
� �

1 6.867 Machine learning, lecture 12 (Jaakkola)

Lecture topics: model selection criteria

• Feature subset selection (cont’d)

– information criterion

– conditional log-likelihood and description length

– regularization

• Combination of classifiers, boosting

Feature subset selection (cont’d)

We have already discussed how to carry out feature selection with the Naive Bayes model.
This model is easy to specify and estimate when the input vectors x are discrete (here
vectors with binary {−1, 1} components). When we elect to use only a subset J of features
for classification, our model can be written as � � � �

P (x, y) = P (xi|y) P (xi) P (y) (1)
i∈J i�∈J

Note that the features not used for classification, indexed by j �∈ J , are assumed indepen
dent of the label. This way we still have a distribution over the original input vectors x and
labels but assert that only some of the components of x are relevant for classification. The
probabilities involved such as P (xi|y) are obtained directly from empirical counts involving
xi and y (see previous lecture).

The selection criterion we arrived at indicated that, as far as the log-likelihood of all the
data is concerned, we should include features (replace P (xi) with P (xi|y) in the above
model) in the decreasing order of

Î(Xi; Y) = Ĥ(Xi) − Ĥ(Xi|Y) (2)

where the entropies Ĥ(Xi) and Ĥ(Xi|Y) are evaluated on the basis of the estimated prob
abilities for the Naive Bayes model. The disadvantage of this criterion is that the features
are selected individually, i.e., without regard to how effective they might be in specific
combinations with each other. This is a direct result of the Naive Bayes model as well as
the fact that we opted to find features that maximally help increase the log-likelihood of
all the data. This is clearly slightly different from trying to classify examples accurately.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2 6.867 Machine learning, lecture 12 (Jaakkola)

For example, from the point of view of classification, it is not necessary to model the distri
bution over the feature vectors x. All we care about is the conditional probability P (y|x).
Why should our estimation and the feature selection criterion then aim to increase the
log-likelihood of generating the feature vectors as well? We will now turn to improving the
feature selection part with MDL while still estimating the probabilities P (xi|y) and P (y)
in closed form as before.

Feature subset selection with MDL

Let’s assume we have estimated the parameters in the Naive Bayes model, i.e., P̂ (xi|y) and
P̂ (y), as before by maximizing the log-likelihood of all the data. Let’s see what this model
implies in terms of classification:

P̂ (y = 1 x) =
P̂ (x, y = 1)

=
ˆ

1
(3) |

P̂ (x, y = 1) + P̂ (x, y = −1) P (x,y=−1)1 +
P̂ (x,y=1)

1 1
= = (4)

P̂ (x,y=1) 1 + exp(− log
P̂ (x,y=−1)

) 1 + exp(−f̂(x))

where

f̂(x) = log
P̂ (x, y = 1)

(5)
P̂ (x, y = −1)

is the discriminant function arising from the Naive Bayes model. So, for example, when
f̂(x) > 0, the logistic function implies that P̂ (y = 1|x) > 0.5 and we would classify
the example as positive. If f̂(x) is a linear function of the inputs x, then the form of
the conditional probability from the Naive Bayes model would be exactly as in a logistic
regression model. Let’s see if this is indeed so.

f̂(x) = log
P̂ (x, y = 1)

=
�

log
P̂ (xi|y = 1)

+ log
P̂ (y = 1)

(6)
P̂ (x, y = −1)

i∈J P̂ (xi|y = −1) P̂ (y = −1)

Note that only terms tried to the labels remain. Is this a linear function of the binary
features xi? Yes, it is. We can write each term as a linear function of xi as follows:

log
P̂ (xi|y = 1)

= δ(xi, 1) log
P̂ (xi = 1|y = 1)

+ δ(xi, −1) log
P̂ (xi = −1|y = 1)

(7)
P̂ (xi|y = −1) P̂ (xi = 1|y = −1) P̂ (xi = −1|y = −1)

=
xi + 1

log
P̂ (xi = 1|y = 1)

+
1 − xi

log
P̂ (xi = −1|y = 1)

(8)
2 P̂ (xi = 1|y = −1) 2 P̂ (xi = −1|y = −1)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

� �

3 6.867 Machine learning, lecture 12 (Jaakkola)

By combining these terms we can write the discriminant function in the usual linear form

f̂(x) = ŵixi + ŵ0 (9)
i∈J

where the parameters ŵi and ŵ0 are functions of the Naive Bayes conditional probabilities.
Note that while we ended up with a logistic regression model, the parameters of this
conditional distribution, ŵi and ŵ0, have been estimated quite differently from the logistic
model.

