
Joshua Reference Manual

iii

March 1999 Table of Contents

Table of Contents

Page

1 Overview of Advanced Joshua Concepts 1

1.1 The Joshua Protocol of Inference 2

1.2 The Default Implementation of the Protocol 2

1.3 Customizing the Joshua Protocol 5

2 Storing and Retrieving Knowledge in Joshua: the Virtual Database 7

2.1 What is a Virtual Database? 7

2.2 Predications as Instances 7

2.3 The Joshua Database Protocol 8

2.3.1 The Contract of the Generic Function joshua:insert 9

2.3.2 The Contract of the Generic Functions joshua:askdata 10

and joshua:fetch

2.3.3 The Contract of the Generic Function joshua:uninsert 14

2.3.4 The Contract of the Generic Function joshua:clear 14

2.4 Joshua’s Default Database: the Discrimination Net 16

2.4.1 Organization of the Default Discrimination Net 17

3 The Joshua Rule Facilities 23

3.1 Advanced Features of Joshua Rules 24

3.2 The Joshua Rule Compiler 26

3.2.1 The Forward Rule Compiler 27

3.2.2 The Backward Rule Compiler 33

3.3 Ordering Rule Execution 35

3.4 Controlling Rule Invocation 35

3.5 The Joshua Rule Indexing Protocol 36

3.5.1 The Contract of the Trigger Adding Functions 38

3.5.2 The Contract of the Trigger Deleting Functions 38

3.5.3 The Contract of the Trigger Locating Functions 39

3.5.4 The Contract of the Trigger Mapping Functions 41

4 The Joshua Question Facilities 47

4.1 Controlling Question Invocation 47

4.2 The Joshua Question Indexing Protocol 48

4.2.1 The Contract of joshua:addbackwardquestiontrigger 48

4.2.2 The Contract of joshua:deletebackwardquestiontrigger 48

4.2.3 The Contract of joshua:locatebackwardquestiontrigger 49

4.2.4 The Contract of joshua:mapoverbackwardquestion 50

triggers

iv

Table of Contents	 March 1999

5 Truth Maintenance Facilities	 53

5.1 The Truth Maintenance Protocol	 54

5.1.1	 The Contract of the Joshua TMS Protocol Functions 54

5.1.2	 The Contract of a Joshua TMS Justification 55

5.1.3	 TMS Utility Routines 56

5.1.4	 Signalling Contradictions and Managing Backtracking 57

5.1.5	 Signalling Truth Value Changes 63

5.2 The Joshua LTMS	 65

5.2.1	 Clause Justification Structures 65

6 Joshua Metering	 73

6.1 Joshua Metering Types	 73

6.1.1	 Joshua Tell Metering 73

6.1.2	 Joshua Ask Metering 75

6.1.3	 Joshua Merge Metering 76

6.2 Choosing Joshua Metering Types	 77

7 Controlling Data and Rule Indexing	 79

7.1 Customizing the Data Index	 81

7.1.1	 Customizing the Data Index Without Storing Predications 85

7.2 Customizing the Rule Index	 88

7.3 Customizing the Rule Compiler	 92

7.3.1	 Customizing the Matchers Generated by the Rule Compiler 102

8 The Joshua Object Facility	 105

8.1 Introduction to the Joshua Object Facility	 105

8.2 Basic Capabilities of the Joshua Object Facility	 107

8.3 Using Paths to Refer to the Structure of an Object	 109

8.4 Type Hierarchy in the Joshua Object Facility	 110

8.5 PartWhole Hierarchy in the Joshua Object Facility	 112

8.6 Other Capabilities of Slots	 113

8.6.1	 Initial Values of Slots 113

8.6.2	 Set Valued and Single Valued Slots 113

8.6.3	 Slots and Truth Maintenance 114

8.6.4	 Slots and Attached Actions 114

8.6.5	 Invoking Methods Associated with the Object Associated 115

with a Slot

8.6.6	 Equalities Between Slot Values 116

8.7 Other Options in DefineObjectType	 117

8.8 The Predicates Used in the Joshua Object Facility	 118

9 Joshua Language Dictionary	 121

9.1 Dictionary Entries	 121

v

March 1999 List of Figures

List of Figures

Page

1 The Joshua Protocol of Inference 4

2 Type Network for nonTMS Predicates 4

3 Type Network for LTMS Predicates 4

4 The Default Implementation of the Protocol of Inference 5

5 The tell dataindexing protocol and its default implementation 11

6 The askdata protocol and its default implementation 13

7 The untell protocol and its default implementation 15

8 The clear protocol and its default implementation 16

9 Sample Discrimination Net Display 18

10 Summary of Joshua Rule Operation 23

11 Sample Rete Network 29

12 Sample Rete Network Display 30

13 Sample Rete Network Display with Filter Nodes 31

14 Sample Rete Network Display with or Node 32

15 Rete Network For Rule with Nested Ands 32

16 Rule Indexing Protocol 38

17 The TriggerAdding Protocol and Default Implementation 39

18 The TriggerDeleting Protocol and Default Implementation 40

19 The justify protocol and its default implementation 42

20 The askrules protocol and its default Implementation 44

21 The Question Protocol 48

22 The Question Trigger Adding Protocol and Default Implementation 49

23 The Question Trigger Deleting Protocol and Default Implementation 49

24 The askquestions protocol and its default implementation 51

25 Example Trace of Condition Handler 64

26 Example of setting up a nogood clause 66

27 Tell metering of the unmodelled goodtoeat predicate. 75

28 Tell metering of the modelled goodtoeat predicate. 76

29 Knowledge Structures Can Be Diversely Implemented 79

30 Graph of the Mixed Chaining Rule Foo 95

31 Trace of The Mixed Chaining Rule Foo 96

32 Graph of Mixed Chaining Rule Foo 98

33 Trace of Explicitly Controlled Mixed Chaining 99

34 Trace of Explicitly Controlled Mixed Chaining 99

35 Predications Being Mapped into an Object Representation 105

36 Other Capabilities of the Object Facility 106

37 A Resistor and its Representation as an Object 107

38 The ObjectType Hierarchy of TwoTerminal Devices 111

39 Equality Links in a Two Resistor Voltage Divider 117

40 Graph of the Mixed Chaining Rule Foo 174

vi

List of Figures March 1999

41 Trace of The Mixed Chaining Rule Foo 174

42 Graph of Mixed Chaining Rule Foo 176

43 Trace of Explicitly Controlled Mixed Chaining 177

44 Trace of Explicitly Controlled Mixed Chaining 177

1

March 1999 Overview of Advanced Joshua Concepts

1. Overview of Advanced Joshua Concepts

Joshua is an extensible software product for building and delivering expert system

applications. It is implemented on the Symbolics 3600 and Ivory families, on top of

the Symbolics Genera environment. Joshua is optimized for applications where per

formance and delivered functionality are important.

User’s Guide to Basic Joshua, the first manual in the Joshua documentation set,

gives an introduction to the Joshua language and development environment. It cov

ers everything you need to know to program using Joshua’s builtin facilities.

Among Joshua’s strengths is that this system is a coherent, multilevel environ

ment, making advanced features available when you need them. Joshua is built

around some 30 core functions, the Protocol of Inference, which are accessible to

the user for modification.

This modularity and accessibility offer powerful advanced features: user interfaces,

control structures, storage structures can all be customized to reflect what is most

natural for the application; external databases can be accessed; existing software

tools can be seamlessly integrated into the Joshua application; performance can be

finetuned.

This documentation volume, Joshua Reference Manual, describes in detail the pro

tocol of inference and the default implementation of that protocol supplied as part

of the Joshua system. In addition, it describes how you can customize Joshua to

your own particular application. We often refer to this tailoring or customization

process as modeling.

The specific topics covered here include:

• The Database Protocol

• The Default Discrimination Net

• The Rule Compiler

• The Rule Indexing Protocol

• The Question Indexing Protocol

• The Truth Maintenance Facilities

• The Joshua LTMS

• Controlling Data and Rule Indexing

The implementation of the Joshua protocol of inference depends heavily on the ob

jectoriented programming facilities of Symbolics Common Lisp. These same fea

tures will be included in the Common Lisp Object System. A working knowledge of

2

Overview of Advanced Joshua Concepts March 1999

the concepts of this style of objectoriented programming will be helpful in under

standing how to customize the protocol of inference. For more information, see the

section "Flavors" in Symbolics Common Lisp Programming Constructs.

1.1. The Joshua Protocol of Inference

Each different Joshua predicate is implemented as an object type (flavor in Sym

bolics Common Lisp terminology, class in the Common Lisp Object System). Each

protocol step is implemented as a generic function, so that generic dispatch can se

lect the method appropriate for that function and that predicate. By defining your

own methods for protocol functions for particular predicates or groups of predi

cates, you customize Joshua’s behavior for those functions and predicates.

The protocol of inference is a way of grouping the many steps of the inferencing

process into a functional hierarchy. Figure1 shows the hierarchy of generic func

tions.

This grouping of the protocol functions splits the protocol into relatively indepen

dent parts. For example, an implementation of the TMS protocol should work with

just about any implementation of the database interface. This independence en

hances sharing of code between different applications, and makes the whole proto

col easier to understand.

The protocol imposes a level of modularity on your application which will help you

organize your program and think about its many parts in a more coherent way.

Conversely, the many levels of the protocol allow you to customize the protocol

with "just the right amount" of effort. Although comprehensive changes may re

quire significant effort, simple changes require minimal effort. In all cases, the

careful organization and definition of the protocol will make your applications easi

er to design, build, and understand.

1.2. The Default Implementation of the Protocol

The Joshua system provides a complete implementation of the protocol of infer

ence. We refer to this as the default implementation, to encourage customization of

the protocol. We expect that the default implementation will be perfectly adequate

for prototyping and for large parts of productionquality applications. Where the

default implementation is lacking, either in features or performance, customization

can be done. The finegrained control offered by Joshua allows this customization

to be applied where necessary, while the rest of an application can continue to use

the default implementation.

The default implementation of the protocol of inference is provided by a set of ob

ject types (flavors in the current implementation) which have methods defined for

all the generic functions of the protocol. The object types are arranged so that

they may be used either by the default implementation or by userdefined imple

mentations. Figure2 shows the network of types used by the default implementa

tion of nonTMS predicates, joshua:defaultpredicatemodel.

3

March 1999 Overview of Advanced Joshua Concepts

RULE-INDEXING PROTOCOL

add-forward-rule-trigger
delete-forward-rule-trigger

map-over-forward-rule-triggers

USER INTERFACE

add-backward-question-trigger

say

delete-backward-question-trigger

locate-backward-question-trigger

RULE CUSTOMIZATION PROTOCOL

expand-forward-rule-trigger expand-backward-rule-action

positions-forward-rule-matcher-can-skip

locate-forward-rule-trigger

add-backward-rule-trigger
delete-backward-rule-trigger

locate-backward-rule-trigger

map-over-backward-rule-triggers

TMS PROTOCOL

justify
unjustify support

notice-truth-value-change

DATABASE INTERFACE

insert

tell clear

ask

ask-data

fetch

untell

uninsert

nontrivial-tms-p

current-justification

all-justifications

QUESTION PROTOCOL

map-over-backward-question-triggers

act-on-truth-value-change

prefetch-forward-rule-matches

write-backward-rule-matcher

write-forward-rule-semi-matcher
write-forward-rule-full-matcher

ask-rules ask-questions

4

Overview of Advanced Joshua Concepts March 1999

Figure 1. The Joshua Protocol of Inference

Figure 2. Type Network for nonTMS Predicates

Figure 3 shows the network of types for the LTMS implementation, ltms:ltms

predicatemodel.

Figure 3. Type Network for LTMS Predicates

Notice that it is built by adding ltms:ltmsmixin to joshua:defaultpredicate

model, and so includes as a subgraph all the parts of joshua:defaultpredicate

model. So the basic predicate behavior of LTMS predicates in the default LTMS

model comes from joshua:defaultpredicatemodel, and ltms:ltmsmixin provides

the TMS behavior.

Figure 4 shows which methods are associated with each component of the imple

mentation object types.

The implementation techniques chosen for the default should be efficient over a

wide range of Joshua programs and applications. These techniques are robust and

general. Particular attention has been paid to optimizing them for "typical" appli
cations, and they should prove sufficient for most Joshua programmers’ needs. In

addition, the default implementation has been optimized for the Symbolics Common

Lisp and Genera environment.

5

March 1999 Overview of Advanced Joshua Concepts

Figure 4. The Default Implementation of the Protocol of Inference

1.3. Customizing the Joshua Protocol

When the default implementation of the protocol of inference is lacking, whether

in features or performance, you should customize the protocol.

Since each step of the protocol of inference is implemented as a generic function,

you can define your own methods for these functions. In this way you can modify

the behavior of Joshua. Each protocol function has a contract, or set of things it

must do. As long as the contract is followed, the Joshua system will function cor

rectly. The default implementation supplies methods which implement each proto

col function correctly. The default techniques have been chosen to be robust, gen

eral, and efficient. However, for any particular problem there may be more effi

cient ways to implement parts of that problem.

We will describe each grouping of protocol functions to show the different ways

that the protocol can be customized. An important feature of the protocol is the

multilevel nature of the generic function tree. This allows finegrained control

over the customization, so that you can specify as much or as little of the behavior

as you need. If you define methods for highlevel functions, you are taking over

most or all of the behavior. If you wish to change the behavior in less drastic

ways, you would define methods for lowerlevel functions. Descriptions and exam

ples for each part of the protocol will explain the levels and how the different

parts of the protocol interact.

6

Overview of Advanced Joshua Concepts March 1999

7

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

2. Storing and Retrieving Knowledge in Joshua: the
Virtual Database

2.1. What is a Virtual Database?

Conceptually, a database is an infinitely extensible collection of facts. In Joshua, a

database is a structure where you store statements together with associated infor

mation, such as truth values. The data is in the form of predications.

The Joshua database protocol makes a virtual database possible. That is, the proto

col gives you the capability to implement your data structures in any way suitable

to your needs; in fact, since different data structures can coexist, you can choose

the best data representation for each individual problem piece. This flexibility

means you can minimize storage and lookup time for particular kinds of data,

thereby increasing the efficiency of your application.

The Joshua database protocol consists of five database generic functions,

joshua:insert, joshua:askdata, joshua:fetch, joshua:uninsert, and joshua:clear,

that are separated from the database implementation functions. This modular orga

nization provides for a stable, consistent interface to diversely implemented data

structures.

Joshua’s default database is implemented as a discrimination net. This is a gener

alpurpose data structure, commonly used in AI, that is reasonably efficient over a

wide range of applications. However, for a fixed problem, you can usually do bet

ter.

This chapter discusses the general contract of the five dataindexing functions, as

well as their default implementation. We also cover the organization of the dis

crimination net.

2.2. Predications as Instances

Predications have a dual role in Joshua. They store data, and thus are a knowl

edge representation, that is they "mean" something; they also have program ac

tions associated with them, and in that sense they "do" something. Predications

can be remembered, asked about, printed, and so on, as specified by the generic

functions in the Joshua protocol.

Although predications look like lists with square brackets, they are really instances

and each of the operations you perform on them is a generic function. (Readtables

change bracketed input to appropriate joshua:makepredication forms; print meth

ods arrange for predications to be printed with brackets. But underneath the user

interface, predications are just instances.) This lets Joshua keep interface and im

plementation separate in dealing with predicates, in the same way the Flavor sys

tem separates interface (generic functions) from implementation (methods). You

use joshua:definepredicate to specify the implementation for a given predicate by

mixing in all its base models (or flavors).

8

Storing and Retrieving Knowledge in Joshua: the Virtual Database	 March 1999

2.3. The Joshua Database Protocol

Recall that the interface to the Joshua database is controlled by the four protocol

generic functions, joshua:tell, joshua:ask, joshua:untell, and joshua:clear.

joshua:tell Inserts predication objects (predications and related informa

tion) into the database.

joshua:ask Retrieves these predication objects from the database.

joshua:untell Removes a predication object from the database.

joshua:clear Flushes the database.

Each of these four functions dispatches to a method that calls on other generic

functions to do part of its work. The generic functions that manage the data in

dexing are:

joshua:insert	 Does data indexing for joshua:tell. Puts a predication where

joshua:fetch can find it.

joshua:askdata	 Performs unification and calls the continuation on objects re

trieved by joshua:fetch. If the database does not actually re

tain the predication you joshua:tell, joshua:askdata is the

place where one should be reconstructed.

joshua:fetch	 Does data indexing for joshua:ask. Finds a predication object

in the place that joshua:insert put it. joshua:fetch always

calls its continuation on a predication that was found in the

database.

joshua:uninsert	 Does data indexing for joshua:untell. Removes a predication

object from the place that joshua:insert put it.

joshua:clear	 The joshua:clear method takes care of data flushing, that is,

of resetting the database so that it is completely empty.

The Protocol lets you change the way predications are stored in the virtual

database. The section "Customizing the Data Index" covers this topic.

The point to note here is that if you customize your database you must always in

clude methods for all five (or sometimes four) generic functions, namely,

joshua:insert, joshua:fetch or joshua:askdata, joshua:uninsert, and

joshua:clear. This is because they must be consistent in their functionality;

joshua:tell must know where to put data, joshua:ask and joshua:untell must

know where to find data, and joshua:clear must know how to flush data. (It is not

always necessary to write a new method for joshua:askdata, since it relies on

joshua:fetch for database access. Similarly, joshua:askdata when customized,

might never call joshua:fetch.)

joshua:insert, joshua:fetch, joshua:askdata, joshua:uninsert, and joshua:clear

dispatch to the appropriate method for the model the predicate is built on. The de

fault method for joshua:ask is on defaultaskmodel. The default model for predi

9

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

cations is joshua:discriminationnetdatamixin, which implements the generic

database as a discrimination net. (Note that you would seldom call joshua:insert

or joshua:uninsert directly, except when debugging a data model.)

The general contract of joshua:insert, joshua:askdata, joshua:fetch,

joshua:uninsert, and joshua:clear, as distinct from their particular implementa

tion, is detailed in the following sections:"The Contract of the Generic Function

joshua:insert", "The Contract of the Generic Functions joshua:askdata and

joshua:fetch", "The Contract of the Generic Function joshua:uninsert", "The Con

tract of the Generic Function joshua:clear".

For an example of how these functions work together: See the section "Customiz

ing the Data Index", page 81.

2.3.1. The Contract of the Generic Function joshua:insert

joshua:insert stores predication objects in the database, or at least records enough

data from which joshua:askdata can reconstruct these predication objects. This

function does not deal with the other operations of joshua:tell, namely, justifica

tion and locating forward rules. These are the responsibility of joshua:justify,

joshua:mapoverforwardruletriggers, and joshua:noticetruthvaluechange.

See the section "The Joshua Rule Facilities ", page 23. By modularizing the opera

tions of joshua:tell, we let you pinpoint the specific functionality you might want

to modify; for instance, you can still use the existing joshua:insert function, even

if you define your own way of doing justification and locating forward rules. (If

you want to redefine justification, forward rule mapping, and data indexing, all at

once, you would, probably, want to redefine the function joshua:tell itself. But in

almost all cases it is sufficient to move down a level and rewrite only the piece of

functionality you need.)

Although you can redefine the database structure, joshua:insert always expects da

ta in the form of predications. Once installed by joshua:tell, predications are ob

jects containing state information such as justifications. The system usually ex

pects to deal with these objects, not with copies or patterns; for example, the con

tinuation of joshua:ask is called with an argument which contains the actual

predication object retrieved from the database.

joshua:insert must return two values. If the predication is being added for the

first time, joshua:insert returns it, as well as the value joshua::t.

If a variant of the predication already exists in the database, joshua:insert returns

the canonical version of it (the version already inserted in the database), together

with the value joshua::nil.

joshua:insert uses the joshua:variant test to determine if the predication it is in

serting already exists in the database. Patterns p1 and p2 are variants under the

following conditions:

• If the constants in p1 are joshua::eql to the constants in p2.

10

Storing and Retrieving Knowledge in Joshua: the Virtual Database	 March 1999

•	 If the variables in p1 and p2 are in the same places, and if there is a renaming

of variables that makes them the same.

•	 Recursive structures (such as lists and predications) inside a predication must

be recursively variants.

For more detail: See the function joshua:variant, page 252.

Figure 5 shows the organization of the joshua:tell datainserting protocol includ

ing the default implementation of joshua:insert.

2.3.2. The Contract of the Generic Functions joshua:ask-data and joshua:fetch

Like those of joshua:tell, the operations of joshua:ask are modularized to allow

finetuning of functionality changes. The dataindexing functionality of joshua:ask

is also broken down into separate functionality assumed by joshua:askdata and

joshua:fetch.

The contract of joshua:askdata is to do unification on the objects passed to it by

joshua:fetch, and to call the joshua:ask continuation on the unified query and its

support.

joshua:askdata does not deal with backward rules or questions; these are the re

spective responsibility of joshua:askrules, and joshua:askquestions, which in

turn pass off to joshua:mapoverbackwardruletriggers and joshua:mapover

backwardquestiontriggers.

joshua:askdata is not required to find the canonical predication in the database.

That is the responsibility of joshua:fetch. If the data model does not store the ac

tual predication, but rather information from which a copy of the predication may

be reconstructed, joshua:askdata is the place where this reconstruction should be

done.

Loosely defined, the contract of joshua:fetch is to get a superset of objects that

might unify with the query (including those objects matching the pattern it is

given). Note that while joshua:fetch deals with its input objects as patterns that

must be matched, the continuation must be called on predication objects found in

the database.

joshua:fetch does not check truth values of joshua:*true* or joshua:*false*;

joshua:askdata, on the other hand, does.

joshua:fetch is not required to do unification, as that is the responsibility of

joshua:askdata; the contract of joshua:fetch merely specifies that it do whatever

is convenient at the database level. Thus joshua:fetch can fetch anything that

might unify with its pattern, skipping only definite failures. For some examples of

this: See the section "Organization of the Default Discrimination Net", page 17.

How and to what extent joshua:fetch filters objects is up to the implementation.

Since filtering is cheap and unification is expensive, the more filtering you can do,

the better.

11

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

insert
[Generic Function]

tell

justify

[Generic Function]

[Generic Function]

.

.

.

(tell default-tell-model)
[Method]

Default implementation of tell

(insert discrimination-net-data-model)
[Method]

discrimination-net-insert
[Function]

Default implementation of insert

Figure 5. The tell dataindexing protocol and its default implementation

One proper, but slow, implementation of joshua:fetch is to call the continuation

on every predication in the database, and let unification do the filtering. That

12

Storing and Retrieving Knowledge in Joshua: the Virtual Database March 1999

would be corect, but slow (like a database without indices). Here’s an example.

(defvar *slowdatabase* nil "Just a list of all the facts.")

(definepredicatemodel slowdatamodel () ())

(definepredicatemethod (insert slowdatamodel) ()

;; if this is new data, push it onto the list.

