.
In other words, if the prior probability P (θ) has the form of a Beta distribution, and the likelihood
P (D|θ) has the form of a Binomial distribution, then the posterior probability P (θ|D) will be a
Beta distribution. When the class labels and features are not binary but take on k values, the same
relationship holds between the Dirichlet and Multinomial distributions.

(b) Recall that, in the Bayesian scheme for model selection, our aim is to find the model that maximizes
the marginal likelihood, P (D|Fd), which is the normalization constant for the posterior:

P (D|Fd) = L(D; θ)P (θ)dθ

where Fd denotes the model. Compute a closed-form expression for P (D|Fd). (Hint: use the form
of the normalization constant for the beta distribution).

(c) Let us now use our results to choose between two models F1 and F2. The only difference between
them is in how they use feature i: F2 involves P (xi|y) term that connects the feature to the
label y whereas F1 only has P (xi), assuming that feature xi is independent of the label. In F2

the distribution of xi’s is parameterized by two parameters [θi|1, θi|−1]T as described before. In
contrast, F1 only requires a single parameter θi

�,

xi+1 1−xi
2P (xi|θ�) = θ

�
(1 − θ�) 2 (7)i i i

The prior probability over θi
� is the same as Eqn 6:

P (θi
�) ∝ θi

�r+
(1 − θi

�)r−
(8)

The expressions of the marginal likelihood from the two models will differ only in terms of feature i.
To compare the two models we can ignore all the other terms. From your results in part (b), extract
from P (D|F2) the factors involving feature i. Use a similar analysis to evaluate the terms involving
feature i in P (D|F1). Using these, evaluate the “decision rule”, log[P (D|F2)/P (D|F1)] > 0 to
include feature xi.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�����

�

� �

(d)	 Optional (Extra Credit): For many models the marginal likelihood is difficult to compute
exactly and we have to an asymptotic approximation:

BIC(D, Fr) = log L(D; θ̂ML) −
r

log n
2

We will now see (roughly speaking) how to relate BIC and P (D|F) in the general case. Our
intuition is as follows: as the number of examples n increases the posterior distribution P (θ|D)
becomes more and more peaked around the maximum likelihood estimate θ̂ML. In the limit n →∞,
the posterior distribution becomes a point estimate at θ̂ML. We then approximate the integral by
evaluating it only in the neighbourhood of θ̂ML. We start by writing:

P (D|Fr) = exp(log L(D; θ))P (θ)dθ

and perform a Taylor series expansion of log L(D; θ) around θ̂ML:

1
θML)T A1 +ˆlog () + (;L θ θD −ML ����
ˆ
 θ̂ML)T A2(θ − θ̂ML),log L(D; θ)
 (θ −
 where
=

2

∂ log L(D; θ)

A1	 =
∂θ θ̂ML

∂2 log L(D; θ)
A2	 =

∂θ∂θT
θ̂ML

The matrix A2 has interesting properties (it’s called the Fisher Information Matrix), but its most
relevant property here is that the determinant |A2| ≈ nC(r) where C(r) does not depend on the
number of examples n.

We have performed a second-order Taylor series expansion, i.e. up to the second derivative. What
would the problem be if we had performed only a first-order expansion?

(e)	 Optional (Extra Credit): Now, assume that the prior is uninformative, i.e P (θ)
speaking, it should be 1/(dθ), but the constant factor will not matter). Show that with the second
order approximation

= 1 (strictly

L(D; θ)P (θ)dθ ≈ L(D; θ̂ML)
2π

�d/2

n

C1(r)

where C1(r) consists of terms that do not depend on the number of examples n.

(f)	 Optional (Extra Credit): Using your result from part (g), argue that

lim log P (D|Fr) = BIC(D, Fr)

n→∞

This is the motivation behind the use of the BIC score for model selection.

2. Kenny and Cartman are playing a game; in this game, Cartman draws samples from a normal distribu
tion and gives them to Kenny, who must determine what the parameters (i.e., the mean and variance)
of the distribution are. Kenny knows that he can simply report the sample mean and sample variance,

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare

(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�	 � � � �	 �

as they are the maximum-likelihood estimators for the mean and variance. However, it turns out that
Cartman is cheating. Instead of keeping the parameters fixed, he occassionally changes them without
telling Kenny.

Kenny is, however, very cunning, and catches on. He decides to use BIC to determine when Cartman
is changing the parameters.

(a) Given data X1, X2, ..., XN , write a formula for the BIC for the hypothesis that there are m change-
points t1, t2, ..., tm, with

Xi ∼ N(µk, Σk) when tk−1 ≤ i < tk,	 (9)

where t0 = 0 and tm+1 = N for convenience.

(b) How can Kenny use this to determine the number of change-points and where they are?	 Write
a MATLAB program to execute this procedure assuming that there is at most one change-point
and plot the BIC as a function of the hypothesized change-point for the dataset hw4p3b. Your
algorithm should run in linear time in the number of samples!