We can now evaluate the conditional probability P̂ (y|x, J) from the Naive Bayes model
corresponding to any subset J of relevant features. Let’s go back to the feature selection
problem. The subset J should be optimized to maximize the conditional log-likelihood of
labels given examples. Equivalently, we can minimize the description length

n

DL-data(J) = − log P̂ (yt|xt, J) (10)
t=1

with respect to J . This is a criterion that evaluates how useful the features are for classifi
cation and it can be no longer reduced to evaluating features independently of others. This
also means that the optimization problem for finding J is a difficult one. The simplest
way of approximately minimizing this criterion would be to start with no features, then
include the single best feature, followed by the second feature that works best with the first
one, and so on. Note that in this simple setting the classifier parameters associated with
different subsets of features are fixed by the Naive Bayes model; we only optimize over the
subset of features.

The above sequential optimization of the criterion would yield features that are more useful
for classification than ranking them by mutual information (the first feature to include
would be the same, however). But we do not yet have a criterion for deciding how many
features to include. In the MDL terminology, we need to describe the model as well. The
more features we include the more bits we need to describe both the set and the parameters
associated with using that set (the Naive Bayes conditional probabilities).

So, first we need to communicate the set (size and the elements). The (any) integer |J |
can be communicated with the cost of

log∗ |J | = log |J | + log log |J | + . . . (11)

nats. The elements in the set, assuming (a priori) that they are drawn uniformly at random
from d possible features, require

d
log (12) |J |

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

| � �

�

� �

4 6.867 Machine learning, lecture 12 (Jaakkola)

nats. Finally, we need to communicate the Naive Bayes parameters associated with the
elements in the feature set. P̂ (y) can only take n + 1 possible values and thus requires
log(n + 1) nats. Once we have sent this distribution, the receiver will have access to the
counts ny(1) and ny(−1) in addition to n that they already knew. P̂ (xi|y = 1) can only
take ny(1)+1 possible values with the cost of log(ny(1)+1), and similarly for P̂ (xi|y = −1).
Given that there are |J of these, the total communication cost for the model is then

d
DL-model(|J |) = log∗ |J | + log + (13) �|J | �

log(n + 1) + |J | log(ny(1) + 1) + log(ny(−1) + 1) (14)

Note that the model cost only depends on the size of the feature set, not the elements in
the set. We would find the subset of features by minimizing

DL(J) = DL-data(J) + DL-model(|J |) (15)

sequentially or otherwise.

Feature selection via regularization

An alternative to explicitly searching for the right feature subset is to try to formulate the
selection problem as a regularization problem. We will no longer use parameters from a
Naive Bayes model but instead work directly with a logistic regression model � d �

P (y|x, θ) = g θixi + θ0 (16)
i=1

The typical regularization problem for estimating the parameters θ would be penalized
conditional log-likelihood with the squared norm regularization

n d

J(θ; Sn) = log P (yt|xt, θ) − λ θ2 (17) i
t=1 i=1

The squared norm regularization won’t work for our purposes, however. The reason is that
none of the parameters would be set exactly to zero as a result of solving the optimization
problem (none of the features would be clearly selected or excluded). We will instead use

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �� � � �

5 6.867 Machine learning, lecture 12 (Jaakkola)

a one-norm regularization penalty:

l(θ;Sn)

n d

J(θ; Sn) = log P (yt|xt, θ) −λ |θi| (18)
t=1 i=1

If we let λ → ∞, then all θi (except for θ0) would go to zero. On the other hand, when
λ = 0, none of θi are zero. These are identical to the squared penalty. However, the
intermediate values of λ produce more interesting results: some of θi will be set exactly to
zero while this would never happen with the squared penalty. Let’s try to understand why.