;; Otherwise return the canonical version.

(let ((found (find self *slowdatabase* :test #’variant)))

(if found

(values found nil)

(progn (push self *slowdatabase*)

(values self t)))))

(definepredicatemethod (fetch slowdatamodel) (continuation)

;; indiscriminately suggest every fact as a candidate

(mapc continuation *slowdatabase*))

(definepredicatemethod (clear slowdatamodel) (cleardatap ignore)

;; clearing the database is just setting it to nil

(when cleardatap

(setq *slowdatabase* nil)))

(definepredicatemethod (uninsert slowdatamodel) ()

;; uninsert just deletes self from the list

(setq *slowdatabase* (delete self *slowdatabase*)))

(compileflavormethods slowdatamodel)

(definepredicate slow (arg1 arg2) (slowdatamodel defaultpredicatemodel))

The default implementation of joshua:fetch uses the discrimination net. See the

section "Joshua’s Default Database: the Discrimination Net", page 16.

Figure

6, shows the organization of the joshua:ask dataretrieval protocol including the

default implementation of joshua:askdata and joshua:fetch.

2.3.2.1. Signalling a Condition When joshua:ask-data or joshua:fetch Can’t Handle a
Query

The Joshua Database Protocol allows you to structure your data in ways that are

appropriate for your application; sometimes this involves trading off generality for

performance. For example, if a significant portion of your data consists of object

attributevalue triples (such as the color of the block is blue), then you might want

to use an objectoriented representation (such as joshua::flavor instances) to store

this data. However, using this representation makes it awkward or slow to respond

to a query that asks for every object with a specific property, such as:

[haseyecolor ?who blue]

13

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

ask
[Generic Function]

[Method]

fetch
[Generic Function]

(fetch discrimination-net-data-mixin)
[Method]

discrimination-net-fetch
[Function]

[Generic Function]

Default Implementation of ask-data

ask-data ask-rules ask-questions
[Generic Function][Generic Function]

(ask-data default-ask-model)

(ask default-ask-model)
[Method]

Default Implementation of fetch

.

.

. .

.

.

Figure 6. The askdata protocol and its default implementation

An implementation of joshua:askdata or joshua:fetch would ideally answer such

a query even if it did so slowly. However, such queries may be of such little value

to an application that a developer decides not to waste effort on implementing a

method that can respond to the query.

It is important, however, that joshua:fetch and joshua:askdata methods do not

cause errors when faced with a query that they do not wish to handle. One reason

14

Storing and Retrieving Knowledge in Joshua: the Virtual Database March 1999

for this is that the command Show Joshua Database may post such a query even if

the application never makes such queries on its own.

The contract of joshua:askdata and joshua:fetch requires these methods to

joshua::signal a specific condition when they decline to handle a query. The base

flavor for such condition objects is ji:modelcanthandlequery. A second condition

flavor (built on this base flavor) is called ji:modelcanonlyhandlepositive

queries which (as the name suggests) should be used if the implementation is pre

sented with a negated query, but only expects queries which are not negated.

The following is an example of how to use these conditions:

(definepredicatemethod (askdata objectmodel)

(truthvalue continuation)

(unless (eql truthvalue *true*)

(signal ’ji:modelcanonlyhandlepositivequeries

:query self

:model ’portdirectionmodel))

(withstatementdestructured (object value) ()

(typecase object

(unboundlogicvariable

(signal ’ji:modelcanthandlequery

:model ’portdirectionmodel

:query self))

(otherwise < whatever you really want to do >))))

2.3.3. The Contract of the Generic Function joshua:uninsert

The contract of joshua:uninsert is to remove a single predication object that

joshua:insert stored into a particular model. joshua:untell passes all TMS issues

to joshua:unjustify. The clearing of internal caches (such as the Rete net), is

handled automatically, even if you supply your own method for joshua:uninsert.

Figure 7, shows the organization of the joshua:untell data removal protocol in

cluding the default implementation of joshua:uninsert.

2.3.4. The Contract of the Generic Function joshua:clear

The contract of joshua:clear is to remove all facts that joshua:insert stored into

a particular model. Note that if you write a model that redefines joshua:insert

and joshua:fetch, you almost certainly need to write (or inherit) a corresponding

joshua:clear method.

Figure 8 shows the organization of the database clearing protocol, including its de

fault implementation.

15

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

uninsert
[Generic Function]

untell
[Generic Function]

unjustify
[Generic Function]

(untell default-tell-model)
[Method]

[Function]

(uninsert discrimination-net-data-model)
[Method]

discrimination-net-uninsert

Default implementation of uninsert

Default implementation of untell

.

.

.

Figure 7. The untell protocol and its default implementation

16

Storing and Retrieving Knowledge in Joshua: the Virtual Database March 1999

clear

clear

(clear discrimination-net-data-mixin)

discrimination-net-clear

[Lisp Function]

[Generic Function]

[Method]

[Function]

Default Implementation of clear

Figure 8. The clear protocol and its default implementation

2.4. Joshua’s Default Database: the Discrimination Net

Joshua uses a data structure called a discrimination net for data storage and re

trieval. This is a standard, domain independent data structure; it is organized so

that in general the time needed to look up an item is independent of the number

of items contained in the database. (In some specific problems you can do better

than a discrimination net. See the section "Customizing the Data Index", page 81.)

17

March 1999	 Storing and Retrieving Knowledge in Joshua: the Virtual Database

The default discrimination net is written to support the basic model,

joshua:discriminationnetdatamixin.

Note: A good introduction to the practical matters of discrimination networks can

be found in Eugene Charniak, Christopher K. Riesbeck, and Drew V. McDermott,

Artificial Intelligence Programming, second edition (New Jersey: Lawrence Erlbaum

Associates, 1987), chs. 8 and 11. In chapter 11 the authors discuss eight design de

cisions involved in the creation of a discrimination net. Here is the list of these,

and the Joshua designers’ choice in each case:

1.	 Are variables allowed in the data patterns? Yes

2.	 Are variables allowed in the query patterns? Yes

3.	 Does one keep track of variable bindings during fetching? No.

4.	 Should one return a list or a stream of possibilities? Pass closure down into

dn fetcher.

5.	 Should one use CAR or CARCDR indexing? CAR. (Except for tail variables.)

6.	 Should one uniquify subexpressions? Yes.

7.	 Should one completely discriminate the data? Yes.

8.	 Should one use multiple indexing? No.

Please refer to the aforementioned book for further details.

2.4.1. Organization of the Default Discrimination Net

The organization of a storage structure such as a discrimination net has to do

with the way in which the structure differentiates (discriminates) the objects that

it stores. The discrimination net is organized to limit the search by eliminating in

valid search targets. This is called associative lookup; it answers queries like, "find

everything in the database that looks like this."

To see how the discrimination net stores predications, display a graph of the dis

crimination net with the form:

(graphdiscriminationnet ji:*datadiscriminationnet*)

The graphic representation of the database can also be a useful debugging aid if

you are debugging an advanced model that calls the discrimination net, or if you

suspect a performance bottleneck in the discrimination net. (You might, for exam

ple, look for a node with an unnecessarily large number of inferiors.)

The argument ji:*datadiscriminationnet* contains the root node of the discrimi

nation net to be graphed. The default root contains the token ji::*begin

predication*; this merely stands for an object that begins predications in the dis

crimination net.

Figure 9, page 18 shows a sample graph display of a database containing predica

tion objects with various arguments (lists, logic variables, nested predications,

number, string, constant), to show how they are stored.

18

Storing and Retrieving Knowledge in Joshua: the Virtual Database March 1999

[hobby al (eating sleeping)]

[hobby jane (sailing skiing hiking)]

[foo ?x ?x]

[foo ?x ?y]

[foo 1 [doodle 2]]

[foo 1 [doodle ?x]]

[foo bar ?x]

[foo bar 2]

[alcoholcontent vodka "100%"]

[haseyecolor jane brown]

[haseyecolor fred green]

;list argument

;list argument

;logic variable arguments (repeated)

;logic variable arguments

;nested predication argument

;nested predication with logic variable

;logic variable argument

;numeric argument

;string argument

Figure 9. Sample Discrimination Net Display

The net looks like a tree seen horizontally, with the root node at the leftmost side.

The immediate descendants of the root are predicates. The leaf nodes list the

predication(s) that are stored in that node.

When more than one predication is built from the same predicate (as is the case

with [haseyecolor ...] and [foo ...] in the figure), the tree branches, with sep

arate branches discriminating the arguments for each predication.

Thus, if we are looking for a predication built on [foo ...], the retrieval function

joshua:discriminationnetfetch (called by the joshua:fetch method of

19

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

joshua:discriminationnetdatamixin) can ignore all predication branches other

than those starting from [foo ...]. The search area is further narrowed down

while searching a predicate tree: if you are looking for predication pattern [foo bar

...], the lookup function can ignore the other branches of [foo ...], and travel

only through the arguments branching off from the bar node.

Figure 9 shows the individual storage of constant arguments, string arguments,

numeric arguments, and nested predications. When the discrimination net encoun

ters a nested predication like [foo 1 [doodle 2]] in the graph example, it re

discriminates the nested predication from the root, and uses the resulting (unique)

leaf node as a token for the nested predication. The nested predication also ap

pears in the containing predication; here it is stored in a node labelled Nested

predication.

Discrimination of arguments helps to limit the number of items that are retrieved.

So, for example, if you want to look up all persons with green eyes, joshua:fetch

traverses the branches for both [haseyecolor Fred ...] and [haseyecolor Jane

...], but rejects the latter because the color arguments don’t match. Here are

some examples using constant and string arguments.

; discrimination net filters nonmatching constant and string arguments

(fetch [haseyecolor ?person green] #’print)

[HASEYECOLOR FRED GREEN]

NIL

(fetch [haseyecolor jane ?color] #’print)

[HASEYECOLOR JANE BROWN]

NIL

(fetch [haseyecolor ?who ?color] #’print)

[HASEYECOLOR FRED GREEN]

[HASEYECOLOR JANE BROWN]

NIL

(fetch [alcoholcontent ?x "100%"] #’print)

[ALCOHOLCONTENT VODKA "100%"]

NIL

(fetch [alcoholcontent vodka ?x] #’print)

[ALCOHOLCONTENT VODKA "100%"]

NIL

Two types of arguments, namely, lists and logic variables, are not stored individu

ally. This is reflected in the way joshua:fetch deals with queries containing such

arguments.

All lists are equivalent to the discrimination net. They are stored in a node whose

token is ji::*embeddedlist*. The grapher displays this as List. That is, all lists

look pretty much the same to the discrimination net. See the branches for predi

cate hobby in figure 9.

20

Storing and Retrieving Knowledge in Joshua: the Virtual Database March 1999

Since lists are not discriminated at the database level, and the lookup function is

not responsible for unification, joshua:fetch gets all possibilities when dealing

with list arguments. In the example below, even though we specify to joshua:fetch

the exact pattern to find, we get everything that starts with the target predicate,

including answers that don’t necessarily unify with the query.

; discrimination net does not discriminate lists

; fetch gets all possible answers

(fetch [hobby ?x (eating sleeping)] #’print)

[HOBBY JANE (SAILING SKIING HIKING)]

[HOBBY AL (EATING SLEEPING)]

NIL

Since no unification is done at the database level, logic variable arguments are not

discriminated, but rather stored in a node whose token is ji::*variable*. The gra

pher displays this as Var. That is, all variables look pretty much alike to the dis

crimination net. So, for example, although the logic variables in [foo ?x ?x] and

[foo ?x ?y] are distinct to the unifier, both predications are stored identically, as

we see in figure 9, and both appear in the same rightmost node.

As it does with lists, the lookup function gets all possibilities when dealing with

logic variables either in the lookup pattern or in the database.

; discrimination net does not discriminate logic variables

; fetch gets all possible answers

(fetch [foo ?x ?x] #’print)

;; this finds six answers, even though only three will pass

;; the unification test in askdata

[FOO 1 [DOODLE ?X]]

[FOO 1 [DOODLE 2]]

[FOO BAR 2]

[FOO BAR ?X]

[FOO ?X ?Y]

[FOO ?X ?X]

NIL

21

March 1999 Storing and Retrieving Knowledge in Joshua: the Virtual Database

(fetch [foo 1 ?x] #’print)

[FOO 1 [DOODLE ?X]]

[FOO 1 [DOODLE 2]]

[FOO ?X ?Y]

[FOO ?X ?X]

NIL

(fetch [foo bar 2] #’print)

[FOO BAR 2]

[FOO BAR ?X]

[FOO ?X ?Y]

[FOO ?X ?X]

NIL

22

Storing and Retrieving Knowledge in Joshua: the Virtual Database March 1999

23

March 1999 The Joshua Rule Facilities

3. The Joshua Rule Facilities

The basics of rule syntax and operation were presented in the section "Rules and

Inference". Figure 10, page 23 summarizes the main points of this earlier discus

sion here, for quick reference.

Rule Type Triggered
by

Trigger
Part

Predications
In Trigger

Rule Fires
When

Action
Part

Rule Success
(all if-parts

satisfied)

Forward TELL if-part Compound Triggers
Satisfied

then-part Rule executes
action part

Backward ASK then-part Single Trigger
Asked

if-part ASK calls
continuation

Figure 10. Summary of Joshua Rule Operation

This chapter amplifies some of the basics, and discusses the rule compiler and rule

indexing. The rule compiler translates your rules into Lisp. Rule indexing is the

way the system adds, deletes, and finds rules.

Given an initial set of facts, rules allow us to infer or deduce additional new facts,

that are consequences or conclusions. Since rules define how the system reasons

about its knowledge, they are one means of controlling the acquisition and exten

sion of current knowledge.

Joshua programs can use either forward chaining or backward chaining rules, or

both. Forward chaining is triggered by a joshua:tell statement and its action(s)

can result in more joshua:tell statements, adding newly deduced facts to the

database. Backward chaining is triggered by an joshua:ask statement, and its

action(s) involve the joshua:ask mechanism, that is, it works from existing data

rather than inferring new data.

Seen declaratively, a forward or backward rule is simply a special kind of fact,

stating a logical truth. In other words, there is nothing special in terms of logic to

distinguish a forward from a backward rule, since both are derived from modus

ponens. Seen mechanistically, there is a distinction between forward and backward

rules, in terms of the processing directives each gives the system.

There are many ways of doing inference. For most engineering applications, how

ever, forward and backward chaining are computationally efficient problem solvers

that balance the power of mathematical logic with the efficiency of the computing

mechanism. Both of these rules are sound, but they are incomplete. Soundness

means that using these rules of inference always produces logically (mathemati

cally) correct conclusions. Incompleteness means that, in some cases, some correct

conclusions will not be found.

24

The Joshua Rule Facilities

March 1999

Soundness is obviously a desirable characteristic. Incompleteness is undesirable,

but complete rules of inference are computationally less efficient; also for most

practical applications incompleteness doesn’t seem to be a problem. (One applica

tion area which does require completeness is mathematical theorem proving.)

In general, then, the Joshua programmer need not worry about these formal prop

erties of the Joshua inferencing mechanism. But looking at your program in terms

of logic can give you some guidance in debugging it. In brief, we can separate

bugs into four categories:

1. Drawing incorrect conclusions.

2. Not drawing correct conclusions.

3. Nontermination ("infinite loops").

4. Errors detected when rules call Lisp functions incorrectly.

Soundness tells us that if our system is drawing incorrect conclusions, there must

be an incorrect piece of data or an incorrect rule.

When the system is failing to draw some correct conclusion, it may be due to in

correct data or rules, or it may be due to the incompleteness of the rule of infer

ence. In that case, it is necessary to change the program in ways which leave it

logically the same, but change the structure enough to allow the inference mecha

nisms to cope with it. This change can either be adding rules or data which are

logically redundant, or it can be restructuring the rules or data.

3.1. Advanced Features of Joshua Rules

This section summarizes the full syntax of both forward and backward chaining

rules.

Both forward and backward rules allow various keywords to be attached to the pat

terns of the Ifpart of the rule. Both Forward and Backward rules allow the Key

word :support followed by a logicvariable:

(defrule foobar (:forward)

If [and [foo ?x ?y] :support ?f1

[bar ?y ?z] :support ?f2]

Then (format t "~&I won with F1 = ~s and F2 = ~s" ?f1 ?f2))

(defrule foobar (:backward)

If [and [bar ?x ?y] :support ?f1

[bar ?y ?z] :support ?f2]

Then [foo ?x ?z])

This indicates that the logicvariable should be bound to the "support" for this

pattern. In the case of a forward rule, the support is simply the fact which

matched the corresponding pattern. Thus

25

March 1999 The Joshua Rule Facilities

(tell [and [foo 1 2] [bar 2 3]])

will cause the first rule above to print:

I won with F1 = [FOO 1 2] and F2 = [BAR 2 3]

Backward rules turn their Ifpart into a series of nested joshua:ask’s. When the

first joshua:ask finds a match, it calls a continuation which performs the next

joshua:ask. The argument to this continuation is a "backwardsupport" structure,

see the section "Continuation Argument", page 125.

The support keyword in a backward rule binds the logicvariable to the backward

support corresponding to its query.

Thus with the following rule and data:

(defrule foobar (:backward)

If [and [bar ?x ?y] :support ?f1

[bar ?y ?z] :support ?f2

(progn (format t "~&I won with F1 = ~s and F2 = ~s" ?f1 ?f2)

(succeed))

]

Then [foo ?x ?z])

(tell [and [bar 1 2] [bar 2 3]])

The query:

(ask [foo 1 3] #’printquery)

will cause the following output:

I won with F1 = ([BAR 1 2] 1 [BAR 1 2]) and F2 = ([BAR 2 3] 1 [BAR 2 3])

[FOO 1 3]

This backward support may be used to provide a justification (for a TMS) when a

backward rule caches the results of its work, as follows:

26

The Joshua Rule Facilities

March 1999

(defrule foobar (:backward)

If [and [bar ?x ?y] :support ?f1

[bar ?y ?z] :support ?f2

(progn

(tell [foo ?x ?z]

:justification ‘(foobar

(,(askdatabasepredication ?f1)

,(askdatabasepredication ?f2))))

(succeed))

]

Then [foo ?x ?z])

Backward rules also support two other keywords :dobackwardrules and :do

questions. These can be used to control the behavior of the joshua:ask corre

sponding to a backward action. If the :dobackwardrules keyword is present then

the value following it should evaluate to either joshua::t or joshua::nil; if it is

joshua::nil, then this query will not attempt to use rules to satisfy the query, oth

erwise rules will be used. Similarly, the :doquestions questions controls whether

backward questions will be invoked to query the user. The default value is that

backward rules are used and that questions will be attempted if the query which

caused this rule to be invoked allowed questions to be used.

3.2. The Joshua Rule Compiler

The rule compiler is the part of Joshua that translates the rules you write into

Lisp. This section describes, in general terms, how the rule compiler operates.

Knowledge of how the rule compiler operates is important if you would like to ex

tend the rule compiler later on by defining your own methods for the rule com

piler’s generic functions.

The rule compiler uses several generic functions to generate data structures that

drive the rest of rule compilation. These five generic functions are as follows:

joshua:expandforwardruletrigger

joshua:expandbackwardruleaction

joshua:writebackwardrulematcher

joshua:writeforwardrulesemimatcher

joshua:writeforwardrulefullmatcher

The functions handle forward chaining and backward chaining for both triggers

and actions. Recall that the trigger of a forward chaining rule is the ifpart, and

the action is the thenpart. For backwardchaining rules, the trigger is the then

part, and the action is the ifpart. See the section "Rules and Inference" in User’s

Guide to Basic Joshua.

Any userwritten joshua:defrule expression expands into two things:

• Trigger code that decides when to execute the rule

27

March 1999	 The Joshua Rule Facilities

• A function, written by the rule compiler, that becomes the rule body.

3.2.1. The Forward Rule Compiler

In this section we examine what happens when the rule compiler encounters a for

ward chaining rule of the form:

(defrule <name> (:forward <...>)

if <trigger>

then	 <action>)

(The code within broken brackets is a schematic representation of the actual code

you supply.)

3.2.1.1. Compiling the Action Part of a Forward Rule

The action part of a forward rule is not generic, it is always handled the same

way:

1.	 If the action is a Lisp form, insert it into the rule body.

2.	 If the action is a predication, (except an joshua::and) insert

[tell predication :justification

<a justification that depends on the triggers>]

If the action is an joshua::and predication, recurse over its arguments as in

(1) and (2).

3.2.1.2. Forward Rule Triggers: the Rete Network

A forward chaining rule should fire as soon as its trigger is matched by predica

tions in the database. However, the trigger part of a rule typically consists of sev

eral patterns linked by the connective and. For such a rule to fire, two conditions

must be met:

1.	 Each pattern must match some predication in the virtual database.

2.	 The matches must be consistent. Any logic variable which is bound by match

ing one of the patterns must be bound to the same value by all of the pat

terns.

Since each pattern of the rule may match several predications in the database (and

these matches lead to different bindings of the logic variables), finding consistent

sets of matches inherently involves a form of search.

The firing of a forward chaining rule should not depend on the order in which the

predications which match the rule’s patterns are asserted. A rule should fire as

soon as a consistent set of matches is available. In effect, each time a predication

changes truthvalue, a search is conducted for such consistent matches. The task

of the rule compiler is to build a datadriven structure which can conduct this

search in an efficient manner whenever the truthvalue of a predication in the vir

tual database changes. This stucture is called a Rete Network; the triggers of a

forward rule are nodes in this network, specifically match nodes.

28

The Joshua Rule Facilities

March 1999

(Rete networks were originally used in Production System languages such as OPS

5. For more information on Rete networks, see C. Forgy 1982. "Rete: A Fast Algo

rithm for the Many Pattern/Many Object Pattern Match Problem." Artificial Intelli

gence 19: pp. 1737.)

Here’s an example rule with a multiple trigger a set of predications linked by

and:

(defrule example (:forward)

if [and [foo ?x]

[bar ?x ?y]

[bar ?y ?z]]

then <someaction>))

This rule should fire twice if the following predications are in the database:

[foo 1]

[bar 1 2]

[bar 2 3]

[foo 2]

[bar 3 4]

One firing should have the follow binding of logic variables:

?x → 1, ?y → 2, ?z → 3

The second firing should have the following set of bindings:

?x → 2, ?y → 3, ?z → 4

The rete network accomplishes this triggering relatively efficiently. This rule’s

Rete network conceptually looks like the drawing in figure 11. Note how the vari

able bindings, denoted in braces, flow down, until the rule is fully triggered.

This Rete network consists of two types of nodes: match nodes and merge nodes.

Match nodes contain match procedures generated by the rule compiler; each match

procedure corresponds to a particular pattern of the rule. When a predication

changes truthvalue (and assumes a definite truthvalue for the first time), the

match node is located in the rule index. See the section "The Joshua Rule Index

ing Protocol", page 36. The match procedure is then invoked with the predication

as argument; its job is to determine if the predication can be unified with its cor

responding pattern. If the unification succeeds, the match procedure returns a

binding environment which maps each logicvalue to the value assigned to it by the

unification. This environment is remembered in the match node.