(c) Kenny realizes that this procedure is broadly applicable. He finds an audio file of three students
saying hello and, by assuming that students generate speech by drawing cepstra from multivariate-
normal distributions, whose parameters depend on things like the student’s vocal chords and their
position relative to the microphone and so on, he discovers that he can use BIC to segment the
audio file to find a speaker change! What’s more, using a sliding-window algorithm that his TA
provided (multisplit.m), he finds that he can find multiple change-points. Try it out! (Use the
data in hw4p3d.) How many speaker changes are there and when do they occur? Now try hw4p3e.
What are the speaker changes now? Do they make sense? If not, what went wrong?

3. AdaBoost is a simple algorithm for estimating ensembles

m

hm(x) = αj h(x; θj) (10)
j=1

where αj ≥ 0 (not necessarily summing to one) and we have so far assumed that each h(x; θj) is a
decision stump. The basic boosting algorithm can be easily extended, however. For example, we can
replace the decision stumps with different base classifiers and/or we can use a different loss function to
train the ensemble. The exponential loss used in AdaBoost is not very forgiving about outliers and so
we will try to use another loss function, along with different base learners.

At stage m of the algorithm, we we will try to minimize

n	 n

J(αm, θm) = Loss ythm(xt) = Loss ythm−1(xt) + ytαmh(xt; θm) (11)
t=1 t=1

where we assume that hm−1(x) is fixed from m−1 previous rounds and view J as a function of parameters
αm and θm associated with the new base classifier. The margin loss Loss() could be any function that ·
is convex and decreasing in its argument (smaller loss for predictions with larger voting margin).

Let’s elaborate on the revised algorithm a bit. We can initialize h0(x) = 0 for the ensemble with no base
learners. Then, after m − 1 rounds, we perform two distinct steps to optimize θm and αm, respectively.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

� � �

�

� �

First, we find parameters θ̂m that minimize

� � �−Wm��−1(t) ��
d � n n

dαm
J(αm, θm)��

αm=0
=

t=1

dL ythm−1(xt) yth(xt; θm) = −
t=1

Wm−1(t) yth(xt; θm) (12)

where dL(z) = d/dz Loss(z) is always negative because the loss is decreasing. The form of the opti
mization problem for θm is exactly as in AdaBoost except that the weights will be different due to the
different margin loss. We can also normalize the weights in the algorithm since the normalization would
not affect the resulting θ̂m.

Once we have θ̂m, we can find α̂m that minimizes

n

J(αm, θ̂m) = Loss ythm−1(xt) + ytαmh(x; θ̂m) (13)
t=1

This is easy to solve since Loss() is convex and we only have one parameter to optimize. ·
We can now write the general boosting algorithm more succinctly. After initializing W̃0(t) = 1/n, each
boosting iteration consists of the following three steps:

(Step 1) Find θ̂m that (approximately) minimizes the weighted error �m or 2�m − 1 given by

n

− W̃m−1(t) yth(xt; θm) (14)
t=1

(Step 2) Find α̂m that minimizes

�n � �
J(αm, θ̂m) = Loss ythm−1(xt) + ytαmh(x; θ̂m) (15)

t=1

(Step 3) Reweight the examples

W̃m(t) = −cm dL ythm−1(xt) + ytα̂mh(x; θ̂m (16)

where cm normalizes the new weights so they sum to one.

Now that we have a boosting algorithm for any loss function, we can select a particular one. Specifically,
we will consider the logistic loss:

Loss(z) = log (1 + exp(−z)) (17)

(a) Show that the unnormalized weights Wm(t) from the logistic loss are bounded by 1. What can you
say about the resulting normalized weights for examples that are clearly misclassified in comparison
to those that are just slightly misclassified by the current ensemble?

(b) Suppose the training set is linearly separable and we would use a linear support vector machine
(no slack penalties) as a base classifier. In the first boosting iteration, what would the resulting α̂1

be?

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

(c) Let’s consider a bit simpler base learners but still those that can be combined into strong predictors.
So, we define our base learners as radial basis functions centered at particular training points, i.e.,

h(x; θ) = yt exp(−β�x − xt�2)	 (18)

where the parameter θ simply identifies the training point t. These base learners return real valued
predictions h(x; t) ∈ [−1, 1]. Provide an argument for why an ensemble with n such base learners
can in principle classify a set of n points in all possible ways.

(d) It seems that the boosting algorithm with such base learners might seriously overfit.	 Let’s see if
this is true in practice. We have provided you with data and all the necessary matlab code to run
the boosting algorithm with the radial basis learners. The files are available in hw4/prob3. The
function you need to run is call boosting.m. Does it overfit?

(e) To understand this a bit better let’s plot the voting margin errors as a function of the number of
boosting iterations. Recall that a margin error at level ρ occurs whenever yth̃m(xt) − ρ ≤ 0 where
αj ’s in the ensemble h̃m(xt) are normalized to sum to one. Plot the margin errors at levels ρ = 0.1
and ρ = 0.5. You should be able to do this with only a minor modification to the code we have
provided. Can you use these plots to explain your observations in part d)?

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