Suppose we fix all but a single parameter θk to their optimized values (zero or not) and
view l(θ; Sn) as a function of this parameter. Suppose the optimal value of θk > 0, then

d
l(θ; Sn) − λ = 0 (19)

dθk

at the optimal θk. In other words, the slope of the conditional log-likelihood function
relative to this parameter has to be exactly λ. If parameter θk is irrelevant then the
conditional log-likelihood is unlikely to be affected much by the parameter, keeping the
slope very small. In this case, θk would be set exactly to zero. The larger the value of λ,
the more of the parameters would end up going to zero. Another nice property is that if
the optimum value of θk is zero, then we would get the same regression model whether or
not the corresponding feature were included in the model to begin with. A good value of
λ, and therefore a good number of features, can be found via cross-validation.

So why don’t we get the same “zeroing” of the parameters with the squared penalty?
Consider the same situation, fix all but θk. Then at the optimum

d
l(θ; Sn) − 2λθk = 0 (20)

dθk

However small the slope of the log-likelihood is at θk = 0, we can move the parameter just
above zero so as to satisfy the above optimality condition. There’s no fixed lower bound
on how useful the parameter has to be for it to take non-zero values.

Combining classifiers and boosting

We have so far discussed feature selection as a problem of finding a subset of features out
of d possible ones. In many cases the possible feature set available to us may not even

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

�

�

6 6.867 Machine learning, lecture 12 (Jaakkola)

be enumerable. As an example, consider real valued input vectors x = [x1, . . . , xd]
d, still

d−dimensional. We can turn this real valued vector into a feature vector of binary {−1, 1}
features in a number of different ways. One possibility is to run simple classifiers on the
input vector and collect the predicted class labels into a feature vector. One of the simplest
classifiers is the decision stump:

h(x; θ) = sign s(xk − θ0) (21)

where θ = {s, k, θ0} and s ∈ {−1, 1} specifies the label to predict on the positive side of
xk − θ0. In other words, we simply select a specific component and threshold its value.
There are still an uncountable number of such classifiers, even based on the same input
component since the threshold θ0 is real valued. Our “feature selection” problem here is to
find a finite set of such stumps.

In order to determine which stumps (“features”) would be useful we have to decide how
they will be exploited. There are many ways to do this. For example, we could run a linear
classifier based on the resulting binary feature vectors

φ(x; θ) = [h(x; θ1), . . . , h(x; θm)]T (22)

We will instead collect the outputs of the simple stumps into an ensemble:

m

hm(x) = αj h(x; θj) (23)
j=1

where αj ≥ 0 and m αj = 1. We can view the ensemble as a voting combination. j=1
Given x, each stump votes for a label and it has αj votes. The ensemble then classifies
the example according to which label received the most votes. Note that hm(x) ∈ [−1, 1].
hm(x) = 1 only if all the stumps agree that the label should be y = 1. The ensemble is a
linear classifier based on φ(x; θ), for a fixed θ, but with constrained parameters. However,
our goal to learn both which features to include, i.e., h(x; θj)’s, as well as how they are
combined (the α’s). This is a difficult problem solve.

We can combine any set of classifiers into an ensemble, not just stumps. For this reason,
we will refer to the simple classifiers we are combining as base learners or base classifiers
(also called weak learners or component classifiers). Note that the process of combining
simple “weak” classifiers into one “strong” classifier is analogous to the use of kernels to go
from a simple linear classifier to a non-linear classifier. The difference is that here we are
learning a small number of highly non-linear features from the inputs rather than using a

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

7 6.867 Machine learning, lecture 12 (Jaakkola)

fixed process of generating a large number of features from the inputs as in the polynomial
kernel.

The ensembles can be useful even if generated through randomization. For example, we can
generate random subsets of smaller training sets from the original one, and train a classifier,
e.g., an SVM, based on each such set. The outputs of the SVM classifiers, trained with
slightly different training sets, can be combined into an ensemble with uniform α’s. This
process, known as bagging, is a method of reducing the variance of the resulting classifier.
The uniform weighting will not help with the bias.