Match nodes also contain pointers to subordinate merge nodes. The match node

passes the binding environments stored in it down to each merge node subordinate

to it.

Merge nodes receive binding environments from their left and right inputs and, if

possible, produce a consistent extension of those environments as output. When a

new environment is sent to a merge node from a left parent, the merge node

checks this environment against every environment stored in its right parent.

Similarly, when an environment arrives from the right parent, the merge node

checks it against every environment stored in the left parent.

29

March 1999 The Joshua Rule Facilities

Match node 0 Match node 1 Match node 2
[foo ≡ x] for [bar ≡ x ≡ y] for [bar ≡ y ≡ z]

Merge node 3

Merge node 4

{≡ x} {≡ x, ≡ y} {≡ y, ≡ z}

{≡ x, ≡ y}

{≡ x, ≡ y, ≡ z}

Execution queue

Figure 11. Sample Rete Network

The check for consistency between pairs of environments is performed by a merge

procedure generated by the rule compiler and stored in the merge node. Each

merge procedure corresponds to a set of patterns. In the rule shown in figure 11

the merge nodes correspond to the sets:

[foo ?x] [bar ?x ?y] > Merge Node 3

[foo ?x] [bar ?x ?y] [bar ?y ?z] > Merge Node 4

In effect, each merge node in this Rete network adds in the bindings resulting

from the matching of one additional pattern. This is normally the case; however,

the use of a nested group of patterns connected by and can lead to other merge

patterns.

Each Merge node contain pointers to subordinate merge nodes. When the merge

node successfully unifies a pair of binding environments, it creates an extended en

vironment which it stores in the node; it also sends the extended environment to

each merge node subordinate to it. A merge node which corresponds to the full set

of patterns in the trigger part of the rule initiates execution of the rule.

To summarize, match nodes are the triggers produced by the rule compiler. They

are invoked when a predication first assumes a definite truthvalue (as the result

of joshua:tell or joshua:justify, for example). A match node checks if the predica

tion matches a particular pattern. If so, it produces an environment which is sent

to subordinate merge nodes. These check if the environments produced by match

ing different patterns are consistent (in the sense that they produce compatible

logic variable bindings). Merge nodes pass their environments along to other

merge nodes until a terminal merge node for a rule is reached. At that point all

30

The Joshua Rule Facilities

March 1999

the patterns for the rule have been consistently matched and the rule may be exe

cuted. All these environments are remembered, so that rules can be partially trig

gered and not have to redo the partial trigger combination.

The command Graph Forward Rule Triggers lets you display the Rete network for

the rule (s) specified. Figure12shows the graph for the rule EXAMPLE.

Figure 12. Sample Rete Network Display

Joshua’s Rete networks actually include four kinds of nodes, match nodes, merge

nodes, procedural nodes and or nodes. We have already seen match and merge

nodes; we now turn to the other two types of rete network nodes.

Some rules include procedural triggers, i.e. Lisp code in the ifpart of the rule. Pro

cedural triggers can play either of two roles: filters and generators. A filter is a

piece of Lisp code that returns t or nil but does not bind new logic variables. A

generator is a piece of Lisp code that binds new logic variables (using joshua:ask

or joshua:unify) and calls joshua:succeed (possibly many times). Calling

joshua:succeed "endorses" the current variable bindings, thus allowing the rule

body to execute with those bindings.

The Rete networks for these rule have procedural nodes corresponding to this code.

Here’s a simple example of a procedural trigger, acting as a filter on the previous

bindings:

(defrule filterexample (:forward)

if [and [foo ?x]

(> ?x 5)

[bar ?x ?y]]

then <someaction>))

Figure 13 shows the graph for the rule filterexample.

This filter ensures that the logic variable ?x is bound to a value larger than 5.

Within the filter you can refer to the values bound to the logic variables in previ

ous patterns.

Generators can sideeffect the current variable bindings and they can

joshua:succeed several times. Here is an example of a generator:

31

March 1999	 The Joshua Rule Facilities

Figure 13. Sample Rete Network Display with Filter Nodes

(defrule eatingtest (:forward)

If [and	 [goodtoeat ?x]

[hungry ?y]

(loop for eatingmode in ’(orally intravenously) do

(withunification

(unify ?z eatingmode)

(succeed)))

[caneat ?y ?z]]

Then ...)

Here the triggers check to see if ?x is something good to eat and ?y is hungry.

For every "eating mode" that ?y can use, the rule unifies ?z to that mode and

calls joshua:succeed.

When a forward chaining rule uses or to link together trigger patterns, the rule

compiler builds an or node in the Rete network. For example, the rule above could

have also been written as follows:

(defrule eatingtest (:forward)

If [and	 [goodtoeat ?x]

[hungry ?y]

[or [eatingmode ?y orally]

[eatingmode ?y intravenously]]

[caneat ?y ?z]]

Then ...)

Then we would get a Rete network with an or node which joins the two match

nodes for the [eatingmode ?y orally] and the [eatingmode ?y intravenously]

patterns, as shown in figure 14.

The forward rule syntax allows arbitary nesting of groups of patterns linked by

and and or. Semantically there is no reason to nest one and group within another;

however, there is a procedural difference.

Each nested and group forms its own sub rete network (i.e its own merge group)

which is then merged with the patterns from the enclosing group. Consider the

following rule with a nested and group:

(defrule nestedand (:forward)

if [and [foo ?x]

[and [bar ?x ?y]

[bar ?y ?z]]]

then < ... >)

32

The Joshua Rule Facilities

March 1999

Figure 14. Sample Rete Network Display with or Node

The rete network for this rule is:

Figure 15. Rete Network For Rule with Nested Ands

Notice that the two BAR patterns merge first and then the result of this is merged

with the FOO patterns. Suppose that it is unlikely that the results of matching the

two BAR patterns will successfully merge but that it is very likely that the result of

matching the FOO pattern will almost certainly merge successfully with the result

of matching the first BAR pattern. The rete network shown will improve efficiency

by not generating a merged environment resulting from matching the first two

patterns when it is likely that this intermediate result will not successfully merge

with the result of matching the last pattern.

In most cases, the code generated by the rule compiler can be made significantly

more compact using a few simple techniques,see the section "Optimizing Forward

Rule Compilation for Semi Unification".

The forward rule compiler may be customized by use of the Joshua protocol func

tions: joshua:expandforwardruletrigger, joshua:writeforwardrulefull

matcher, joshua:writeforwardrulesemimatcher, and joshua:positionsforward

rulematchercanskip.

33

March 1999	 The Joshua Rule Facilities

The joshua:expandforwardruletrigger protocol function allows you to control

how trigger patterns are compiled by first allowing you to expand the trigger into

a set of expressions which are understood by the rule compiler.

The joshua:writeforwardrulefullmatcher and joshua:writeforwardrulesemi

matcher protocol functions allow you to control the generation of the pattern

matching code corresponding to each forward rule trigger.

The joshua:positionsforwardrulematchercanskip protocol function is called by

joshua:writeforwardrulesemimatcher; it allows you to provide advice to the

match generator about what parts of a pattern have already been checked by the

rule indexer.

See the section "Customizing the Rule Index", page 88.

3.2.2. The Backward Rule Compiler

This section describes the rule compiler’s operation on backward chaining rules.

Here, in schematic form, is a backward chaining rule.

(defrule <name> (:backward <...>)

if <action>

then	 <trigger>)

As this indicates, the trigger of a backward chaining rule is the thenpart of the

rule. A backward trigger is a single predication. The matcher for the trigger of a

backward chaining rule is simple:

match <trigger>

invoke rule body

For the action part of a backward chaining rule, the rule compiler creates a func

tion that is called when the rule is invoked.

(defun <name> (args ... <continuation> ...)

... BODY ...

(funcall <continuation>)

Calling the <name> is referred to as firing the rule, and calling the <continuation>
is referred to as succeeding. The BODY decides when to call the continuation, this

being the main task of the action part of a backward chaining rule.

Three types of actions are possible.

1.	 The action is a single predication (excluding joshua::and), and the rule com

piler generates an joshua:ask for that predication:

(ask	 <predication> <continuation>)

2.	 The action includes multiple predications joined by an joshua::and

34

The Joshua Rule Facilities

March 1999

[and	 p1 p2 ... pn]

and the rule compiler generates a set of nested joshua:ask functions:

(ask p1

#’(lambda (p1support)

(ask p2

...

(ask pn ...))))

Note that the last continuation (the innermost joshua:ask) is the continua

tion argument to the rule.

3.	 The action part of a backward chaining rule is a Lisp form. In this case, the

form is called and if it returns nonnil, the firing of the rule goes on. Users

can force rule firing to continue by having the form call joshua:succeed ex

plicitly. Here is an example of this kind of action.

(defvar *knownfoods* ’(chinesefood))

(defrule goodtoeatrule (:backward)

if (typecase ?x (sys:unboundlogicvariable)

;; if ?x is unbound succeed once for every element of *knownfoods*

(loop for food in *knownfoods*

doing (unify ?x food)

(succeed))

;;the case where ?x is bound is omitted.

...)

then [goodtoeat ?x])

In this way, the procedural Lisp code in the ifpart can act either as a filter

or a generator. This treatment of Lisp code is the same as for forward rules.

See the section "The Forward Rule Compiler", page 27. The person that calls

this rule is interested in obtaining a list of everything that is good to eat or

in finding out if a specific food is good to eat.

The behavior of the backward rule compiler can be customized by use of 2 Joshua

protocol functions: joshua:expandbackwardruleaction and joshua:write

backwardrulematcher.

The joshua:expandbackwardruleaction protocol function allows you to control

how the action part of a backward rule (i.e. the Ifpart) patterns are compiled by

first allowing you to expand the actions into a set of expressions which are under

stood by the rule compiler.

The joshua:writebackwardrulematcher protocol function allows you to control

the generation of the pattern matching code corresponding to the backward rule’s

trigger (i.e. its then part).

35

March 1999 The Joshua Rule Facilities

3.3. Ordering Rule Execution

When you define a rule, the keyword :importance lets you specify the order of

rule execution. This keyword takes a value that can be any numeric argument, a

symbol, or a form. The larger the number, the higher the priority. High priority

rules run first.

Some expense is associated with using :importance. In forward chaining rules or

dering causes a "bestfirst" search of rules according to the value associated with

:importance. Backward chaining only orders the local "bestfirst" search of related

rules.

Using :importance is convenient, but reduces efficiency. The system is most effi

cient when only one rule at a time is applicable. A situation where more than one

rule is applicable usually indicates that insufficient knowledge is built into the

rules. For example, a picturetaking program might have three separate rules re

sponding to a request for a picture: one rule focuses the camera, another reads the

light meter, and another sets the time and aperture. If you now tell the system to

take a picture, it will not know which of the three rules to execute first. Although

the :importance feature could be used to order the execution of these rules, it

would be clearer and more robust to make the rules more explicit about their pre

conditions, thereby restricting their applicability (your focusing rule might only

trigger if the light meter shows acceptable readings, and so on).

The :importance feature can be quite useful to control performance tradeoffs,

such as trying a cheap algorithm first, in preference to more expensive algorithms.

(Readers familiar with the production system model used in OPS5 will recognize

that the :importance feature serves a similar role for forward rules to the conflict

resolution strategy of a production system).

Sometimes it is useful to be able to suspend forward rule triggering until the exe

cution of a block of code has completed. The code might contain a number of

joshua:tell’s and joshua:untell’s intermixed in such a way that the changes to the

database are not coherent until the entire block of code has finished executing.

Joshua provides a special form which offers this form of control. See the macro

joshua:withatomicaction, page 254.

3.4. Controlling Rule Invocation

Typically during a joshua:tell or an joshua:ask, the database is searched first

(joshua:insert, or joshua:fetch, respectively), after which the appropriate trigger

mapping function (forward, backward, or backward question) is executed, to find

and run relevant rules or questions. Several facilities are available to let you modi

fy this sequence.

When you set the joshua:ask keyword :dobackwardrules to nil, backward rule

invocation is inhibited, and the system does a database lookup only.

Example:

36

The Joshua Rule Facilities

March 1999

(definepredicate age (person age))

(definepredicate attainedmajority (person))

(defrule oldenough (:backward)

if [and [age ?person ?age]

(> ?age 21)]

then [attainedmajority ?person])

(tell [age Fred 21])

(ask [attainedmajority Fred] #’printquery :dobackwardrules nil)

NIL ; information is not in the database

(ask [attainedmajority Fred] #’printquery)

[ATTAINEDMAJORITY FRED] ; backward rule is invoked

NIL

Six builtin flavors are also available for predicates used in joshua:ask goals.

These flavors do subsets of what joshua:ask normally does, by leaving out one or

more of the steps joshua:askdata, joshua:askrules, or joshua:askquestions.

Thus the models save a certain amount of overhead when their predicates are used

as goals to joshua:ask. The steps which are done are indicated by the names:

• joshua:askdataonlymixin

• joshua:askrulesonlymixin

• joshua:askquestionsonlymixin

• joshua:askdataandrulesonlymixin

• joshua:askdataandquestionsonlymixin

• joshua:askrulesandquestionsonlymixin

3.5. The Joshua Rule Indexing Protocol

Joshua manages rules by manipulating rule triggers. There are four trigger opera

tions, namely:

• Adding triggers

• Deleting triggers

• Locating triggers

• Iterating over triggers

Rule indexing refers to the protocol steps that determine how these rule operations

are performed.

37

March 1999 The Joshua Rule Facilities

Often systems spend most of their time looking for applicable rules, as opposed to

executing them. If this is the case, customizing the trigger index can help. This is

the process of changing the way the system stores, removes, looks up, and iterates

over triggers. If you provide a consistent alternative implementation of these ac

tions, you have changed the way your program looks for rules. This is discussed in

detail elsewhere:See the section "Customizing the Rule Index", page 88.

This chapter covers the protocol and implementation details that you need to know

about before you attempt to customize the rule index. If you are using the default

rule index, you may not find these topics of immediate interest.

The rule indexing protocol uses separate functions for forward and backward rule

indexing operations. Here is the list of functions.

joshua:addforwardruletrigger Add a forward rule trigger

joshua:addbackwardruletrigger

Add a backward rule trigger

joshua:deleteforwardruletrigger

Remove a forward rule trigger

joshua:deletebackwardruletrigger

Remove a backward rule trigger

joshua:locateforwardruletrigger

Find a forward trigger data index, and calls a

continuation on it.

joshua:locatebackwardruletrigger

Find a backward trigger data index, and calls a

continuation on it.

joshua:mapoverforwardruletriggers

Call a continuation on all forward triggers that

might unify with a given predication

joshua:mapoverbackwardruletriggers

Call a continuation on all backward triggers

that might unify with a given predication

Figure 16 shows how the ruleindexing functions relate to each other.

Like the data indexing functions, the trigger indexing functions work together in

the sense that they must share a knowledge of the trigger storage location. The

adding functions must install a trigger in a place such that the mapping and delet

ing functions can find it. The deleting functions must delete triggers from places

where the mapping functions look for them.

The trigger object that is processed by the ruleindexing protocol is created by the

rule compiler. Exactly what this object is depends on what kind of rule is involved.

For a forward rule, the triggers are Rete match nodes. See the section "Forward

Rule Triggers: the Rete Network", page 27. Invoking a trigger means a call to

some Rete network code to start the match process. For backward rules the

38

The Joshua Rule Facilities

March 1999

RULE-INDEXING PROTOCOL

add-forward-rule-trigger delete-forward-rule-trigger

map-over-forward-rule-triggers

locate-forward-rule-trigger

delete-backward-rule-trigger

locate-backward-rule-trigger

map-over-backward-rule-triggers

add-backward-rule-trigger

Figure 16. Rule Indexing Protocol

(unique) trigger is also a match procedure, but without some of the complications

of the Rete mechanism.

The contract of the rule indexing functions is very similar to that of the data in

dexing functions. (See the section "The Joshua Database Protocol", page 8.)

3.5.1. The Contract of the Trigger Adding Functions

The protocol functions joshua:addforwardruletrigger and joshua:add

backwardruletrigger are analogous to the dataindexing function joshua:insert.

When a new rule is compiled, the compiler uses the appropriate version of the

trigger adding functions (forward or backward) to add a trigger object to the data

structure that holds trigger objects.

When a new forward trigger is installed, the database must be searched for facts

that might match the new trigger. joshua:addforwardruletrigger does this

database lookup by calling the protocol function joshua:prefetchforwardrule

matches; the default version of this protocol function simply calls joshua:ask to

find the appropriate facts.

In the default implementation, the finding, building, and updating of trigger stor

age structures is the responsibility of the trigger locating functions, joshua:locate

forwardruletrigger, and joshua:locatebackwardruletrigger. See the section

"The Contract of the Trigger Locating Functions", page 39.

Figure 17 shows the protocol for the trigger adding functions and their default

implementation.

See the section "Forward Rule Triggers: the Rete Network", page 27.

3.5.2. The Contract of the Trigger Deleting Functions

The protocol functions, joshua:deleteforwardruletrigger and joshua:delete

backwardruletrigger are analogous to the dataindexing function

joshua:uninsert. These trigger deleting functions are used by joshua:undefrule to

remove a trigger object from a list of triggers. The default implementation stores

trigger information in a discrimination net.

39

March 1999 The Joshua Rule Facilities

add-forward-rule-trigger
[Generic Function]

(add-forward-rule-trigger default-protocol-implementation-model)

[Protocol Method]

(locate-forward-rule-trigger default-protocol-implementation-model)

[Protocol Method]

locate-forward-rule-trigger
[Generic Function]

(locate-backward-rule-trigger default-protocol-implementation-model)

locate-backward-rule-trigger
[Generic Function]

[Protocol Method]

(add-backward-rule-trigger default-protocol-implementation-model)

add-backward-rule-trigger
[Generic Function]

[Protocol Method]

prefetch-forward-rule-matches

Figure 17. The TriggerAdding Protocol and Default Implementation

The trigger deleting functions rely on the trigger locating functions to do the ac

tual removal of the trigger and to update the trigger storage location. See the sec

tion "The Contract of the Trigger Locating Functions", page 39.

Figure 18 shows the protocol for the trigger deleting functions and their default

implementation.

3.5.3. The Contract of the Trigger Locating Functions

The contract of the protocol functions joshua:locateforwardruletrigger

joshua:locatebackwardruletrigger and joshua:locatebackwardquestion

trigger is to find, build, and update forward and backward trigger storage struc

40

The Joshua Rule Facilities

March 1999

(delete-forward-rule-trigger default-protocol-implementation-model)
[Protocol Method]

locate-forward-rule-trigger
[Generic Function]

delete-forward-rule-trigger
[Generic Function]

[Protocol Method]
(locate-forward-rule-trigger default-protocol-implementation-model)

(delete-backward-rule-trigger default-protocol-implementation-model)

(locate-backward-rule-trigger default-protocol-implementation-model)

locate-backward-rule-trigger

delete-backward-rule-trigger
[Generic Function]

[Protocol Method]

[Generic Function]

[Protocol Method]

Figure 18. The TriggerDeleting Protocol and Default Implementation

tures. The updating portion of the contract is implemented by a continuation argu

ment to joshua:locateforwardruletrigger, joshua:locateforwardruletrigger

and joshua:locatebackwardquestiontrigger.

This contract is implemented as follows:

•	 The locate method finds the place where the trigger is to be stored, or builds it,

if it does not yet exist

•	 The method calls its continuation function, passing it the list of existing trig

gers that it just found.

•	 The continuation function:

°	 Checks if the trigger being added (deleted) is new, or if it is a variant of an

existing trigger (one trigger may represent several variant patterns).

41

March 1999	 The Joshua Rule Facilities

°	 Updates its list of triggers to reflect the addition or deletion of the trigger, if

it is not a variant.

°	 Returns three values:

1.	 A new list of triggers (or the old one, if nothing has changed).

2.	 A boolean flag indicating whether or not it modified the list of triggers

3.	 The canonical trigger for this pattern. If the trigger being added is a

variant of an existing trigger, then the existing trigger will be returned

as the canonical trigger. If the trigger being inserted is the first such

pattern, then it will be returned as the canonical trigger.

•	 The locate method updates the trigger index structure if the continuation indi

cates that a change is appropriate.

•	 The locate method returns the canonical trigger as its value.

Figures 17 and 18 show the trigger locating protocol and its default implementa

tion.

Please consult the dictionary entries for the generic functions joshua:locate

backwardruletrigger, joshua:locateforwardruletrigger and joshua:locate

backwardquestiontrigger for more detailed information about this protocol.

3.5.4. The Contract of the Trigger Mapping Functions

The trigger mapping protocol functions, joshua:mapoverforwardruletriggers

and joshua:mapoverbackwardruletriggers are responsible for looking up rule

triggers for joshua:tell and joshua:ask in the place where the indexing functions

have stored these triggers. The mapping functions walk over all triggers that

might unify with the joshua:tell or joshua:ask pattern, and call the continuation

on each candidate trigger. If you are writing your own trigger storage methods,

your implementation of the trigger mapping functions must be consistent with the

implementation of the trigger adding, locating, and deleting functions. See the sec

tion "Customizing the Rule Index", page 88.

3.5.4.1. Finding Forward Rule Triggers

When joshua:tell installs a new fact into the database, the system must find all

forward rules that can be (partially) triggered by this new fact. It is the contract

of joshua:mapoverforwardruletriggers to look up the appropriate rule triggers.

In the default implementation, forward rule triggers are Rete Network nodes built

by the compiler. The section "Forward Rule Triggers: the Rete Network", discusses

this topic in more detail.

As we see from figure 19, finding the list of triggers happens in the course of jus

tifying the newly inserted fact.

42

The Joshua Rule Facilities

March 1999

tell
[Generic Function]

(tell default-tell-model)
[Method]

Default implementation of tell

Default implementation of act-on-truth-value-change

(act-on-truth-value-change default-tell-model)
(act-on-truth-value-change default-protocol-implementation-model :before)

(act-on-truth-value-change default-protocol-implementation-model :after)
[Methods]

(map-over-forward-rule-triggers default-protocol-implementation-model)

map-over-forward-rule-triggers
[Generic Function]

[Protocol Method]

Default implementation of map-over-forward-rule-triggers

discrimination-net-fetch
[Function]

justify
[Generic Function]

insert
[Generic Function]

.

.

.

(justify default-tell-model)
[Method]

act-on-truth-value-change
[Generic Function]

Default implementation of justify

Figure 19. The justify protocol and its default implementation

43

March 1999	 The Joshua Rule Facilities

The sequence is as follows:

The joshua:tell method forces the truth value of the just inserted predication to

be joshua:*unknown* if the predication is new (not a variant of an existing fact).

The joshua:tell method then calls joshua:justify.

Using the predication’s current truth value of joshua:*unknown*, its original

truth value in the joshua:tell statement, and its justification as given in the key

word argument to joshua:tell, joshua:justify is responsible for:

•	 Setting the correct truth value for the predication

•	 Notifying the TMS (if one is being used) to propagate this truth value, and to

make the current world consistent with this value.

The default joshua:justify method (which assumes that no TMS is being used) im

plements this contract as follows:

•	 Forces the truth value to correspond to the value passed to the method in an

argument

•	 If this value differs from the current value of the predication (which is still

ju::unknown), the joshua:justify method calls joshua:*unknown*), the

joshua:justify method calls joshua:noticetruthvaluechange and joshua::act

ontruthvaluechange.

joshua:actontruthvaluechange has a primary method, and :before and :after

methods. The primary method does nothing and can be overidden by the user,

while the :after method does some internal bookkeeping for the TMS. (This is also

true of the joshua:noticetruthvaluechange protocol function). The :before

method is the one of interest. It calls joshua:mapoverforwardruletriggers and

empties the forward rule queue.

The joshua:mapoverforwardruletriggers method calls joshua:discrimination

netfetch to get the applicable triggers. The continuation argument to the map

ping function performs the unification if it is called.

For more on the justification protocol: See the section "The Truth Maintenance

Protocol", page 54.

3.5.4.2. Finding Backward Rule Triggers

When you use joshua:ask to satisfy a goal, Joshua first looks in the database and

then tries to run applicable backward rules and questions.

The protocol function joshua:askrules is the component of joshua:ask that finds

backward rules to run, and that empties the backward rule queue. (joshua:ask

data tries to find database facts to satisfy the goal, and joshua:askquestions

tries to find and run applicable questions. See the section "The Contract of the

Generic Functions joshua:askdata and joshua:fetch", page 10. See the section

"The Contract of the Trigger Locating Functions", page 39.)

44

The Joshua Rule Facilities

March 1999

joshua:askrules calls joshua:mapoverbackwardruletriggers to find appropri

ate backward rule triggers. Figure 20 shows the joshua:askrules protocol and de

fault implementation.

[Method]

map-over-backward-rule-triggers
[Generic Function]

(ask-rules default-ask-model)

ask
[Generic Function]

(ask default-ask-model)
[Method]

Default Implementation of ask-rules

[Generic Function]
ask-rulesask-data

[Generic Function]
.
.

.

ask-questions
[Generic Function]

.

.

.

(map-over-backward-rule-triggers

[Method]

discrimination-net-fetch
[Function]

default-protocol-implementation-model)

Default Implementation of map-over-backward-rule-triggers

Figure 20. The askrules protocol and its default Implementation

45

March 1999 The Joshua Rule Facilities

joshua:mapoverbackwardruletriggers searches the index of backward rule trig

gers to find backward rules that can solve the goal. This function works analo

gously to the dataindexing function joshua:fetch that gets database facts for

joshua:askdata. Unification is done inside the rule; if unification succeeds, the

rule performs the actions in the ifpart.

The default rule index stores trigger information in a discrimination net. The de

fault joshua:mapoverbackwardruletriggers method thus uses

joshua:discriminationnetfetch to search for backward triggers.

46

The Joshua Rule Facilities

March 1999

47

March 1999 The Joshua Question Facilities

4. The Joshua Question Facilities

The basics of question syntax and operation were presented earlier: See the section

"Asking the User Questions" in User’s Guide to Basic Joshua. Here we elaborate a

bit on ways of controlling question invocation. See the section "Controlling Ques

tion Invocation", page 47.

The bulk of the chapter discusses question indexing, that is, the way Joshua adds,

deletes, and finds questions. This material is primarily useful if you want to pro

vide your own implementation of these operations. If you are using the default

question indexing, the topics discussed here are probably of no immediate interest.

4.1. Controlling Question Invocation

Typically during an joshua:ask the database is searched first (joshua:fetch), after

which the appropriate rule triggermapping function (forward or backward) is exe

cuted, to find and run relevant rules. As a last step, question triggermapping

functions are executed, to find and run backward questions (if :doquestions was

set to nonnil).

Six builtin flavors for predicates used in joshua:ask goals are available to let you

modify the above sequence. These flavors do subsets of what joshua:ask normally

does, by leaving out one or more of the steps joshua:askdata, joshua:askrules,

or joshua:askquestions. Thus the models save a certain amount of overhead

when their predicates are used as goals to joshua:ask. The steps which are done

are indicated by the names:

• joshua:askdataonlymixin

• joshua:askrulesonlymixin

• joshua:askquestionsonlymixin

• joshua:askdataandrulesonlymixin

• joshua:askdataandquestionsonlymixin

• joshua:askrulesandquestionsonlymixin

48

The Joshua Question Facilities March 1999

4.2. The Joshua Question Indexing Protocol

Joshua manages questions by manipulating question triggers. There are four trig

ger operations, namely:

• Adding triggers: joshua:addbackwardquestiontrigger

• Deleting triggers: joshua:deletebackwardquestiontrigger

• Locating triggers: joshua:locatebackwardquestiontrigger

• Iterating over triggers: joshua:mapoverbackwardquestiontriggers

Figure 21 shows how the question indexing facilities relate to each other.

add-backward-question-trigger delete-backward-question-trigger

locate-backward-question-trigger

QUESTION PROTOCOL

map-over-backward-question-triggers

Figure 21. The Question Protocol

The contract of the question indexing functions is very similar to that of the data

indexing functions. See the section "The Joshua Database Protocol", page 8.

4.2.1. The Contract of joshua:add-backward-question-trigger

The protocol function joshua:addbackwardquestiontrigger is analogous to the

dataindexing function joshua:insert. When a new question is compiled, the com

piler uses joshua:addbackwardquestiontrigger to add a trigger object to the

data structure that holds trigger objects.

In the default implementation, the finding, building, and updating of trigger stor

age structures is the responsibility of the trigger locating function, joshua:locate

backwardquestiontrigger. Tailoring of backward question indexing is usually ac

complished by providing methods for the joshua:locatebackwardquestiontrigger

and joshua:mapoverbackwardquestiontriggers functions.

Figure 22 shows the trigger adding protocol and its default implementation.

4.2.2. The Contract of joshua:delete-backward-question-trigger

joshua:undefquestion calls this protocol function with the pattern from the trig

ger part of a backward question. The function "unindexes" the trigger data struc

ture of the backward question that corresponds to the pattern, making the ques

tion inaccessible.

49

March 1999 The Joshua Question Facilities

add-backward-question-trigger

[Protocol Method]
(locate-backward-question-trigger default-protocol-implementation-model)

[Generic Function]

(add-backward-question-trigger default-protocol-implementation-model)

locate-backward-question-trigger

[Protocol Method]

[Generic Function]

Figure 22. The Question Trigger Adding Protocol and Default Implementation

In the default implementation, the finding, building, and updating of trigger stor

age structures is the responsibility of the trigger locating function, joshua:locate

backwardquestiontrigger. Tailoring of backward question indexing is usually ac

complished by providing methods for the joshua:locatebackwardquestiontrigger

and joshua:mapoverbackwardquestiontriggers functions.

Figure 23 shows the trigger deleting protocol and its default implementation.

delete-backward-question-trigger

(delete-backward-question-trigger default-protocol-implementation-model)

(locate-backward-question-trigger default-protocol-implementation-model)

locate-backward-question-trigger

[Generic Function]

[Protocol Method]

[Generic Function]

[Protocol Method]

Figure 23. The Question Trigger Deleting Protocol and Default Implementation

4.2.3. The Contract of joshua:locate-backward-question-trigger

The joshua:locatebackwardquestiontrigger method is responsible for managing

the data structures used to index backward question triggers. Each backward

chaining question has a unique trigger structure, indexed by the pattern (and its

truth value) of the question. Just as joshua:insert maps variant predications to a

unique location in a data index, joshua:locatebackwardquestiontrigger locates

50

The Joshua Question Facilities March 1999

the unique place in a question index where Joshua stores a backward chaining

question’s trigger structure.

joshua:locatebackwardquestiontrigger is used as a subroutine of both

joshua:addbackwardquestiontrigger and joshua:deletebackwardquestion

trigger. Knowledge of how to index a pattern is localized in the joshua:locate

backwardquestiontrigger methods, while the knowledge of the internal structure

of the backward trigger data structures is localized in joshua:addbackward

questiontrigger and joshua:deletebackwardquestiontrigger. These two higher

levels routines call joshua:locatebackwardquestiontrigger passing to it continu

ation, a function which understands how to manipulate sets of backward question

trigger data structures.

For more details see the section "The Contract of the Trigger Locating Functions",

page 39.

4.2.4. The Contract of joshua:map-over-backward-question-triggers

joshua:mapoverbackwardquestiontriggers is responsible for looking up back

ward question triggers capable of satisfying a query given to joshua:ask. It

searches the questions index to find a set of backward question triggers whose pat

terns might unify with predication (the query given to joshua:ask), and calls con

tinuation once for each backward question trigger found, thereby invoking the

question.

If you are writing your own trigger storage methods, your implementation of the

trigger mapping function must be consistent with the implementation of the trig

ger adding, deleting, and locating functions.

joshua:mapoverbackwardquestiontriggers is the dual protocol function to

joshua:locatebackwardquestiontrigger.

Figure 24 shows the joshua:mapoverbackwardquestiontriggers protocol and

default implementation.

4.2.4.1. Finding Backward Question Triggers

The protocol function joshua:askquestions is the component of joshua:ask that

finds backward questions to run, and that empties the backward question queue.

(joshua:askdata tries to find database facts to satisfy the goal, and joshua:ask

rules tries to find and run applicable rules.

See the section "The Contract of the Generic Functions joshua:askdata and

joshua:fetch", page 10. See the section "Finding Backward Rule Triggers", page

43.)

Figure 24 shows the joshua:askquestions protocol and default implementation.

51

March 1999 The Joshua Question Facilities

ask
[Generic Function]

(ask default-ask-model)
[Method]

ask-data
[Generic Function]

.

.

.

ask-questions
[Generic Function][Generic Function]

ask-rules

.

.

.

[Method]

map-over-backward-question-triggers
[Generic Function]

(ask-questions default-ask-model)

Default Implementation of ask-questions

(map-over-backward-question-triggers

[Method]

discrimination-net-fetch
[Function]

default-protocol-implementation-model)

Default Implementation of map-over-backward-question-triggers

Figure 24. The askquestions protocol and its default implementation

52

The Joshua Question Facilities March 1999

53

March 1999	 Truth Maintenance Facilities

5. Truth Maintenance Facilities

We have covered the basic information about Truth Maintenance earlier: See the

section "Justification and Truth Maintenance" in User’s Guide to Basic Joshua.

This chapter provides a detailed explanation of the Truth Maintenance part of the

Joshua protocol. It also explains how a different Truth Maintenance System (TMS)

of your own design can be interfaced to Joshua. Finally, it provides a detailed ex

planation of the TMS supplied with Joshua.

(If you are interested in interfacing a new TMS of your own design to Joshua this

chapter will provide useful information to you, however the information provided

may not be sufficient. If you do wish to interface a TMS to Joshua, we strongly

advise that you contact the Symbolics Consulting Services for assistance in build

ing the interface.)

The Funtions of a Truth Maintenance System

A Truth Maintenance System performs several useful functions for Joshua:

1.	 The TMS is responsible for maintaining a record of why predications are be

lieved to be true or false (hence the name Truth Maintenance); these records

are called justifications.

2.	 The TMS can use these justifications to explain the reason why a predication

is currently believed to be true (or false). As a special case of this, the TMS

can identify the primitive beliefs (i.e. assumptions and premises) that are the

ultimate reason for believing the predication.

3.	 The TMS can consistently propagate changes in truthvalues. For example,

suppose that the sole reason why predication B is believed to be true is that

it was deduced from predication A. If A should ever change its truthvalue to

joshua:*unknown*, then the TMS should also change the truthvalue of B to

joshua:*unknown*. Similarly, if A should ever change its truthvalue back to

joshua:*true*, then B should have its truthvalue restored to joshua:*true*.

4.	 It can consistently remove a justification from a predication. If this justifica

tion is the sole reason why the predication is believed, then the TMS must

change the truth value of the predication to joshua:*unknown* and propa

gate the change of truthvalue.

5.	 Finally, the TMS is responsible for ensuring that the database does not con

tain a contradiction. Whenever both a fact and its negation are asserted to be

true, it is the TMS’s job to determine what primitive beliefs (i.e. assumptions

and premises) are ultimately responsible for the contradictory beliefs. The

54

Truth Maintenance Facilities March 1999

TMS can then inform Joshua’s error handlers of the situation by signalling a

joshua:tmscontradiction condition. The handler which handles the condition,

may then chose to unjustify one of the primitive beliefs underlying the con

tradiction in the hopes of removing the contradiction.

Types of Truth Maintenance Systems

There are several different varieties of Truth Maintenance Systems and these dif

fer along several dimensions. Some TMS’s such as Johan deKleer’s ATMS main

tains several viewpoints concurrently. The LTMS provided as a default in Joshua

provides a single viewpoint at any one time, but allows you freely to switch back

and forth between these viewpoints. Both of these styles of TMS have unique ad

vantages and neither is appropriate in all circumstances.

Another dimension along which TMS’s differ is whether they allow nonmonotonic

justifications in which one statement is believed because another fact has

joshua:*unknown* truthvalue. Jon Doyle’s TMS supported this capability. The

LTMS does not directly support this capability but allows it to be simulated using

the joshua:noticetruthvaluechange and the joshua:actontruthvaluechange

protocol methods.

A third dimension along which TMS’s vary is whether their justification structures

are unidirectional or multidirectional. Many TMS’s (such as Doyle’s and deKleer’s)

use a justification structure in which there is a unique conclusion and several an

tecedents. When all of the antecendents achieve their desired truthvalues, the

conclusion’s truthvalue is changed to that indicated by the justification. In effect,

these TMS’s perform only the simplest logic inference, namely modus ponens.

The LTMS provided with Joshua (and the 3valued TMS of David McAllester upon

which it is based) is a multidirectional TMS. In the LTMS, constituents of a justi

fication are not restricted to playing a unique role as consequent or antecedent.

Instead, the LTMS will change the truthvalue of any constituent of the justifica

tion whenever the truthvalues of all the other constituents force this choice.

5.1. The Truth Maintenance Protocol

The Joshua protocol provides a uniform mechanism for interfacing a TMS of your

own design if the one supplied with Joshua does not meet your needs. (The cur

rent version of Joshua will not completely support a multipleviewpoint TMS such

as the ATMS, because of a difficultly of interfacing the triggering method for for

wardchaining rules ⎯ the Rete Network ⎯ with the ATMS. This will be resolved

in a subsequent release of Joshua. If you need this capability now, Symbolics per

sonnel can help you figure out how to build the appropriate interface.)

5.1.1. The Contract of the Joshua TMS Protocol Functions

The interface between Joshua and a TMS consists of several Joshua protocol func

tions:

55

March 1999	 Truth Maintenance Facilities

•	 joshua:nontrivialtmsp: A protocol method that should return t for any predi

cation which uses a TMS. This method is supplied by the predicatemodel basic

tmsmixin which should be mixed into any predicate model that implements a

TMS.

•	 joshua:justify: The protocol method that is used to tell the TMS to add a new

justification. (This is most often invoked indirectly by providing a :justification

argument to joshua:tell).

•	 joshua:unjustify: The protocol method that is used to tell the TMS to remove a

justification from a predication.

•	 joshua:currentjustification: The protocol method that is used to ask a predica

tion for the justification that is responsible for its current truthvalue. If the

predication has joshua:*unknown* truthvalue this should return nil.

•	 joshua:alljustifications: Returns all justifications into which the predication

enters either as a supporting predication or as the predication supported by the

justification.

•	 joshua:noticetruthvaluechange: The protocol method used by the TMS to tell

the rest of Joshua to update internal data structures to reflect the fact that a

predication has changed its truthvalue.

•	 joshua:actontruthvaluechange: The protocol method used by the TMS to tell

the rest of Joshua that a predication has changed its truthvalue. In response,

other parts of the application may initiate new inferential processes or produce

visible side effects (such as updating a display).

5.1.2. The Contract of a Joshua TMS Justification

The TMS protocol functions allow Joshua to tell the TMS to create justifications.

The format of these justifications is left completely up to the designer of the TMS

(in the LTMS, justifications are implemented as clauses See the section "Clause

Justification Structures", page 65. However, it is necessary for Joshua to be able

to understand some of the information contained in a Justification, however it is

implemented. Justifications are therefore required to obey a simple contract; they

must be able to destructure themselves into several parcels of information, defined

by the Joshua protocol.

Justifications used in a Joshua TMS must be understood by the generic function

joshua:destructurejustification. (If justifications are implemented as flavor in

stances, this merely amounts to defining a joshua:destructurejustification

method for the flavor of the justification. This is the approach used in the LTMS

provided with Joshua).

Conceptually, every justification must contain the following information:

56

Truth Maintenance Facilities	 March 1999

•	 Mnemonic: A name providing additional information, such as what rule created

this justification or the type of a primitive justification (:premise, :assumption,

and so on.)

•	 Conclusion: The predication supported by the justification.

•	 Truesupport: Those facts which must have truthvalue joshua:*true* in order

for the conclusion to follow.

•	 Falsesupport: Those facts which must have truthvalue joshua:*false* in order

for the conclusion to follow.

•	 Unknownsupport: Those facts which must have truthvalue joshua:*unknown*

in order for the conclusion to follow.

Justifications don’t actually have to contain all this information; the

joshua:destructurejustification generic function simply must return a value for

each of these items. A TMS (such as the LTMS) which does not allow unknown

support does not actually have to have a field in the justification for this informa

tion, since it is uniformly empty. How the TMS stores information in a justifica

tion is completely at the discretion of the TMS implementor, as long as the proto

col is obeyed.

5.1.3. TMS Utility Routines

Joshua provides a number of utility routines that will work with any TMS that

obeys the protocol. Any predication that wants to use a TMS should mix in the

Joshua predicatemodel joshua:basictmsmixin; this provides default implementa

tions for two protocol methods (joshua:nontrivialtmsp and joshua:support). It

also defines the generationmark instance variable which is used by the default

joshua:support method and may be useful for other TMS implementors. This in

stance variable can be used by any TMS which finds it convenient.

The utilities currently provided are:

•	 joshua:support: Return the primitive assertions which ultimately underlie the

belief in a predication. This is a protocol method which can be overridden by an

other TMS implementation, although it is unlikely that this would be desirable.

•	 joshua:supportwithname: Returns a subset of the primitive assertions under

lying a predication’s belief. Only those predications with a justification whose

Mnemonic is the second argument to this function are returned.

•	 joshua:assumptionsupport: Returns that subset of the primitive support of a

predication which are justified by a justification whose Mnemonic is

:assumption.

57

March 1999	 Truth Maintenance Facilities

•	 joshua:premisesupport: Returns that subset of the primitive support of a pred

ication which are justified by a justification whose Mnemonic is :premise.

•	 joshua:explain: Prints an explanation of why a predication is believed to hold

its current truthvalue. This routine walks back through the tree of justifica

tions that support a fact, printing one level of explanation for each level of jus

tification.

•	 joshua:removejustification: Takes a justification as argument and removes it

from the Joshua world. This is a convenient function in some contexts; it is de

fined trivially in terms of joshua:currentjustification, joshua:unjustify and

joshua:destructurejustification.

•	 joshua:graphtmssupport: Takes a set of predications as arguments. Produces

a graph display of the TMS justification structures supporting these predica

tions. This graph continues backward until reaching predications which have

primitive justifications.

An implementor of a TMS might need to use a few bits as flags as part of the in

ternal algorithms of the TMS. These can of course be provided as instance vari

ables that are part of the TMS mixin. However a few single bit flags are provided

in all predications which may be accessed as (TMSBits (PredicationBits Pred

ication)).

5.1.4. Signalling Contradictions and Managing Backtracking

When a TMS detects a contradiction it must signal a condition See the section

"Signalling Conditions" in Symbolics Common Lisp Programming Constructs. The

condition signalled should be an instance of a flavor based on joshua:tms

contradiction. All such conditions should contain at least the following informa

tion:

•	 The Contradictory Predication: If the contradiction is detected by the TMS in

such a way that it can localize the blame completely in an individual predication

then this field should contain that predication. Some TMS’s provide an entry

point through which the user can declare a particular predication to be unac

ceptable even though it does not have joshua:*contradictory* truthvalue (in

the LTMS provided with Joshua this is called ltms:backtrack). If such is the

case this field should contain the predication so blamed. This field is called

joshua:tmscontradictioncontradictorypredication.

•	 The Unsatisfiable Justification: In some TMS’s (in particular the LTMS pro

vided with Joshua) contradictions are detected because a justification becomes

unsatisfiable. In such a case this field should contain this invalid justification. If

the user has declared a particular predication to be unacceptable and that predi

cation has a current justification, then that justification should be included in

this field. This field is called joshua:tmscontradictionjustification.

58

Truth Maintenance Facilities	 March 1999

•	 All the primitive support: Given an unacceptable predication or an unsatisfi

able justification (i.e. a contradiction), the TMS must determine the set of prim

itively supported predications that are in the support tree of the contradiction.

Primitively supported predications are those whose justifications involve no oth

er predication. This field is called joshua:tmscontradictionsupport.

•	 The subset of this which are premises: A TMS may make a distinction be

tween predications that may be retracted and those which are considered "im

mutable laws of the universe". This field of the condition should contain the

subset of the primitive support which is considered unretractable, i.e. premises.

This field is called joshua:tmscontradictionpremises.

•	 The subset of this which aren’t premises: This field of the condition signalled

should contain that part of the primitive support which are allowed to be re

tracted. This field is called joshua:tmscontradictionnonpremises.

There is a default handler for the joshua:tmscontradiction condition provided in

Joshua which handles two special cases automatically. If the condition signalled

contains exactly one member of the nonpremise primitive support set, then the

handler automatically retracts this single predication (i.e. it removes its current

justification). If the condition contains no nonpremise primitive support, then the

default handler signals another condition which should be based on joshua:tms

hardcontradiction. The intent is that this condition is one that a user might

want to consider really wrong, so we provide a specific condition for this case. For

the default handler to know what condition to signal, the first condition must im

plement a method for the joshua:tmscontradictionhardcontradictionflavor

generic function; this must return the name of the flavor to be signalled for a

joshua:tmshardcontradiction. (For example, see the beginning of

joshua:code;ltms).

By condition binding either or both of these conditions a program can completely

control the backtracking process.

5.1.4.1. Using TMS Conditions: a Balance Beam Example

Suppose that we were writing a planning system for a blocks world construction

task that includes balance beams like the following:

During the task of constructing a configuration like the one above, we must be

careful that we never unbalance the beam enough to tip over the whole configura

tion. One situation that might result in such an unbalance is if we place a block

59

March 1999 Truth Maintenance Facilities

on one side without a counter balancing block at the other end. Another dangerous

situation results when one block is grossly outweighed by a block at the other side.