Now, let’s figure out how to train ensembles. We will need a loss function and there many
possibilities, including the logistic loss. For simplicity, we will use the exponential loss:

Loss(y, h(x)) = exp(−yh(x)) (24)

The loss is small if the ensemble classifier agrees with the label y (the smaller the stronger
the agreement). It is large if the ensemble strongly disagrees with the label. This is the
basic loss function is in an ensemble method called Boosting.

The simplest way to optimize the ensemble is to do it in stages. In other words, we will
first find a single stump (an ensemble of one), then add another while keeping the first one
fixed, and so on, never retraining those already added into the ensemble. To facilitate this
type of estimation, we will assume that αj ≥ 0 but won’t require that they will sum to one
(we can always renormalize the votes after having trained the ensemble).

Suppose now that we have already added m − 1 base learners into the ensemble and call
this ensemble hm−1(x). This part will be fixed for the purpose of adding αmh(x; θm). We
can then try to minimize the training loss corresponding to the ensemble

m−1

hm(x) = α̂j h(x; θ̂j) + αmh(x; θm) (25)
j=1

= hm−1(x) + αmh(x; θm) (26)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

�

�

8 6.867 Machine learning, lecture 12 (Jaakkola)

To this end,

n

J(αm, θm) = Loss(yt, hm(xt)) (27)
t=1
n � �

= exp − ythm−1(xt) − ytαmh(xt; θm) (28)
t=1

Wm−1(t)

n
� � �� �� � �

= exp − ythm−1(xt) exp − ytαmh(xt; θm) (29)
t=1
n � �

= Wm−1(t) exp − ytαmh(xt; θm) (30)
t=1

In other words, for the purpose of estimating the new base learner, all we need to know
from the previous ensemble are the weights Wm−1(t) associated with the training examples.
These weights are exactly the losses of the m − 1 ensemble on each of the training example.
Thus, the new base learner will be “directed” towards examples that were misclassified by
the m − 1 ensemble hm−1(x).

The estimation problem that couples αm and θm is still a bit difficult. We will simplify
this further by figuring out how to estimate θm first and then decide the votes αm that we
should assign to the new base learner (i.e., how much we should rely on its predictions).
But what is the criterion for θm independent of αm? Consider as a thought experiment
that we calculate for all possible θm the derivative � m

d � �
J(αm, θm)� = − Wm−1(t)yth(xt; θm) (31)

dαm αm=0
t=1

This derivative tells us how much we can reduce the overall loss by increasing the vote
(from zero) of the new base learner with parameters θm. This derivative is expected to be
negative so that the training loss is decreased by adding the new base learner. It makes
sense then to find a base learner h(x; θm), parameters θm, so as to minimize this derivative
(making it as negative as possible). Such a base learner would be expected to lead to a
large reduction of the training loss. Once we have this θ̂m we can subsequently optimize
the training loss J(αm, θ̂m) with respect to αm for a fixed θ̂m.

We have now essentially all the components to define the Adaboost algorithm. We will
make one modification which is that the weights will be normalized to sum to one. This is

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� �

� �

9 6.867 Machine learning, lecture 12 (Jaakkola)

advantageous as they can become rather small in the course of adding the base learners.
The normalization won’t change the optimization of θm nor αm. We denote the normalized
weights with W̃m−1(t). The boosting algorithm is defined as

(0) Set W0(t) = 1/n for t = 1, . . . , n.

(1) At stage m, find a base learner h(x; θ̂m) that approximately minimizes

m

− W̃m−1(t)yth(xt; θm) = 2�m − 1 (32)
t=1

where �m is the weighted classification error on the training examples, weighted by
the normalized weights W̃m−1(t).

(2) Set

α̂m = 0.5 log
1 − �̂m

(33)
�̂m

where �̂m is the weighted error corresponding to θ̂m chosen in step (1). The value α̂m

is the closed form solution for αm that minimizes J(αm, θ̂m) for fixed θ̂m.

(3) Update the weights on the training examples

W̃m(t) = cm · W̃m−1(t) exp − ytα̂mh(xt; θ̂m) (34)

where cm is the normalization constant to ensure that W̃m(t) sum to one. The
new weights can be interpreted as normalized losses for the new ensemble hm(xt) =
hm−1(x) + α̂mh(x; θ̂m).

The Adaboost algorithm sequentially adds base learners to the ensemble so as to decrease
the training loss.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