We’ll call the first situation BLOCKUNBALANCEDBYBROTHER and the second BLOCK

OVERBALANCEDBYBROTHER. The following are the predicates we use to describe this

domain:

(definepredicate on (block balancebeam position) (ltms:ltmspredicatemodel))

(definepredicate weight (block weight) (ltms:ltmspredicatemodel))

(definepredicate blockunbalancedbybrother (block supporter)

(backtrackwhentruemixin ltms:ltmspredicatemodel))

(definepredicate blockoverbalancedbybrother (block supporter otherblock)

(backtrackwhentruemixin ltms:ltmspredicatemodel))

Notice that BLOCKOVERBALANCEDBYBROTHER and BLOCKUNBALANCEDBYBROTHER both

mix in the BACKTRACKWHENTRUEMIXIN. This flavor defines a joshua:noticetruth

valuechange method that signals a contradiction if the predication it is mixed in

to ever becomes joshua:*true*.

(definepredicatemodel backtrackwhentruemixin () ()

(:requiredflavors ltms:ltmsmixin))

(definepredicatemethod (actontruthvaluechange backtrackwhentruemixin)

(ignore)

(when (eql (predicationtruthvalue self) *true*)

(ltms:backtrack self)))

See the section "Notifying the LTMS of Contradictions", page 70.

When such a condition is signalled, we want to take recovery actions, by adding

blocks that will keep the beam from tipping over. There are two such techniques.

The first is a scaffold:

The second is a center weight:

The following predicates and rules describe and reason about these techniques:

(definepredicate scaffold (block balancebeam position)

(ltms:ltmspredicatemodel))

(definepredicate isscaffolded (block position) (ltms:ltmspredicatemodel))

(definepredicate iscounterweighted (block) (ltms:ltmspredicatemodel))

(defrule detectscaffolding (:forward)

If [scaffold ?block ?supporter ?position]

then [isscaffolded ?supporter ?position])

60

Truth Maintenance Facilities March 1999

(defrule detectcounterweighting (:forward)

If [and [on ?block ?supporter center]

[weight ?block veryheavy]]

then [iscounterweighted ?supporter])

(defun iscounterweighted (balancebeam)

(let ((counterweighted nil))

(mapoverdatabasepredications

‘[iscounterweighted ,balancebeam]

#’(lambda (ignore) (setq counterweighted t)))

counterweighted))

(defun isscaffolded (balancebeam position)

(let ((scaffolded nil))

(mapoverdatabasepredications

‘[isscaffolded ,balancebeam ,position]

#’(lambda (ignore) (setq scaffolded t)))

scaffolded))

61

March 1999 Truth Maintenance Facilities

(defrule detectunbalance (:forward)

if [and [on ?block ?supporter left] :support ?f1

[on nothing ?supporter right] :support ?f2]

then (unless

(or (iscounterweighted ?supporter)

(isscaffolded ?supporter ’left))

(let ((missingassumptions

(list (tell [not [iscounterweighted ?supporter]]

:justification :assumption)

(tell [not [isscaffolded ?supporter left]]

:justification :assumption))))

(tell [blockunbalancedbybrother ?block ?supporter]

:justification ‘(unbalanced

(,?f1 ,?f2)

,missingassumptions

nil))

)))

(defrule detectoverbalance (:forward)

if [and [on ?block1 ?supporter left] :support ?f1

[weight ?block1 light] :support ?f2

[on ?block2 ?supporter right] :support ?f3

[weight ?block2 heavy] :support ?f4

]

then (unless (isscaffolded ?supporter ’right)

(let ((missingassumption

(tell [not [isscaffolded ?supporter right]]

:justification :assumption)))

(tell [blockoverbalancedbybrother ?block1 ?supporter ?block2]

:justification ‘(Overbalance

(,?f1 ,?f2 ,?f3 ,?f4)

(,missingassumption))))))

The rules DETECTOVERBALANCE and DETECTUNBALANCE are responsible for noticing

situations in which the balance beam will fall over. When one of these rule notices

such a situation it causes a joshua:tmscontradiction to be signalled by

joshua:telling a BLOCKOVERBALANCEDBYBROTHER or a BLOCKUNBALANCEDBYBROTHER

predication (in effect, the rule "gripes" about the situation to use the term used in

Scott Fahlman’s BUILD program).

The application can respond to these "gripes" by binding a condition handler that

rectifies the problem (Falhman used the name "gripe catcher" for the equivalent

functionality in BUILD). See the section "Introduction to Signalling and Handling

Conditions" in Symbolics Common Lisp Programming Constructs.

Here are two functions that can be used as "gripe catchers":

62

Truth Maintenance Facilities	 March 1999

(defun handleoverbalancedcondition (conditionobject)

(let ((contradictorypredication

(tmscontradictioncontradictorypredication conditionobject)))

(if (typep contradictorypredication ’blockoverbalancedbybrother)

(let ((noscaffolding

(find	 ’isscaffolded

(tmscontradictionnonpremises conditionobject)

:key #’(lambda (thing)

(predicationpredicate

(multiplevaluebind (ignore supportee)

(destructurejustification thing)

supportee))))))

(withstatementdestructured (lightguy supporter heavyguy)

contradictorypredication

(format t "~&Overbalance of ~s on ~s by ~s noticed"

lightguy supporter heavyguy)

(removejustification noscaffolding)

(tell ‘[scaffold ,(gentemp "BLOCK") ,supporter right]

:justification :premise)

t))

(values))))

(defun handleunbalancedcondition (conditionobject)

(let ((contradictorypredication

(tmscontradictioncontradictorypredication conditionobject)))

(if (typep contradictorypredication ’blockunbalancedbybrother)

(let ((nocounterweight

(find	 ’iscounterweighted

(tmscontradictionnonpremises conditionobject)

:key #’(lambda (thing)

(predicationpredicate

(multiplevaluebind (ignore supportee)

(destructurejustification thing)

supportee))))))

(withstatementdestructured (lightguy supporter)

contradictorypredication

(format t "~&Unbalance of ~s on ~s"

lightguy supporter)

(removejustification nocounterweight)

(let ((newblock (gentemp "BLOCK")))

(tell ‘[on ,newblock ,supporter center]

:justification :premise)

(tell ‘[weight ,newblock veryheavy]

:justification :premise)))

t)

(values))))

Each of these fetches the contradictory predication from the condition object, and

63

March 1999 Truth Maintenance Facilities

then checks that it is the type of gripe which this function wants to handle. If so,

it examines the assumption support part of the condition object. For example, HAN

DLEUNBALANCEDCONDITION looks for an ISCOUNTERWEIGHTED statement (which the

handler assumes has truthvalue joshua:*false*) in the assumption support. [No

tice that the condition object contains the justifications of the assumptions underly

ing the contradiction. So the handler must destructure the justification to get the

assumption predication. It then tests if the predicate of the predication is IS

COUNTERWEIGHTED]. If the condition object represents a situation that HANDLE

UNBALANCEDCONDITION can manage, it then repairs things by joshua:unjustifying

the assumption that there is no counterweight (using joshua:removejustification)

and then joshua:telling two new statements: the first states that there is a block

on the center of the balance beam; the second states that the block is very heavy.

In effect the condition handler, repairs the situation by making there be a heavy

centerweight. The other handler repairs the situation where there is a single block

at one end, by inserting a scaffold under the beam. Each of the handlers follows

the usual protocol for condition handlers of return joshua::t if it handled the con

dition and joshua::nil if it declines to handle the condition.

One can now use these handlers by joshua::conditionbinding them and then de

scribing a world situation (or running a planner). For example:

(conditionbind ((tmscontradiction #’handleoverbalancedcondition))

(conditionbind ((tmscontradiction #’handleunbalancedcondition))

(clear)

(tell [on block1 balancebeam left] :justification :assumption)

(tell [weight block1 light])

(tell [on nothing balancebeam right] :justification :assumption)

))

The following figure shows a trace of this code from the point where the condition

handler takes control.

5.1.5. Signalling Truth Value Changes

As a result of resolving a contradiction, a TMS may cause the truthvalue of many

facts to change. A contradiction is usually resolved by unjustifying some member

of its primitive support; this causes the unjustified predication to change from a

definite truthvalue (joshua:*true* or joshua:*false*) to joshua:*unknown*. Any

predication which depended on the retracted one similarly changes its truthvalue

to joshua:*unknown*. In some TMS’s however, some facts may change from

joshua:*unknown* to a definite truthvalue.

It is the responsibility of the TMS to inform the rest of the Joshua application of

these changes in truthvalues. To do this the TMS should call the joshua:notice

truthvaluechange and the joshua:actontruthvaluechange methods for each

fact which undergoes a transition in truthvalues. The joshua:noticetruthvalue

change method can then update any data structures that are maintained outside

the TMS to correspond to the changed truthvalues. In addition, the joshua:acton

truthvaluechange method may initiate a deductive process or otherwise affect

the world.

64

Truth Maintenance Facilities March 1999

Figure 25. Example Trace of Condition Handler

Notice that although there may be several predications that have changed truth

value, the joshua:noticetruthvaluechange methods for these predications are in

voked sequentially. As the method for each predication is called, it updates the

current view of the world to correspond to the changed truth value of the predica

tion. Thus, until all the methods have had a chance to run, the model of the world

will be partially inconsistent.

To allow this problem to be addressed, there are two mehtods to handle the up

dating: joshua:noticetruthvaluechange and joshua:actontruthvaluechange.

The TMS should first call the joshua:noticetruthvaluechange method for every

predication that has changed truthvalue. After that, the TMS should call the

joshua:actontruthvaluechange method for each predication that has changed

truthvalue.

A predication’s joshua:noticetruthvaluechange method should update whatever

internal datastructures require modification, but should avoid any other action

that might depend on examining other datastructures which have not yet been

updated. The joshua:actontruthvaluechange method is allowed to take whatev

er actions it desires.

The most important example of this twopass protocol is the ReteNetwork used to

trigger forward chaining rules. During the joshua:noticetruthvaluechange pass,

the ReteNetwork updates its internal data structures to remove partial triggering

information that depended on the previous truthvalue of predications that have

changed truthvalue. (If this were not done, then rules might be executed even

though the triggering predications no longer have the truth value appropriate for

triggering the rule). During the joshua:actontruthvaluechange pass the new

truthvalues of predications are propagated through the network, allowing rules

65

March 1999 Truth Maintenance Facilities

that have a valid triggering set to execute. TMS implementors do not have to con

cern themselves with these details, since they are implemented by system supplied

:before and :after methods.

5.2. The Joshua LTMS

This section explains how the Truth Maintenance System provided with Joshua

works and how to use its features. The Joshua TMS, which we call an LTMS (us

ing terminology due to Forbus and deKleer) is derived from the 3valued Truth

Maintenance Sytem developed by David McAllester at MIT.

The Joshua LTMS also provides an additional feature (the :OneOf justification)

which allows you to control the invocation of assumptions.

5.2.1. Clause Justification Structures

The justification structure used in the LTMS is called a clause. A clause is simply

a logical disjunction of several facts. For example,

F1 ∨ F2 ∨ ... Fn

Logically, if all but one of these facts is false, then the other must be true. For

example, if F
1
, F

2
, ... , F

n1

are all false, then F

n

must be true. Similarly, if F1 ,

F2 , ... , ... , F are all false, then Fi must be true. (This is known both as , Fi-1 ,Fi+1 n
the Cut rule and as UnitResolution). Thus, a clause can be used to perform as

many inferences as there are constituents of the clause.

The normal modus ponens rule is actually a special case of the above clausal in

ferencing. This is because

P → Q

is logically equivalent to

¬ P ∨ Q.

Once an implication has been converted to clausal form, the normal modus ponens

rule follows immediately (since P is the negation of ¬ P, every constituent of the

clause ¬ P ∨ Q but Q is false and, therefore Q must be true). In addition, clausal in

ferencing can deduce ¬ P from ¬ Q (since ¬ Q negates Q leaving only ¬ P).

The clausal mechanism used in the Joshua LTMS diverges from this simple de

scription only slightly. First of all, in addition to its constituents a clause also con

taints a mnemonic. If the clause was created to memoize an inference drawn by a

rule, then the mnemonic should be the name of the rule. In other cases, the

mnemonic may be used to indicate some special property of the clause.

The second variation is that since in Joshua both P and ¬ P are represented by the

same database predication, it is necessary to indicate in the clause data structure

which truthvalue of P is intended. Thus, a clause actually consists of two lists of

predications: the positive constituents and the negated constituents. The intended

truthvalue of the positive constituents is *true* and the intended truthvalue of

the negated constituents is *false*.

66

Truth Maintenance Facilities March 1999

If all but one of the constituents of a clause have the opposite truthvalue from

their intended truthvalue, then the final constituent is forced to assume its in

tended truthvalue. (Note: *true* and *false* are each other’s opposite truthvalue;

unknown is not the opposite truthvalue of either *true* or *false*).

A unit (or primitive) justification in the LTMS is simply a clause with only one

constituent. This single constituent will, therefore, be forced to assume its intend

ed truthvalue. We refer to the predications so justified as primitively justified

predications. One special kind of primitively justified predication is a premise;

these have a supporting clause whose mnemonic is :premise.

If every constituent of a clause has the opposite truthvalue from its intended

truthvalue, then the clause is unsatisfiable and a contradiction is signalled. See

the section "Signalling Contradictions and Managing Backtracking", page 57.

The Condition signalled by the LTMS is called ltms:ltmscontradiction. If the sup

port underlying the contradiction contains only premises then the condition called

ltms:ltmshardcontradiction is signalled. These conditions have the same in

stance variables as the base tmscontradiction flavors.

Nogoods in the LTMS

When the LTMS signals a contradiction it automatically constructs a new clause,

called a nogood. The idea behind the nogood is as follows: there is a set of primi

tively justified predications whose current truthvalue assignments led to the con

tradiction. Since a contradiction is unacceptable, at least one of these primitively

justified predications must have the opposite truthvalue from that which it cur

rently has.

Thus suppose we justify a fact with three justifications as follows:

(definepredicate loser (a) (ltms:ltmspredicatemodel))

(definepredicate causeoflossage (a) (ltms:ltmspredicatemodel))

(let ((cause1 (tell [causeoflossage a] :justification :assumption))

(cause2 (tell [causeoflossage b] :justification :assumption))

(cause3 (tell [causeoflossage c] :justification :assumption)))

(tell [loser X]

:justification ‘(causingpartoflossage1

(,cause1 ,cause2 ,cause3))))

The result is shown in figure 26:

Figure 26. Example of setting up a nogood clause

67

March 1999 Truth Maintenance Facilities

Then the primitive support of the fact will consist of the three assumptions as can

be seen below:

(mapoverdatabasepredications [loser X] #’explain)

(support [LOSER X])

([CAUSEOFLOSSAGE A] [CAUSEOFLOSSAGE B] [CAUSEOFLOSSAGE C])

If we now tell the LTMS that the predication [LOSER X] is contradictory then, in

addition to invoking the contradiction handler, it will create a new Nogood clause:

#<LTMS:NOGOOD ¬[CAUSEOFLOSSAGE A]

∨ ¬ [CAUSEOFLOSSAGE B]

∨ ¬ [CAUSEOFLOSSAGE C]>

Which says that at least one of the causes of the contradiction must be *false*

since each of them was true at the time the contradiction occured. A constituent

of a clause is printed with a leading negation sign (¬) if its intended truthvalue

in the clause if *false*.

A Nogood is just a normal clause whose mnemonic is ltms:nogood. Once created,

it behaves no differently from any other clause. (However, nogoods are internals of

the LTMS that need never be manipulated by a user).

Suppose that [CAUSEOFLOSSAGE C] was unjustified in order to resolve the above

contradiction and that the above nogood was then installed. Notice that both

[CAUSEOFLOSSAGE A] and [CAUSEOFLOSSAGE B] are still joshua:*true*. Therefore,

[CAUSEOFLOSSAGE C] is the only constituent of the nogood which does not have

the opposite truthvalue from the clause’s intended truthvalue. The LTMS will,

therefore, force [CAUSEOFLOSSAGE C] to assume its intended truthvalue of *false*.

Controlling Choices in the LTMS

The LTMS recognizes one special type of clause called a OneOf. OneOfs are dis

tinguished by having a mnemonic field whose value is :oneof. Oneofs can be

used to control the making of assumptions.

In a normal clause, the LTMS forces a constituent to assume a definite truthvalue

only when every other constituent has the opposite truthvalue from that intended

for it by the clause. Thus, if every constituent of a clause has *unknown* truth

value, the LTMS will take no action.

In a OneOf clause, however, the LTMS will guarantee that at least one con

stituent has its intended definite truthvalue. It does this by adding to that con

stituent a primitive justification whose mnemonic is :choice.

68

Truth Maintenance Facilities March 1999

Although you can create OneOf clauses directly (by using justify or the

:justification keyword argument to tell) it is usually easier and more effective to

use the special predicate ltms:oneof provided with the LTMS to do this, for ex

ample:

(tell [ltms:oneof [loser X] [loser Y] [loser Z]]

:justification :assumption)

Notice that this creates and inserts into the database one predication for each con

stituent of the OneOf; however, it initially provides no justification for any of

these constituents. In addition, it creates a ltms:oneof predication which is justi

fied as an :assumption as directed by the joshua:tell. Finally, since no constituent

of the OneOf has its intended truthvalue, the LTMS picks one and justifies it

with a :choice justification.

This choice can be overridden by explicitly asserting its negation with a premise

justification (as far as the LTMS is concerned, a :choice primitive justification is

just an assumption; only :premise justifications are treated as unretractable):

(tell [not [loser x]] :justification :premise)

Notice that when the choice of [LOSER X] is overriden, the LTMS picks another

constitutent of the clause to justify with a :choice justification. This leaves the

69

March 1999 Truth Maintenance Facilities

database in the following state:

Similarly, if we now override this choice, the following will result:

(tell [not [loser y]] :justification :premise)

Finally, if we override the last choice, then the ltms:oneof predication will simply

be retracted since it is justified as an :assumption:

(tell [not [loser z]] :justification :premise)

70

Truth Maintenance Facilities March 1999

And at this point the database will look like:

Notifying the LTMS of Contradictions

The LTMS notices logical contradictions any time that a predication is about to as

sume both joshua:*true* and joshua:*false* truthvalues. At such tims, the LTMS

intervenes and initiates backtracking (the process of handling and removing con

tradictions). However, there are times when you may want the LTMS to treat

some condition as if it’s a contradiction, even though there is no predication which

is contradictory.

The LTMS provides two techniques for doing this. The first of these is the func

tion ltms:backtrack. The second is the ltms:contradiction predicate.

The function ltms:backtrack takes three arguments. The first should be a

database predication, the second a truthvalue that defaults to the current truth

value of the predication. The third argument is used to instruct the LTMS to sig

nal a userdefined condition. Calling ltms:backtrack causes the LTMS to initiate

backtracking just as if its first argument had become contradictory. Backtracking

will continue until the predication has a truthvalue other than the second argu

ment to ltms:backtrack.

One technique for using this function is via the joshua:noticetruthvaluechange

protocol function. For example:

(definepredicate Ishouldneverbein () (ltms:ltmspredicatemodel))

(definepredicatemethod (actontruthvaluechange Ishouldneverbein)

(ignore)

(when (eql (predicationtruthvalue self) *true*)

(ltms:backtrack self)))

(tell [Ishouldneverbein] :justification :assumption)

Telling predication [ISHOULDNEVERBEIN]

Justifying: [ISHOULDNEVERBEIN] < ASSUMPTION

Justifying: [ISHOULDNEVERBEIN] as false < NOGOOD

¬ [ISHOULDNEVERBEIN]

T

Notice that as soon as the [ISHOULDNEVERBEIN] predication is justified as an

assumption, the joshua:noticetruthvaluechange method is invoked causing back

tracking to begin. This creates a nogood which causes the predication to assume

joshua:*false* truthvalue.

71

March 1999 Truth Maintenance Facilities

The predicate ltms:contradiction is defined in a manner similar to the Ishould

neverbein predicate in the example above. Thus, it can be used to notify the

LTMS of a contradiction. Whenever a ltms:contradiction predication assumes a

truthvalue of joshua:*true* backtracking is initiated. The following rule (which is

in the Jericho system of Joshua examples) causes backtracking to be initiated

whenever any type of tragedy is deduced.

(defrule tryingtowriteacomedy (:forward)

;; no tragedies, please

IF [tragedy ?fact]

THEN [ltms:contradiction])

72

Truth Maintenance Facilities March 1999

73

March 1999	 Joshua Metering

6. Joshua Metering

Joshua extends the system metering facilities in order to provide specific tools for

analyzing Joshua programs. These tools are conveniently available in the Metering

Interface. Joshua metering can help you do three things:

•	 Find bugs in your program that show up only as performance problems

•	 Improve the performance of your Joshua rules by changing the ordering of the

triggers

•	 Use the Joshua modeling capabilities.

Because the Metering system is not part of the default world, you must load it

separately, using the command:

Load System Joshua Metering

By loading the Joshua Metering system you also load the standard Metering sys

tem.

Before using Joshua metering you should familiarize yourself with how to use the

Metering Interface. See the section "Metering Interface" in Program Development

Utilities.

6.1. Joshua Metering Types

Joshua defines new Metering Types designed for metering Joshua programs. Un

like the systemprovided metering types which collect data about function calls, the

Joshua metering types collect data about the Joshua Protocol steps and the for

ward rule Rete network. This lets you study the execution of your Joshua pro

grams without overwhelming you with the details of every function call.

There are three new Metering Types:

•	 Joshua Tell Metering

•	 Joshua Ask Metering

•	 Joshua Merge Metering

6.1.1. Joshua Tell Metering

The Joshua Tell Metering type collects information about each joshua:tell. The da

ta for each joshua:tell of a predication is indexed by the predicate of that predica

tion. To illustrate: in the hardware troubleshooting example from the Jericho sys

tem, all tells of predications of the form [hasstatus ...] will be indexed under

the predicate hasstatus.

74

Joshua Metering	 March 1999

Tell Metering collects two types of data: counts and times.

Counts simply keep track of the number of times an event occurs while telling a

predication of a particular predicate. Metering collects four counts for each predi

cate:

1.	 Tells: How many times a predication of this predicate is told to the database.

2.	 Matches: How many attempted matches are caused by telling a predication of

this predicate. These are matches against forward rule triggers in the for

ward rule Rete net.

3.	 Merges: The number of attempted merges in the Rete net occurring while

telling predications of this predicate.

4.	 Rules: How many forward rule firings occurred while telling predications of

this predicate.

The times collected by Joshua metering tell you how much time is spent in each of

the five protocol steps called directly or indirectly by joshua:tell. The time report

ed for a protocol step includes the time in the protocol function and the time in

all functions that it calls. It does not include the time spent in other protocol

steps. This is referred to as exclusive time of the protocol step.

Tell Metering collects exclusive times for the following protocol steps:

1.	 joshua:tell

2.	 joshua:insert

3.	 joshua:justify

4.	 joshua:noticetruthvaluechange

5.	 joshua:actontruthvaluechange

6.	 joshua:mapoverforwardruletriggers

In addition exclusive times are collected for two important operations which are

not part of the protocol:

1.	 Matching: The time spent doing the actual matching of told predications

against forward rule triggers.

2.	 Merging: The time spent trying to merge the binding environments generated

by the matches.

Exclusive times are collected as histograms. See the section "Expanding Metering

Data" in Program Development Utilities.Times include paging time and, unless the

metering run is done using the withoutinterrupts option, other process time as

well. See the section "Interpreting the Results of a Metering Run" in Program De

velopment Utilities.

Here’s an example of what a Joshua Tell Metering run might look like. Notice

that we can use use the Metering Interface to show us only the counts or times

that interest us.

75

March 1999 Joshua Metering

Meter Form (ht:diagnosecircuit nil) Joshua Tell Everything

With Joshua Tell Metering you can locate the predicates your program uses the

most. You can also find the predicates that spend the most time in joshua:insert

(or joshua:justify or joshua:mapoverforwardruletriggers ...) This information

can help you determine how to speed up your program. For example if your pro

gram spends a lot of time in joshua:insert for a particular predicate, that predi

cate might be a good candidate for data modeling. See the section "Customizing

the Data Index", page 81. If your program spends a great deal of time in

joshua:mapoverforwardruletriggers you might try trigger modeling to improve

the performance. See the section "Customizing the Matchers Generated by the

Rule Compiler", page 102.

Modeling is only advantageous when you use a data structure that is more effi

cient than the default data structures. Metering can help you choose efficient data

structures for your model. You can meter your program before modeling and care

fully look at the times for the relevant protocol steps, for example joshua:insert.

With these numbers in hand, you can implement alternative models; remeter and

compare the numbers. You will immediately be able to see if your modeling was

successful.

Here’s a simple example of using Joshua metering to measure the performance im

provement caused by modeling a predicate.

Figure 27. Tell metering of the unmodelled goodtoeat predicate.

6.1.2. Joshua Ask Metering

Joshua Ask Metering collects information about each use of joshua:ask in your

Joshua program. It provides the data in a similar format to that used by Tell Me

tering, only it shows the protocol steps called while retrieving data from the

database and running backward rules.

76

Joshua Metering	 March 1999

Figure 28. Tell metering of the modelled goodtoeat predicate.

Two counts are collected for each predicate:

1.	 Asks: The number of asks performed for predications of the predicate.

2.	 Rules: The number of backward rules fired while asking predications of the

predicate.

Exclusive time is collected for the following protocol steps:

1.	 joshua:ask

2.	 joshua:askdata

3.	 joshua:fetch

4.	 joshua:askrules

5.	 joshua:mapoverbackwardruletriggers

Note that the time spent in joshua:askquestions is not explicitly reported, but its

time is excluded from the other protocol steps.

6.1.3. Joshua Merge Metering

Joshua Merge Metering collects information about the matches and merges that

happen in the rete network. See the section "Forward Rule Triggers: the Rete Net

work", page 27. The data is indexed by the node in the rete network and displayed

as several trees. The root of each tree is a rule and the children are the nodes in

the network that lead to the triggering of that rule.

In the rete net a single match or merge node can be used in triggering more than

one rule. In the Metering Interface these shared nodes are duplicated, so that each

rule has its own independent tree of nodes. There is however a visual indicator (an

asterisk next to the node name) in the display of each shared node.

The node trees are very similar to the call trees used in other metering types. Ini

tially only the roots of all the trees are visible. There are commands which allow

you to show and hide nodes or show and hide node children. This set of commands

parallels the commands on call trees. See the section "Exploring a Call Tree" in

Program Development Utilities. The common commands are invoked with the same

gesture for both kinds of trees. See the section "Using the Mouse in the Metering

Interface" in Program Development Utilities.

Example:

Meter Form (ht:diagnosecircuit nil) Joshua Merge Everything

77

March 1999	 Joshua Metering

Joshua Merge metering helps you locate two different types of wasted work:

1.	 Rules that may be firing too many times.

2.	 Rule patterns that may be badly ordered or too general, causing low success

percentages for merges.

Probably the most important number provided by Joshua Merge Metering is the

merge success percentage. This number gives you the ratio of successful merges to

attempted merges. Success percentages for merges can often be improved by re

ordering the clauses in the rule pattern and recompiling the rule. The optimal or

der depends upon several factors. The two major ones are the number of predica

tions that match this clause and how many variables this clause shares with other

clauses.

If you are using trigger modeling, the match success percentages will also be use

ful. The contract of joshua:mapoverforwardruletriggers is to map over all

match nodes that possibly match the given predication. The match node itself then

determines if it actually matches the predication. If a joshua:mapoverforward

ruletriggers method is not selective enough there will be a low match success

percentage. Improving the match success rate will decrease the match time (avail

able in Tell Metering) and improve the performance of your Joshua program.

6.2. 	Choosing Joshua Metering Types

Which type of Joshua metering you should use depends on what your program is

doing. Joshua Ask Metering is most useful in programs that include backward

chaining. It is also useful for programs that don’t do any backward chaining but

still use joshua:ask frequently to query the database. Joshua Tell Metering is

most useful in programs that include forward chaining or for measuring the time

spent in setting up an initial database. It is rarely useful for programs that do

strictly backward chaining. You should only use Joshua Merge Metering for pro

grams that execute forward rules.

78

Joshua Metering March 1999

Other system metering types can be useful if a Joshua program includes extensive

use of Lisp code or if you want to understand the internal details of how Joshua

works.

79

March 1999 Controlling Data and Rule Indexing

7. Controlling Data and Rule Indexing

This chapter shows you some basic ways of using the Joshua Protocol to customize

Joshua components.

Joshua is a system with "replaceable" parts; that is, you can easily redefine the be

havior of any system component. The protocol also makes it straightforward to

build an interface that incorporates an existing tool into Joshua without modifying

that tool.

In Joshua both the knowledge structures and the contracts of the protocol func

tions are distinct from their implementation. Because the Joshua protocol provides a

standard interface for the knowledge structures to communicate with diverse im

plementations, you can, for example, select any option for data storage without af

fecting the rule structure or the way that statements involving predications are

used for inferencing purposes. Figure29 shows sample interactions between some

knowledge structures and their implementations by way of the protocol. As you can

see from these examples, the various implementations shown have no effect on the

appearance of the knowledge structures, or on the behavior of the top level

joshua:tell and joshua:ask protocol functions as seen by the user. This is because

the contract of these functions remains unchanged, regardless of how you imple

ment their behavior.

Chicken is good to eat. (tell [good-to-eat chicken])

Is OBJECT-1 a cable? (ask [type-of OBJECT-1 cable] #’...)

How fast is OP-AMP-1? (ask [freq OP-AMP-1 ≡ f]#’...)

(pushnew ’chicken *foods*)

(typep (obj-named ’OBJECT-1) ’CABLE)

Behavior

of OP-AMP-1

SPICE
Description

of OP-AMP-1

Knowledge vs. Protocol vs. Implementation

Protocol Possible ImplementationKnowledge

Figure 29. Knowledge Structures Can Be Diversely Implemented

Why should you use the protocol to provide implementations other than the de

faults provided with Joshua? There is often a gain in efficiency when you use spe

cialized representations for certain key parts of your application. For example,

80

Controlling Data and Rule Indexing March 1999

choosing the right data structure for a problem improves performance. In the case

of a system that spends more than half of its time asking questions like, "Is this a

cable?" or "Is this a light?", you could improve performance by using a retrieval

mechanism that uses joshua::typep to answer such questions, as shown in figure

29.

The protocol also allows your application access to the facilities of a specialized

tool. For example, as figure29 shows, a Joshua application that needs to answer

questions about the behavior of circuits might want to take advantage of a pro

gram like SPICE that simulates electronic circuits. Joshua provides a "seamless"
way to access customized or external facilities using generic functions like

joshua:ask and joshua:tell.

Or you might want to use a TMS. You get a TMS by creating a mixin that imple

ments the TMS protocol methods (typically this means joshua:justify,

joshua:unjustify, and joshua:destructurejustification). With the protocol you can

create as many kinds of TMS facilities as your application needs.

How does one customize the protocol? Basically, you need to define a component

flavor (using joshua:definepredicatemodel) and then write methods to imple

ment those portions of the protocol whose behavior you are customizing. This com

ponent is then mixed into those predicates (using joshua:definepredicate) which

need to take advantage of the customized behavior.

Data indexing, rule compilation, rule triggering and truth maintenance are all

parts of the protocol, as are their component steps. Since the protocol identifies

and makes accessible each step of processing a statement, you can focus modifica

tions very precisely. Typically you would customize the fine grain steps thus pre

serving the gross structure. Most predicates continue to use most of the default

methods. So for example, if you want to change the way data is justified, you de

fine a method for the joshua:justify component of joshua:tell, but you need not

define methods for the dataindexing and rulelocating components of joshua:tell.

Obviously while customizing any level of the protocol, you need to be aware of

functions that work together, (such as joshua:insert, joshua:uninsert,

joshua:fetch, and joshua:clear), since redefining one of these functions requires

redefining the others. But typically the effects of customizing are localized, and

changing one area does not require massive changes in the rest of the system.

When should you customize the protocol? Not every application needs customiza

tion. Often Joshua’s generalpurpose facilities serve quite well. However, as you

gain more knowledge about your program, you can identify what, if any, portions

of it ⎯ data, rules, compilation, or truth maintenance ⎯ would benefit by cus

tomizing, or whether you want to interface to an external tool such as a database.

You can thus enrich Joshua’s builtin facilities incrementally. In sum, decisions

about when and what to customize are entirely application dependent. Joshua’s me

tering tools can be very helpful here, both to identify bottlenecks, and to deter

mine the effect of customizing on your application. See the section "Joshua Meter

ing", page 73.

Here is the list of predicate customizing facilities. We illustrate their use in the

examples that follow.

81

March 1999 Controlling Data and Rule Indexing

joshua:definepredicatemodel

This is the form for specifying new component flavors that be

combined and mixed into predicates. Predicate models are not

instantiable flavors, they can only be mixed into the defini

tions of predicates.

joshua:definepredicate

This is the standard predicatedefining form that lets you

specify the component flavors each predicate is built on. Pred

icates are the flavors that can be instantiated; the instances

of these are predications (or statements).

joshua:definepredicatemethod

This form lets you define methods of component flavors (de

fined by joshua:definepredicatemodel) or of predicates (de

fined by joshua:definepredicate) for any of the protocol

functions that need redefinition. To undo, use mX Kill Defini

tion from your Zmacs editor.

joshua:undefinepredicatemodel

This form lets you expunge a predicate model definition.

joshua:undefinepredicate

This form lets you expunge a predicate definition.

This chapter discusses and illustrates the following types of customizations:

• Customizing the techniques for Data Indexing

• Customizing the techniques for Rule Indexing

• Customizing the Rule Compiler

The discussion assumes an understanding of the default operation of all the above

Joshua features, as described in earlier chapters of this manual.

7.1. Customizing the Data Index

Quick Reference: For a description of the default implementation, see the section

"Storing and Retrieving Knowledge in Joshua: the Virtual Database", page 7.

There are many ways in which you can use the Joshua Protocol to change the be

havior of your programs; among the most useful is to change the way predications

are stored in the virtual database.

Customization of Joshua’s data indexing techniques is usually done by defining

new methods for joshua:insert, joshua:uninsert, joshua:fetch, and joshua:clear.

(Under some circumstances, it is preferable to define new methods for joshua:tell,

joshua:untell, and joshua:askdata rather than joshua:insert, joshua:uninsert,

and joshua:fetch. One such case is discussed in an example. See the section "Cus

82

Controlling Data and Rule Indexing March 1999

tomizing the Data Index Without Storing Predications", page 85.) You have to pro

vide a consistent implementation of these methods so that joshua:tell knows where

to put data, joshua:untell knows how to remove specific items, joshua:ask knows

where to find data, and joshua:clear knows how to flush all of it.

This idea is best explained by an example. Suppose you are writing an expert sys

tem to mimic the behavior of some animal. When this animal gets hungry, it

starts looking for food. Thus, it must have some means of recognizing objects in

its world that are good to eat. To start with, you might implement this by defining

a predicate like goodtoeat, along with a companion joshua:say method for a bet

terlooking display:

(definepredicate goodtoeat (foodname))

(definepredicatemethod (say goodtoeat) (&optional (stream *standardoutput*))

(withstatementdestructured (foodname) self

(format stream "~&I like to eat ~S." foodname)))

Then you can joshua:tell your program about some acceptable classes of food. By

default, this information is stored in the discrimination net.

(tell [and [goodtoeat suanlachowshow]

[goodtoeat kungpaochiding]

[goodtoeat tachienchiding]

[goodtoeat lycheenuts]])

Having done this, you can joshua:ask your program what’s good to eat:

(ask [goodtoeat ?] #’sayquery :dobackwardrules nil)

I like to eat LYCHEENUTS.

I like to eat TACHIENCHIDING.

I like to eat KUNGPAOCHIDING.

I like to eat SUANLACHOWSHOW.

When such a program gets hungry, it searches for a Chinese restaurant.

Eventually you notice that your program spends a great deal of time deciding what

to eat. You do a bit of metering and you find that the program is slow because it

is fetching predications of the form [goodtoeat ?food] (where ?food may or may

not be instantiated), from a rather large discrimination net database, and this is

causing too much paging. (The discrimination net potentially takes a page fault on

each discrimination net node, the tables in the node, and the list containing the

successor nodes. Variables in either the query or the database aggravate this,

since more arcs of the discrimination net are followed.)

The solution is to create a data index for goodtoeat that stores data about foods

in some special place, more easily accessed than the discrimination net. For exam

ple, you might just want to have a special variable called *knownfoods* that is a

list of all the foods the program knows about. You’d like joshua:tell to push new

elements onto that list; depending on whether or not the argument to goodtoeat

is instantiated, you’d like joshua:ask to either search for a particular food, or to

loop over the list of known foods. joshua:clear should just joshua::setq the vari

able to joshua::nil.

83

March 1999 Controlling Data and Rule Indexing

Note that often when customizing the data index you give up some generality in

return for some performance, or for access to a data source controlled by some

other program, such as an external database stored on, for example, a departmen

tal dataprocessing computer. That’s a good tradeoff if you’re not using the full

generality anyway. In this example, we note that food names are always symbols,

so we needn’t check for strings and such, and can use joshua::eql to compare

them. We take advantage of the fact that there is only one argument to the good

toeat predicate.

Furthermore, we never joshua:tell things like [goodtoeat ?everything], that is,

we can forbid the use of variables in the database. These restrictions simplify the

implementation considerably, to the point where we need only use a list of food

names and their associated database predications. (One could use a hash table, al

so, if the number of foods were to get large. Joshua lets you use the whole world

of Lisp machine data structures ⎯ hash tables, lists, arrays, heaps, or whatever.)

Here is some code that sets up this data index. First, we define the global variable

that will be the "database" for known foods.

(defvar *knownfoods* nil "What’s on the menu.")

Then we define a predicate model, goodtoeatdatamodel, for foods the program

knows about. Since the methods will be referring to the argument of the predicate

frequently, we make the argument an instance variable by putting a :required

instancevariables in the joshua:definepredicatemodel form (as well as a

:destructureintoinstancevariables in the later joshua:definepredicate).

(definepredicatemodel goodtoeatdatamodel () ()

(:requiredinstancevariables food))

Here is code which implements the strategy we have discussed: using the variable

knownfoods as an association list that holds the data and the predication, the

joshua:insert, joshua:uninsert, and joshua:fetch methods operate using Lisp list

handling functions.

(definepredicatemethod (insert goodtoeatdatamodel) ()

;; tell something about food

(when (typep food ’unboundlogicvariable)

(error "You can’t possibly mean that everything is good to eat: ~S" self))

(let ((entry (assoc food *knownfoods*)))

(if entry

;; this thing is already known to be good to eat.

(values (cdr entry) nil)

;; not already known build a new entry

(let ((databasepredication (copyobjectifnecessary self)))

;; this is a new one, put it on the list

(push (cons food databasepredication) *knownfoods*)

(values databasepredication t)))))

84

Controlling Data and Rule Indexing March 1999

(definepredicatemethod (uninsert goodtoeatdatamodel) ()

;;remove food entry from the list

(setq *knownfoods* (delete food *knownfoods* :key #’car)))

(definepredicatemethod (fetch goodtoeatdatamodel) (continuation)

;; retrieve some data about known foods

(typecase food

(unboundlogicvariable

;; wants to succeed once for each possible food

(loop for (knownfood . predication) in *knownfoods*

doing (funcall continuation predication)))

(otherwise

;; wants to know if something in particular is good to eat

(let ((entry (assoc food *knownfoods*)))

(when entry

(funcall continuation (cdr entry)))))))

(definepredicatemethod (clear goodtoeatdatamodel) (cleardatabase ignore)

;; flush all the data about known foods

(when cleardatabase

(setq *knownfoods* nil)))

(definepredicate goodtoeat (food)

(goodtoeatdatamodel defaultpredicatemodel)

:destructureintoinstancevariables)

The only tricky parts are joshua:insert and joshua:fetch. joshua:insert first

checks to see that the food argument is bound. That was one of our simplifying

assumptions. Then it looks to see if it already has a database entry for that food.

If so, the database predication is returned along with the joshua::nil indicating

that the entry was already in the database. If not, the predication is copied if nec

essary. This will ensure that the predication put in the database is not ephemeral

in any way. The database predication is returned, along with joshua::t to indicate

that the database predication is newly inserted in the database.

The method for joshua:fetch deserves some explanation. The joshua::unbound

logicvariable check is to distinguish between (ask [goodtoeat suanlachow

show] ...) and (ask [goodtoeat ?x] ...), that is, whether or not the query has

a logic variable in its argument. The former asks a question like "Is this particu

lar thing good to eat?", while the latter says "For everything you can prove is good

to eat, do ...". So joshua:fetch must check to see what sort of question is being

asked. If the query has a variable food, we must succeed once with each goodto

eat predication in the database. If the query is about a specific food, we look it up

in the database and succeed if it is there.

Here’s a hypothetical interaction with the program:

85

March 1999 Controlling Data and Rule Indexing

(clear)

knownfoods → NIL

(tell [and [goodtoeat suanlachowshow]

[goodtoeat kungpaochiding]

[goodtoeat tachienchiding]

[goodtoeat lycheenuts]])

knownfoods → ((LYCHEENUTS . [GOODTOEAT LYCHEENUTS])

(TACHIENCHIDING . [GOODTOEAT TACHIENCHIDING])

(KUNGPAOCHIDING . [GOODTOEAT KUNGPAOCHIDING])

(SUANLACHOWSHOW . [GOODTOEAT SUANLACHOWSHOW]))

(ask [goodtoeat ?] #’sayquery :dobackwardrules nil) →
I like to eat LYCHEENUTS.

I like to eat TACHIENCHIDING.

I like to eat KUNGPAOCHIDING.

I like to eat SUANLACHOWSHOW.

(clear)

knownfoods → NIL

So by giving up some generality, we can gain some performance. It is not hard to

use data structures other than association lists. Just replace the list insertion and

lookup functions with ones appropriate to your data structure.

7.1.1. Customizing the Data Index Without Storing Predications

In some cases, you won’t want to store entire predication objects in the database.

For example, you might be using some external database for some predicates.

Joshua provides a different level of the data protocol for customizing such applica

tions. For such applications, you would provide joshua:tell, joshua:untell,

joshua:askdata, and joshua:clear methods. Note that some types of predicates re

quire that information be stored in the database predication. In particular, the for

wardchaining rule mechanism stores state information in database predications,

and the systemsupplied TMS mixin, ltms:ltmsmixin, stores its support informa

tion in database predications. So a requirement for using this type of customiza

tion on predicates is that the predicates be used only in backward chaining. (How

ever, it is sometimes possible to use the joshua:expandforwardruletrigger pro

tocol function to look for the data during forward rule triggering. See the dictio

nary entry for this protocol function for examples.)

For an example, we turn to the goodtoeat example introduced in another section.

(See the section "Customizing the Data Index", page 81.)

We’ll make the same assumptions that were made in that example ⎯ that the

foods in the database are always symbols, never variables. For simplicity we’ll im

pose a further restriction ⎯ that all assertions must be stated positively. This

model will not allow (tell [not [goodtoeat yushianggiantbeetle]]).

86

Controlling Data and Rule Indexing	 March 1999

The joshua:insert, joshua:uninsert, and joshua:fetch methods of that previous

example dealt with database predications. So for this type of customization, we’ll

move to the next higher level of the protocol ⎯ joshua:tell, joshua:untell, and

joshua:askdata. Another way to think about why we have to move up a level is

to notice that joshua:tell and joshua:untell will try to joshua:justify and

joshua:unjustify, which need database predications.

Here is the new code:

(definepredicatemethod (tell goodtoeatdatamodel)

(truthvalue justification)

(declare (ignore justification))

;; tell something about food

(unless (eql truthvalue *true*)

(error "Only positive assertions are allowed for ~S" self))

(when (typep food ’unboundlogicvariable)

(error "You can’t possibly mean that everything is good to eat: ~S" self))

(pushnew food *knownfoods*))

(definepredicatemethod (untell goodtoeatdatamodel) ()

;; remove food name from the list

(setq *knownfoods* (delete food *knownfoods*)))

(definepredicatemethod (askdata goodtoeatdatamodel)

(truthvalue continuation)

;; given the contents of *knownfoods*, unify against the query

;; and call the continuation

(unless (eql truthvalue *true*)

(signal	 ’ji:modelcanonlyhandlepositivequeries

:query self

:model ’goodtoeatdatamodel))

(typecase food

(unboundlogicvariable

;; wants to succeed once for each possible food

(loop for databasefood in *knownfoods*

doing (withunification

;; bind the variable in the query and go on

(unify food databasefood)

(stacklet ((support

‘(,self ,truthvalue goodtoeatdatamodel)))

(funcall continuation support)))))

(otherwise

;; wants to know if something in particular is good to eat

(when (member food *knownfoods*)

(stacklet ((support ‘(,self ,truthvalue goodtoeatdatamodel)))

(funcall continuation support))))))

87

March 1999 Controlling Data and Rule Indexing

(definepredicatemethod (clear goodtoeatdatamodel)

(cleardatabase ignore)

;; flush all the data about known foods

(when cleardatabase

(setq *knownfoods* nil)))

(definepredicate goodtoeat (food)

(goodtoeatdatamodel defaultpredicatemodel)

:destructureintoinstancevariables)

The joshua:tell method is very straightforward ⎯ after checking our assumptions,

it makes sure the food is on the list. The joshua:untell and joshua:clear methods

are almost identical to our previous example.

The joshua:askdata method has to do the same positiveness check that

joshua:tell did, but joshua:askdata should signal the ji:modelcanonlyhandle

positivequeries condition if the query isn’t positive. joshua:askdata does the

same joshua::unboundlogicvariable test that joshua:fetch in the previous exam

ple did. When the argument is unbound, joshua:askdata must bind it before call

ing the continuation. In this case, the derivation provided by the joshua:askdata

method is just the symbol goodtoeatdatamodel, to tell programs what flavor

provided this answer.

From the point of view of the user of joshua:tell and joshua:ask, the behavior of

the customized system is just the same as before, but this version of the program

does not touch the discrimination net. The information that used to go into the

discrimination net is now stored in a different place, namely the value of

knownfoods. Note in the following examples that joshua:tell and joshua:ask act

exactly as before, but the value of *knownfoods* changes.

(clear)

knownfoods → NIL

(tell [and [goodtoeat suanlachowshow]

[goodtoeat kungpaochiding]

[goodtoeat tachienchiding]

[goodtoeat lycheenuts]])

knownfoods → (LYCHEENUTS TACHIENCHIDING KUNGPAOCHIDING SUANLACHOWSHOW)

(ask [goodtoeat ?] #’sayquery :dobackwardrules nil) →
I like to eat LYCHEENUTS.

I like to eat TACHIENCHIDING.

I like to eat KUNGPAOCHIDING.

I like to eat SUANLACHOWSHOW.

In this case as before, other data structures could easily be substituted for the list.

88

Controlling Data and Rule Indexing March 1999

If the data structure were made just slightly more complicated, negative assertions

could be handled. joshua:tell just needs to remember the current truth value, and

joshua:askdata needs to succeed only on foods which have the same database

truth value as the query.

7.2. Customizing the Rule Index

Quick Reference: For a description of the default ruleindexing implementation,

see the section "The Joshua Rule Facilities ", page 23. This section disusses the

process of changing the way the system stores, removes, and looks up rule trig

gers.

A trigger is an object that can be used to invoke a particular rule or question. Ex

actly what the trigger object is depends on the rule type. For a forward rule, the

triggers are Rete match nodes, and "invoke" means a call to some Rete network

code to start the match process. For a backward rule, the (unique) trigger is a

function that does both the matching and the rulebody execution. For questions, a

trigger is just the name of a function to call; if called with reasonable arguments,

it will ask its question. The default implementation stores trigger objects in a dis

crimination net.

The impetus for customizing rule indexing is that many systems spend much of

their time looking for applicable rules and questions, as opposed to executing

them. For example, if you joshua:tell the system a fact, in many cases most of the

resulting runtime is spent looking for forward rules, rather than executing them.

If this is the case, a customzied ruletrigger index can help.

There are four operations you can do with rule triggers, namely, adding new trig

gers, deleting existing triggers, locating the place which a trigger should be stored

in (or removed from), iterating over triggers to find rules or questions that can

execute. If you provide a consistent alternative implementation of the protocol

functions that do these operations, you’ve changed the way your program looks for

rules, and perhaps achieved improved performance.

Let’s consider our food example again, namely the goodtoeat example used in

the section on customized data indexing. see the section "Customizing the Data In

dex", page 81.

In brief, this example identifies foods that are good to eat, so that the program’s

subject knows what foods to look for when it gets hungry. There might be a num

ber of backwardchaining rules in the system that have triggers resembling [good

toeat ?x] or [goodtoeat suanlachowshow]. The problem is that the default

way of storing triggers goes through a very general discrimination net, whereas in

this case, there is only one interesting datum, namely the argument to

goodtoeat. We want to produce a system that, when looking for backward rules

to solve goodtoeat goals, will discriminate only on that argument.

Here’s an example of such an implementation for backward rules (to keep things

simple). First, we define a structure in which to store rule triggers. Since the trig

ger pattern contains either a logic variable or a symbol, a hash table for symbols

89

March 1999	 Controlling Data and Rule Indexing

and a separate list for the variable case will do. That is, we have one place to

store triggers like [goodtoeat suanlachowshow], and another for things like

[goodtoeat ?x].

(defvar *goodtoeatconstanttriggers* (makehashtable :size 10))

(defvar *goodtoeatvariabletriggers* nil)

Next, we want joshua:addbackwardruletrigger, joshua:deletebackwardrule

trigger, joshua:locatebackwardruletrigger, and joshua:mapoverbackward

ruletriggers to use these data structures instead of the defaults.

We need not redefine joshua:addbackwardruletrigger and joshua:delete

backwardruletrigger, because both use a storage location provided by

joshua:locatebackwardruletrigger. So it is sufficient to define a method for

joshua:locatebackwardruletrigger and joshua:mapoverbackwardrule

triggers.

We begin by defining our goodtoeat predicate model.

(definepredicatemodel goodtoeattriggermodel () ()

(:requiredinstancevariables food))

Next we define the joshua:locatebackwardruletrigger method. The code for

this considers two cases.

•	 If the predication passed to joshua:locatebackwardruletrigger contains a log

ic variable, the method calls the continuation on the *goodtoeatvariable

triggers* list. If the continuation changed the list of triggers, the method up

dates it.

•	 If the predication passed to joshua:locatebackwardruletrigger contains a

constant, the method calls the continuation on the appropriate elements of the

goodtoeatconstanttriggers table. If the continuation changed the list of

triggers, the method updates the table.

90

Controlling Data and Rule Indexing March 1999

(definepredicatemethod

(locatebackwardruletrigger goodtoeatbackwardtriggermodel)

(truthvalue continuation &optional ignore)

;; call continuation on list of triggers for backward rules that

;; solve goodtoeat goals

(typecase food

(unboundlogicvariable

;; the argument is an unbound logic variable

(multiplevaluebind (newtriggers triggerschangedp canonicaltrigger)

(funcall continuation *goodtoeatbackwardvariabletriggers*)

(when triggerschangedp

(setq *goodtoeatbackwardvariabletriggers* newtriggers))

canonicaltrigger))

(otherwise

;; the argument is a constant

(let ((listoftriggers

(gethash food *goodtoeatbackwardconstanttriggers*)))

(multiplevaluebind (newtriggers triggerschangedp canonicaltrigger)

(funcall continuation listoftriggers)

(when triggerschangedp

(if (null newtriggers)

;; if they’re all undefined, nuke this entry

(remhash food *goodtoeatbackwardconstanttriggers*)

(setf (gethash food *goodtoeatbackwardconstanttriggers*)

newtriggers)))

canonicaltrigger)))))

joshua:mapoverbackwardruletriggers must apply the continuation to all appli

cable backward rule triggers that solve goodtoeat goals. Our method first maps

over the variable trigger list, since all variable triggers must be probed regardless

of whether the goal has a logic variable or a constant in it.

If the goal has a logic variable in it (for example (ask [goodtoeat ?what]...)),

the method must also apply the continuation to all the variable triggers, since any

constant matches the logic variable in the goal.

If the goal has a constant in it (for example (ask [goodtoeat honey] ...)),

joshua:mapoverbackwardruletriggers only needs to call the continuation on

trigger objects with matching constants.

91

March 1999 Controlling Data and Rule Indexing

(definepredicatemethod

(mapoverbackwardruletriggers goodtoeatbackwardtriggermodel) (continuation)

;; map continuation over triggers of backward rules that

;; solve goodtoeat goals

;; first do all variable triggers

(mapc continuation *goodtoeatbackwardvariabletriggers*)

(typecase food

(unboundlogicvariable

;; food is unbound, so have to map over all remaining triggers

(maphash #’(lambda (key value)

(ignore key)

(mapc continuation value))

goodtoeatbackwardconstanttriggers))

(otherwise

;; food is bound, so map over just those triggers that will match

(mapc continuation

(gethash food *goodtoeatbackwardconstanttriggers*)))))

The last step is defining a goodtoeat predicate.

(definepredicate goodtoeat (food) (goodtoeattriggermodel

goodtoeatdatamodel defaultpredicatemodel)

:destructureintoinstancevariables)

With these definitions in place, any backwardchaining rules that trigger on good

toeat will store their triggers in either *goodtoeatvariabletriggers* or

goodtoeatconstanttriggers. Presumably, searching these data structures is

faster than the generalpurpose method Joshua provides by default.

Here are some examples. Assume the following (admittedly silly) rule:

(defrule nottofuud (:backward)

IF (progn (format t "~&NotTofuud rule: ?FOOD → ~S" ?food) t)

THEN [goodtoeat ?food])

Before we compile this rule, the list *goodtoeatvariabletriggers* is

joshua::nil. However, after the rule is compiled, this list is bound to something

that looks like:

(#S(JI::BACKWARDTRIGGER :TRUEENTRIES ((NOTTOFUUD NIL

[GOODTOEAT #<UNBOUNDLOGICVARIABLE ?FOOD 51037342>]))

:FALSEENTRIES NIL))(#<BACKWARDTRIGGER 14702210>)

that is, it is a list of backward rule triggers that trigger on goodtoeat with a

logic variable argument.

For rules that trigger on goodtoeat with a constant argument, we use an

joshua::eql hash table (it assumes the arguments to goodtoeat can be compared

with joshua::eql). Consider the following (also silly) rule:

(defrule tofuud (:backward)

IF (progn (format t "~&Tofuud rule.") t)

THEN [goodtoeat tofu])

92

Controlling Data and Rule Indexing March 1999

Before compilation of this rule, *goodtoeatconstanttriggers* is an empty ta

ble, that prints something like this:

#<Table 0/0 51004361>

After we compile the rule, however, the table contains one entry, keyed on the

symbol tofu:

(describe *goodtoeatconstanttriggers*)

#<Table 1/1 51004361> is a table with 1 entry.

Test function for comparing keys = EQL, hash function = CLI::XEQLHASH

Do you want to see the contents of the hash table? (Y or N) Yes.

TOFU → (#S(JI::BACKWARDTRIGGER :TRUEENTRIES ((TOFUUD NIL [GOODTOEAT TOFU]))

:FALSEENTRIES NIL))

#<Table 1/1 51004361>

Consider how the following query manages to operate:

(ask [goodtoeat ?what] #’sayquery)

NotTofuud rule: ?FOOD → #<UNBOUNDLOGICVARIABLE ?WHAT 50474332>

#<UNBOUNDLOGICVARIABLE ?WHAT 50474332> is good to eat.

Tofuud rule.

TOFU is good to eat.

NIL

In processing this query, Joshua avoids the conventional method of looking for rule

triggers, and instead looks in the list *goodtoeatvariabletriggers* and probes

the hash table *goodtoeatconstanttriggers*.

Proper design of the data structures that your program uses for looking up rules

can drastically affect the program’s performance. In this example, we noted that

goodtoeat had only one argument that was either a symbol or a logic variable.

We were able to exploit this restriction to implement a more efficient way to look

up rule triggers than could be provided in a generalpurpose implementation.

There is a completely analogous group of methods for a forward chaining imple

mentation.

7.3. Customizing the Rule Compiler

Quick Reference: For a description of the default implementation, see the section

"The Joshua Rule Compiler", page 26.

The rule compiler can be customized in two ways. First, the trigger patterns of a

forward rule and the actions of a backward rule (i.e. the Ifpart of a rule) may be

expanded into other structures in a process similar to macro expansion. This al

lows the IfPart of the rule to present a declarative appearance even when it actu

ally takes procedural actions. Secondly, the rule compiler can generate specialized

or optimized pattern matchers that take advantage of the trigger indexing tech

niques used for the patterns.

93

March 1999	 Controlling Data and Rule Indexing

The first of these kinds of customizations is controlled by the joshua:expand

forwardruletrigger and the joshua:expandbackwardruleaction protocol meth

ods, the second type is controlled by the joshua:writeforwardrulefullmatcher,

joshua:writeforwardrulesemimatcher, joshua:positionsforwardrulematcher

canskip and the joshua:writebackwardrulematcher protocol methods.

Customizing the Expansion of a Forward Rule

The Ifpart of a forwardchaining rule is eventually translated into a rete

network,See the section "Forward Rule Triggers: the Rete Network", page 27. How

this translation is conducted is controlled by the joshua::expandforwardrule

triggers protocol function. This section will explain what this protocol function

does and give examples of how its capabilities can be used to gain advanced capa

bilities in forwardchaining rules.

The Contract of the Generic Function joshua:expand-forward-rule-trigger

joshua:expandforwardruletrigger is called once for each predication included in

the trigger of the rule. Its job is to return a list structure that explains to the

rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:forward)

If [and [foo1 ?x ?y] :support ?f1

[not	 [foo2 ?y ?z]] :support ?f2

]

Then	 [foo3 ?x ?y ?z])

joshua:expandforwardruletrigger will be called three times (once for the entire

joshua::and and then once for each predication inside the joshua::and).

joshua:expandforwardruletrigger takes four arguments: the pattern to expand,

the name of its :support variable (or nil), its truthvalue and the entire Ifpart

(which can be treated as the "context" of the pattern). Thus, the arguments passed

in for these three calls wil be:

[and	 [foo1 ?x ?y] :support ?f1

[not	 [foo2 ?y ?z]] :support ?f2] nil *true* and <the whole Ifpart>

[foo1 ?x ?y] ?f1 and *true* <the whole Ifpart>

[foo2 ?y ?z] ?f2 *false* <the whole Ifpart>

Note that although we have displayed the patterns as if they were predications,

this is not actually true. joshua:expandforwardruletrigger runs at compile time

and manipulates a sourcecode representation of predications and logicvariables,

see the section "The Source Representaton of Predications and Logicvariables".

joshua:expandforwardruletrigger should return a list structure (called a trig

gerdescription) which must be one of the following forms:

1.	 (:match pattern name truthvalue). This trigger description informs the rule

compiler that the current trigger should be treated simply as a pattern to be

matched.

94

Controlling Data and Rule Indexing	 March 1999

•	 pattern is the predication that represents the pattern to be matched.

•	 name is the logic variable which the rule triggering mechanisms should

bind to the predication that matched this trigger.

•	 truthvalue (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the matching

predication is required to have in order to trigger the rule.

2.	 (:and triggerdescriptions) This trigger description informs the rule compiler

that the current pattern is actually a conjunction of patterns all of which

must be matched to trigger the rule. The systemprovided default method for

AND predications returns this type of trigger description. The second element

of the trigger description must be a list of trigger descriptions, i.e. lists re

turned by calling joshua:expandforwardruletrigger.

3.	 (:or triggerdescriptions) This trigger description informs the rule compiler

that the current pattern is actually a disjunction of patterns any of which

must be matched to trigger the rule. The system provided default method for

OR predications returns this type of trigger description. The second element

of the trigger description must be a list of trigger descriptions, i.e. lists re

turned by calling joshua:expandforwardruletrigger.

4.	 (:procedure lispexpression name) This trigger description informs the rule

compiler that the current trigger is not a pattern to be matched, but rather a

Lisp expression that appears in the trigger position. Such expressions are exe

cuted once all proceeding patterns in the rule have been matched. The ex

pression can act as a filter by returning either joshua::t or joshua::nil.

joshua::t indicates success; in this case the bindings accumulated up to this

point are considered acceptable and rule triggering continues. joshua::nil in

dicates failure; in this case the bindings are considered unacceptable.

The expression can also act as a generator in which it produces several new

sets of bindings each of which is consistent with the bindings that were in ef

fect when the rule was triggered. To do this it should bind whatever logic

variables it wants to and then call joshua:succeed. joshua:succeed takes a

restargument; the rule compiler will arrange for this values passed to

joshua:succeed to be bound to the logicvariable which is the third element

of the trigger description.

See the function joshua:succeed, page 232.

5.	 (:ignore) This trigger description informs the rule compiler that it should ig

nore this trigger. The are two reasons for using this type of trigger descrip

tion. The first is to allow a rule to have patterns included in it simply for the

sake of clarity. The second is to include patterns only to specify context.

95

March 1999 Controlling Data and Rule Indexing

Using joshua:expand-forward-rule-trigger

A Procedural trigger description can be used to implement a mixedchaining strat

egy in which a forwardrule trigger invokes backward chaining capabilities. This

would be useful if it is known that a particular type of predication is never actual

ly asserted but is only deduced by backward chaining rules.

The following rule is how one would implement this mixedchaining strategy if it

were known that FOO2 predications are only deduced by backward chaining rules:

(definepredicate foo1 (a b))

(definepredicate foo2 (a b))

(definepredicate backwardfoo2 (a b))

(definepredicate foo3 (a b c))

(defrule foo (:forward)

If [and [foo1 ?a ?b]

(ask [foo2 ?b ?c]

#’(lambda (ignore) (succeed)))]

Then [foo3 ?a ?b ?c])

(defrule foo2backward (:backward)

If [backwardfoo2 ?b ?a]

Then [foo2 ?a ?b])

The structure of the rete network for this rule is a simple linear chain consisting

of a match node followed by a procedural node (acting as a generator) as shown in

figure 40.

Figure 30. Graph of the Mixed Chaining Rule Foo

If we execute the following two joshua:tell’s then the rule will be triggered by the

second statement which matches the first pattern of the rule. Execution then pro

ceeds to the procedural node which chains backward using the rule FOO2BACKWARD.

This is shown in figure 41.

However this rule can be made more declarative appearing by using

96

Controlling Data and Rule Indexing March 1999

Figure 31. Trace of The Mixed Chaining Rule Foo

joshua:expandforwardruletrigger as follows:

(definepredicatemodel mixedchainingmixin () ())

(definepredicatemethod

(expandforwardruletrigger mixedchainingmixin)

(name truthvalue ignore)

(let ((query (if (eql truthvalue *true*)

self

‘[not ,self))))

‘(:procedure (prog1 nil

(ask ,query

#’(lambda (ignore)

(succeed))))

,name)))

(definepredicate foo2 (a b)

(mixedchainingmixin defaultpredicatemodel))

(defrule foo (:forward)

If [and [foo1 ?a ?b]

[foo2 ?b ?c]]

Then [foo3 ?a ?b ?c])

(clear)

(tell [backwardfoo2 3 2])

(tell [foo1 1 2])

Now the rule FOO appears to simply match two patterns. However, it actually com

piles into exactly the same rete network as shown in figure 30.

A More Advanced Version of Mixed-chaining in joshua:expand-forward-rule-trigger

Sometimes using joshua:ask in the trigger part of a rule may not be the appropri

ate way to achieve a mixed chaining strategy. One reason, is that joshua:ask

queries the world for facts that are deducible at that moment. If a new fact ar

rives later that would have made the goal deducible, joshua:ask will, of course,

97

March 1999	 Controlling Data and Rule Indexing

not notice this. However, forward chaining rules should draw conclusions whenever

the data warrants the deduction.

A solution to this problem is to use a more explicit form of reasoning in which

goal directed reasoning is conducted by forward rules which are triggered by ex

plicit predications stating the existence of a goal.

Here is an alternative mixed chaining scheme which implements backward chain

ing by explicitly telling show predications. These trigger forward rules which then

work to find a way to satisfy the goal included in the show statement.

For example, the following rule:

(defrule foo2explicitgoal (:forward)

If [and [show [foo2 ?a ?b]]

[backwardfoo2 ?b ?a]]

Then [foo2 ?a ?b])

Will deduce FOO2 anytime that BACKWARDFOO2 is asserted and there is a SHOW predi

cation stating that we want this conclusion to be drawn. The rule is more flexible

than a backward rule, since it does not depend on the relative order of posting the

goal and asserting the data necessary to deduce it. (Of course, this rule is also

less efficient than a backward rule).

We can use joshua:expandforwardruletrigger just as we did in the previous

section to make the rule FOO use this form of mixed chaining while retaining its

declarative appearance, as follows:

(definepredicatemodel mixchainmixin ()

())

(defvar *insidealternativebackwardchainingmixin* nil)

(definepredicatemethod

(expandforwardruletrigger mixchainmixin)

(name truthvalue context)

(if *insidealternativebackwardchainingmixin*

‘(:match ,self ,name ,truthvalue)

(let ((*insidealternativebackwardchainingmixin* t))

(let ((query (if	 (eql truthvalue *true*)

self

‘[not ,self))))

‘(:and

,(expandforwardruletrigger

‘(tell [show ,query]) nil *true* context)

,(expandforwardruletrigger

self name truthvalue context))))))

(definepredicate show (predication))

(definepredicate foo2 (a b)

(mixchainmixin defaultpredicatemodel))

98

Controlling Data and Rule Indexing March 1999

This joshua:expandforwardruletrigger method expands the FOO2 pattern of the

rule into two components. The first joshua:tell’s the SHOW statement that triggers

the FOO2EXPLICITGOAL rule. The second is a simple match node that waits for the

FOO2 goal to become true. The joshua:expandforwardruletrigger method is

somewhat tricky because it wants to expand the intial [foo2 ...] pattern into

two nodes, one of which joshua:tells [show [foo2 ...]] and the other of which

matches [foo2 ...]. A special variable is bound to prevent an infinite recursion

in the expansion of this pattern.

Figure42shows the Rete net for this rule.

Figure 32. Graph of Mixed Chaining Rule Foo

Notice that the rule contains two match nodes, one for each pattern. The match

node for the FOO1 pattern leads to a procedural node which joshua:tells a [show

[foo2 ...]] predication and then joshua:succeeds. Following this the two paths

merge. If the Foo1 statement is asserted first the rule will assert the SHOW state

ment which will cause the FOO2EXPLICITGOAL rule to wait for a FOO2BACKWARD

statement. At which point the FOO2EXPLICITGOAL rule will assert a FOO2 statement

which will match the other trigger pattern of the FOO rule. If the facts are assert

ed in the other order, the rule will also deduce the desired conclusion, as shown in

figures 43 and

Using :ignore in joshua:expand-forward-rule-trigger

Here’s an example using the :ignore trigger description:

(defrule adderforward (:forward)

If [and [typeof ?a adder]

[Valueof addend ?a ?value1]

[Valueof augend ?a ?value2]]

Then ‘[valueof output ?a ,(+ ?value1 ?value2)])

A triggerindexing scheme might be used which guarantees that this rule will only

be triggered by Valueof assertions that describe the values of the ADDEND and AU

GEND of adders. In such a case the first pattern is required during rule compilation

99

March 1999	 Controlling Data and Rule Indexing

Figure 33. Trace of Explicitly Controlled Mixed Chaining

Figure 34. Trace of Explicitly Controlled Mixed Chaining

to inform the joshua:locateforwardruletrigger method that it is indexing pat

terns having to do with adders. However, once such a triggerindexing scheme is

established the first pattern is actually redundant.

(definepredicatemethod

(expandforwardruletrigger typeofmodel) (ignore ignore ignore)

‘(:ignore))

(definepredicate	 typeof (object type)

(typeofmodel defaultprotocolimplementationmodel))

Customizing the Expansion of a Backward Rule

What the Backward Rule-compiler Does to the Actions of a Rule

The backward rule compiler turns the Ifpart of a rule into a series of nested

joshua:ask’s. For example, the actions of the following rule:

100

Controlling Data and Rule Indexing	 March 1999

(defrule foobar (:backward)

If [and	 [foo1 ?x ?y] :support ?f1 :dobackwardrules nil

[not [foo2 ?y ?z]] :support ?f2

]

Then [foo3 ?x ?y ?z])

are converted into a highly optimized version of the following code:

(ask [foo1 ?x ?y]

#’(lambda (support2196)

(unify ?f1 support2196)

(ask [not [foo2 ?y ?z]]

#’(lambda (support2197)

(unify ?f2 #:support2197)

(let ((ji::rulesupport

(list	 ji::.goal. ji::.truthvalue.

’(rule foobar)

support2196 support2197)))

(funcall ji::.continuation. ji::rulesupport))))

:dobackwardrules nil))

The backward rule compiler also handles the keyword arguments which can be at

tached to patterns in the Ifpart of the rule. See the section "Advanced Features of

Joshua Rules", page 24.

The Contract of the Generic Function joshua:expand-backward-rule-action

The joshua:expandbackwardruleaction protocol function controls how the con

version is performed.

joshua:expandbackwardruleaction is called once for each predication included

in the Ifpart of the rule. Its job is to return a list structure that explains to the

rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:backward)

If [and	 [foo1 ?x ?y] :support ?f1 :dobackwardrules nil

[not [foo2 ?y ?z]] :support ?f2

]

Then [foo3 ?x ?y ?z])

joshua:expandbackwardruleaction will be called three times (once for the en

tire joshua::and and then once for each predication inside the joshua::and).

joshua:expandbackwardruleaction takes five arguments: the pattern to expand,

the name of its :support variable (or nil), its truthvalue, the value of the keyword

arguments attached to this pattern that should be passed onto joshua:ask (e.g.

:dobackwardrules and :doquestions) and the entire Ifpart (which can be treated

as the "context" of the pattern). Thus, the arguments passed in for these three

calls wil be:

101

March 1999	 Controlling Data and Rule Indexing

[and	 [foo1 ?x ?y] :support ?f1 :dobackwardrules nil

[not	 [foo2 ?y ?z]] :support ?f2] nil *true* (t t) <the whole Ifpart>

[foo1 ?x ?y] ?f1 *true* (nil t) <the whole If part>

[foo2 ?y ?z] ?f2 *false* (t t) <the whole If part>

Note that although we have displayed the patterns as if they were predications,

this is not actually true. joshua:expandbackwardruleaction runs at compile

time and manipulates a sourcecode representation of predications and logic

variables, see the section "The Source Representaton of Predications and Logic

variables".

joshua:expandbackwardruleaction should return a list structure (called a ac

tiondescription) which must be one of the following forms:

1.	 (:match pattern name truthvalue askkeywordargs). This action description

informs the rule compiler that the current action should be treated simply as

a pattern to be joshua:ask’ed. This action will compile into an joshua:ask

form whose continuation will perform the actions following this one.

•	 pattern is the source representation of the predication that should be

joshua:ask’ed. This is normally just the first argument to joshua:expand

backwardruleaction.

•	 name is the name of a logic variable which should be bound to the query

support passed by joshua:ask to its continuation; this allows procedural

code in the IfPart of the rule to examine the support for the various ac

tions.

•	 truthvalue (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the matching

predication is required to have in order to satisfy the joshua:ask.

•	 The values of the keyword arguments to be passed to joshua:ask. This

should normally be identical to the equivalent argument passed into

joshua:expandbackwardruleaction.

2.	 (:and actiondescriptions) This action description informs the rule compiler

that the current pattern is actually a conjunction of actions all of which must

be satisfied. The systemprovided default method for AND predications re

turns this type of action description. The second element of the trigger de

scription must be a list of action descriptions, i.e. lists returned by calling

joshua:expandbackwardruleaction.

3.	 (:or actiondescriptions) This action description informs the rule compiler

that the current pattern is actually a disjunction of actions any one of which

must be satisfied in order to satify the whole action. The system provided de

fault method for OR predications returns this type of action description. The

second element of the action description must be a list of action descriptions,

i.e. lists returned by calling joshua:expandbackwardruleaction.

102

Controlling Data and Rule Indexing	 March 1999

4.	 (:procedure lispexpression name) This action description informs the rule

compiler that the current trigger is not a pattern to be joshua:ask’ed but

rather a Lisp expression that appears in the Ifpart of the backward rule.

Such expressions are executed once all proceeding actions in the rule have

been satisfied. The expression can act as a filter by returning either joshua::t

or joshua::nil. joshua::t indicates success; in this case the bindings accumu

lated up to this point are considered acceptable and rule execution continues.

joshua::nil indicates failure; in this case the bindings are considered unac

ceptable.

The expression can also act as a generator in which it produces several new

sets of bindings each of which is consistent with the bindings that were in ef

fect just before the action began execution. To do this it should bind whatev

er logicvariables it wants to and then call joshua:succeed. joshua:succeed

takes a restargument; the rule compiler will arrange for this value passed to

joshua:succeed to be bound to the logicvariable which is the third element

of the action description.

See the function joshua:succeed, page 232.

5.	 (:ignore) This action description informs the rule compiler that it should ig

nore this action. The are two reasons for using this type of action description.

The first is to allow a rule to have actions included in it simply for the sake

of clarity. The second is to include actions only to specify context.

7.3.1. Customizing the Matchers Generated by the Rule Compiler

When Joshua compiles unifier functions for a pattern of a forward chaining rule,

it actually compiles two procedures: a full unifier and a semiunifier. (The latter

assumes there are no variables on the data side of the match; when applicable, the

second one is faster.)

In some cases, the joshua:mapoverforwardruletriggers method will have al

ready checked some slots against the data before handing it off to the unifier. In

such a case, it would be silly for the unifier procedure to check the same features

that have just been checked by mapoverforwardruletriggers. The

joshua:positionsforwardrulematchercanskip protocol function is the hook that

lets you advise the rule compiler about such situations. The rule compiler will

then generate a semiunification matcher that doesn’t bother to check the slots

identified by joshua:positionsforwardrulematchercanskip. (The full unifier

must still check all slots, because of the possibility of variables on the data side.)

In the default implementation, joshua:positionsforwardrulematchercanskip in

structs the match compiler for forward rules to generate a semiunification match

ers that ignores those parts of a predication that contain symbols. This is because

the default trigger indexing scheme, as implemented by (joshua:mapover

forwardruletriggers joshua:defaultprotocolimplementationmodel) is a dis

crimination network that has already discarded candidates with different symbols

in this position before we ever reached the unification question. (Trigger patterns

103

March 1999 Controlling Data and Rule Indexing

such as [goodtoeat honey], [goodtoeat bread], [goodtoeat goatcheese] dis

criminate to different nodes.)

Suppose the trigger mapping method you use is the default one, which uses a dis

crimination net. When you give it a piece of data to find triggers for, it looks in

the discrimination net and comes back with triggers that might unify with it.

"Might unify", in this context, means that it has checked some things that are

cheap to check, and used those to reject candidates that have no hope of unifying.

In particular, the discrimination net checks all positions in a predication that have

symbols, so there’s no need to have the unifier check them again.

Here’s an example. The default trigger indexing scheme uses a discrimination net,

so the semimatcher (for forward rules) can skip looking at any slots in the predi

cation that contain symbols. Thus the default implementation of joshua:positions

forwardrulematchercanskip could have been:

(definepredicatemethod (positionsforwardmatchercanskip predication)

()

(loop for token = (predicationstatement self)

then (cdr token)

while (consp token)

;; needn’t deal with tail variable, since variables

;; can’t ever be skipped anyway

when (symbolp (car token)) collect token))

and thus, if foo uses the default trigger indexing scheme:

(positionsforwardmatchercanskip [foo a ?x b])

→ ((FOO A ?X B) (A ?X B) (B))

Note that the result returned is a list of tails of the predication.

If you create a customized trigger index, you have to be sure that you either in

herit the right joshua:positionsforwardrulematchercanskip method, or that

you write a method of your own that is appropriate for your indexing scheme. In

the above example, inheriting the symbolskipping behavior from joshua:default

rulecompilationmodel was correct. If you don’t provide for the symbolskipping

behavior, you can run into situations where the unifier gives false matches. For

instance, you could joshua:tell [foo a b] and have a forward rule whose trigger is

[foo a bar] incorrectly fire. Needless to say, this can lead to very subtle and hard

toanalyze bugs. If you want to be very careful (and perhaps overly pessimistic)

you can instruct the semimatcher for forward chaining to check everything, by do

ing the following:

(definepredicatemethod

(positionsforwardmatchercanskip <yourpredicatemodelhere>) ()

nil)

This pessimistic method will ensure your semimatchers are always correct; some

times you can do better in terms of performance by considering what your trigger

indexing scheme has already looked at.

104

Controlling Data and Rule Indexing March 1999

105

March 1999 The Joshua Object Facility

8. The Joshua Object Facility

8.1. Introduction to the Joshua Object Facility

A very large part of what one wants to express about the world is captured by ob

jectattributevalue triples. For example:

• The color (attribute) of Fred’s eyes (object) is blue (value);

• My checking account (object) has a balance (attribute) of $514.54 (value);

• The voltage (attribute) at Node22 (object) is 27.2 (value).

It is often convenient to aggregate all the attributes of a particular object into a

single datastructure. ObjectOriented programming systems such as Flavors (or

the Common Lisp Object System) provide a natural mechanism for aggregating the

various properties of an object into a single representation (e.g. a Flavor instance).

The Joshua Object Modelling facility unifies the objectoriented paradigm of the

Flavors system with the Joshua rulebased paradigm. It does this by using the

Joshua Protocol to map ObjectAttributeValue predications into the Objectoriented

storage of the Flavor System. While the facilities of the Joshua Protocol have al

ways made this possible, this release provides the capability as a builtin facility.

Fred

Eye-Color

Value: Blue

[Value-of (Eye-Color Fred) Blue]

Hair-Color

Value: Brown

A Slot

Value:

Net Worth

$1,000,000

. . .

[Value-of (Hair-Color Fred) Brown]

A predication

An Object

Figure 35. Predications Being Mapped into an Object Representation

106

The Joshua Object Facility March 1999

The new facility also provides access to other common facilities of objectoriented

systems. For example, when one TELL’s

[valueof (Fred eyecolor) Blue]

the new facility makes it possible to invoke an appropriate method associated with

the class of the object named Fred or to invoke an expression association specifi

cally with the Fred object.

Finally, the new facility makes it possible to create equality links between proper

ties of different objects, making it easy to express an idea such as Fred’s eyecolor

is the same as Sam’s.

(defmethod ((setf Eye-Color) Person) (new-color)

...)

Fred

Value: Blue

Value:

Hair-Color

Eye-Color

Brown

A method associated with the Flavor of Fred

SAM

Value: Blue

Value:

Hair-Color

Eye-Color

Blond

An Equality Link

(Say-that-Sam-is-using-grecian-formula)

An Attached Action

Figure 36. Other Capabilities of the Object Facility

107

March 1999 The Joshua Object Facility

8.2. Basic Capabilities of the Joshua Object Facility

Objects are represented in the Joshua Object facility as particular types of Flavors.

(Every Joshua ObjectType includes a Flavor called BasicObject as a component

Flavor). Attributes of Joshua Objects are represented by Slots which are data

structures attached to the Object. The type of a Joshua Object is called its Object

Type.

Objects and Slots provide a broad range of facilities; however, initially we will look

only at the basic facilities.

Suppose we want to define an ObjectType to represent electrical resistors; this is

done as follows:

(defineobjecttype resistor

:slots (current voltage resistance))

This defines the Resistor ObjectType; any object of this type has three slots. Each

of these has a field containing the actual value of the attribute (e.g. the voltage

across the resistor) and other fields (such as a predication).

Terminal-1 Terminal-2

Current

Voltage

Resistance

Resistor-1

Current

Value: 10

Resistance

Value: 5

Value:

Voltage

50

Figure 37. A Resistor and its Representation as an Object

An object is created using joshua:makeobject:

(Setq Resistor1 (makeobject ’resistor :name ’resistor1))

There is an accessor function corresponding to each slot of the object which re

turns the value of that attribute. Thus, the value of the current through the Resis

tor1 can be retrieved as:

(Resistor1 Current)

just as if we were retrieving the value of an instance variable. [However, the value

of the Current instancevariable of Resistor1 is actually the slot data structure;

108

The Joshua Object Facility March 1999

the Current accessor function first fetches the slot and then extracts the value

from that. Later on we will see how to fetch the slot as opposed to the value of

the slot].

The predication joshua:valueof is Joshua’s means for talking about slots and Ob

jects. This predication takes two arguments, the first of which describes a slot and

the second of which a value. For example,

[valueof (Resistor1 voltage) 10]

says that Resistor1’s voltage is 10 (volts presumably).

Such predications can be used like any other; they can be used in joshua:ask and

joshua:tell. To tell the system that Resistor2 has a voltage of 5, we would say:

[valueof (Resistor2 voltage) 5].

To determine the voltage across Resistor2, we would might:

(ask [valueof (Resistor2 voltage) ?voltage]

#’(lambda (ignore)

(print ?voltage)))

[Note: the first argument to a joshua:valueof predication can be either an expres

sion describing a slot as shown in the examples above, or it can be an actual slot.

Since we haven’t yet shown how to fetch a slot, we’ll postpone further mention of

this for a while.]

A second predication used to talk about Joshua objects is joshua:objecttypeof.

This is an ju::askonly predication, it can never be used as an argument to

joshua:tell. joshua:objecttypeof takes two arguments, the first of which is an

Object and the second is the name of an ObjectType. Thus,

(ask ‘[ObjectTypeOf ,Resistor2 Resistor]

#’(lambda (ignore)

(print ’yes)))

queries whether Resistor2 is, in fact, a resistor. While

(ask ‘[ObjectTypeOf ,Resistor2 ?Histype]

#’(lambda (ignore)

(print ?Histype)))

retrieves and prints the ObjectType of Resistor2.

Finally, Joshua’s rules can use these predications to express inferences that should

be drawn. Continuing with our example of a resistor, we can express Ohm’s law as

follows:

(defrule Ohm (:forward)

If [and [Objecttypeof ?resistor Resistor]

[valueof (?resistor current) ?I]

[valueof (?resistor resistance) ?R]]

Then ‘[valueof (?resistor voltage) ,(* ?I ?R)])

[Note: there is an important restriction on the use of these predications in rules.

Any rule which includes a joshua:valueof predication must also contain an

109

March 1999 The Joshua Object Facility

joshua:objecttypeof predication which describes the objecttype of the object

mentioned in the joshua:valueof predication. For questions about joshua:valueof

predications, an joshua:objecttypeof predication must be given as the :context

option:

(defquestion GetResistorCurrent (:backward)

[valueof (?resistor current) ?value]

:context [Objecttypeof ?resistor Resistor])

Of course, we can also write backwardchaining rules which talk about objects.

The rule above could have been written as:

(defrule Ohm (:backward)

If [and [Objecttypeof ?resistor Resistor]

[valueof (?resistor current) ?I]

[valueof (?resistor resistance) ?R]

(unify ?voltage (* ?I ?R))]

Then ‘[valueof (?resistor voltage) ?voltage])

8.3. Using Paths to Refer to the Structure of an Object

joshua:valueof predications normally refer to a slot (or an object) using Paths. A

path is simply a list of names which describes how to find an object or a slot. We

have already seen paths in the examples above. For example, in:

[valueof (Resistor1 voltage) 10]

where the path (Resistor1 voltage) describes the voltage slot of Resistor1.

In general, objects contain other objects (for example, a computerconsole has a

screen, a keyboard, and a mouse; A mouse has a left, a middle and a right button).

This leads to longer paths, such as:

(Howiesmonitor mouse leftbutton updownstate)

which describes the updownstate attribute of the leftbutton of the mouse of

Howie’s monitor. We will see how to make such compound objects in a later sec

tion; until then, these longer paths will not be very important.

Each term in a path describes a subpart or slot of the object described by preced

ing terms in the path. One might, therefore, wonder what contains the first thing

in a path. The answer is that there is a special, hidden object which is the root of

the partwhole hierarchy; when we make an object it becomes a subpart of this

root. Thus,

(makeobject ’resistor :name ’r1)

110

The Joshua Object Facility March 1999

makes an object whose objecttype is Resistor and which is described by the path

(R1).

Its resistance is described by the path:

(R1 Resistance)

8.4. Type Hierarchy in the Joshua Object Facility

Objecttypes can include other ObjectTypes (just as a Flavor can mix in other

Flavors). For example, all resistors, capacitors and inductors are Two Terminal

Devices; all such devices share certain properties (for example, they all have two

terminals, a voltage across them and a current through them). It is a useful (and

modular) to capture the common features in a single type definition which is then

shared by the subordinate types. We can do this as follows:

(defineobjecttype 2terminaldevice

:slots (current terminal1current terminal2current

voltage terminal1voltage terminal2voltage))

(defineobjecttype resistor

:slots (resistance)

:includedobjecttypes (2terminaldevice))

(defineobjecttype capacitor

:slots (capacitance)

:includedobjecttypes (2terminaldevice))

(defineobjecttype capacitor

:slots (inductance)

:includedobjecttypes (2terminaldevice))

Which says that all 2terminal devices have 2 terminals, of which has a voltage

and a current. There is a voltage across any 2terminal device and a total current

through any 2terminal device. Resistors, have all these properties; in addition a

resistor has a resistance; similarly for capacitors and capacitance and inductors

and inductance.

This modularity is particularly useful, because we can take advantage of it in our

rules. We can express the fact that the voltage across any 2terminal device is the

difference between its two terminal voltages with a simple rule:

111

March 1999 The Joshua Object Facility

Terminal-1

Terminal-2

Current Voltage

Resistor Capacitor Inductor

2-Terminal-Device

InductanceResistance Capacitance

Figure 38. The ObjectType Hierarchy of TwoTerminal Devices

(defrule 2terminalvoltage (:forward)

If [and [Objecttypeof ?device 2terminaldevice]

[valueof (?device terminal1voltage) ?t1voltage]

[valueof (?device terminal2voltage) ?t2voltage]]

Then ‘[valueof (?device voltage) ,(?t2voltage ?t1voltage)])

This rule, however, will apply to any 2terminal device (whether it is a resistor,

capacitor or inductor). So if we were to create a resistor and state its two terminal

voltages, this rule would fire:

(makeobject ’resistor :name r1)

(tell [valueof (r1 terminal1voltage) 0])

(tell [valueof (r1 terminal2voltage) 5])

and deduce the new predication:

[ValueOf (r1 voltage) 5]

This same rule would also apply to a capacitor, for example:

112

The Joshua Object Facility March 1999

(makeobject ’capacitor :name C1)

(tell [valueof (C1 terminal1voltage) 0])

(tell [valueof (C1 terminal2voltage) 5])

which would lead to the deduction of:

[ValueOf (C1 voltage) 5]

Of course, the Ohm’s law rule would apply only to resistors.

Notice that since R1 is both a resistor and a 2terminal device, there are 2 valid

answers to a query about its ObjectType. Thus, the query:

(ask [ObjectTypeOf R1 ?Type]

#’(lambda (ignore)

(print ?Type)))

will print both Resistor and 2terminaldevice. Similary, if we query for all objects

of the 2terminaldevice objecttype, as follows:

(ask [ObjectTypeOf ?thing 2terminaldevice]

#’(lambda (ignore)

(print ?Thing)))

we will get a listing of all resistors, capacitors and inductors.

8.5. Part-Whole Hierarchy in the Joshua Object Facility

Objects often fall into a second natural hierarchy, that of part inclusion. (See the

section "Using Paths to Refer to the Structure of an Object", page 109.)

For example, a "Widget" factory might have three parts: a warehouse for receiving

incoming material, a widget milling station and a warehouse for storing completed

widgets waiting shipment. Each of these is an object which must, therefore, have

an objecttype of its own. The two warehouses are objects of the Warehouse object

type and the milling station is an object of the MillingMachine objecttype. In ad

dition, each of these objects plays a particular role within the widget company. No

tice that, although there are two warehouses, they play different different roles

and, therefore, have different names within the context of a Widget factory.

joshua:defineobjecttype takes a :parts keyword argument whose value is a list

of pairs of roles and objecttypes. Thus, we would describe a widget factory, as fol

lows:

(defineobjecttype widgetfactory

:parts ((receiving warehouse)

(production millingmachine)

(finishedgoods warehouse)))

113

March 1999 The Joshua Object Facility

This says that every widgetfactory has one subpart named Receiving which is a

warehouse and another subpart named FinishedGoods which is also a warehouse.

Finally, any WidgetFactory also has a part named Production, which is a Milling

Machine.

Notice that we can describe any of these using paths. We can create a widget

factory, named WF1 as follows:

(makeobject ’widgetfactory :name ’WF1)

Its three subparts can be refered to with the following paths:

(WF1 MillingMachine)

(WF1 Receiving)

(WF1 FinishedGoods)

Assume that an object of type MillingMachine has a slot named ThingBeing

Milled. Then the path

(WF1 MillingMachine ThingBeingMilled)

names the thing currently being milled in the Production part of WF1.

8.6. Other Capabilities of Slots

Slots support a variety of behaviors other than those explained already. This be

havior is controlled by keyword arguments attached to the name of the slot in its

DefineObjectType form. If no keywords are specified (as has been the case so far)

then the default behaviors are assumed.

8.6.1. Initial Values of Slots

The initial value of a slot may be specified by including the :initform keyword ar

gument in the slot description. The value of this argument is a form; the slot is

initialized to have the value of this form as its contents.

For example,

(defineobjecttype resistor

:slots ((resistance :initform 10)))

specifies that whenever a resistor is created, its resistance should be initialized to

10. This is done by causing the appropriate joshua:tell to happen.

8.6.2. Set Valued and Single Valued Slots

Slots may be either singlevalued or setvalued. If a slot is singlevalued, then at

any one time it there can only be a single value of the attribute represented by

the slot. For example, the voltage at node22 can only be a specific voltage at any

time. It would be contradictory to believe both:

114

The Joshua Object Facility March 1999

[valueof (voltage node22) 10]

[valueof (voltage node22) 20].

However, other attributes can be set valued; for example, there might be many

siblings of John. Here it is perfectly possible to believe both of:

[valueof (sibling john) mary]

[valueof (sibling john) mark]

joshua:defineobjecttype specifies for each slot whether it is singlevalued or set

valued. Singlevalued is the default. The fact that sibling is a setvalued attribute

would be indicated by:

(defineobjecttype person

:slots ((sibling :setvalued t)

...))

8.6.3. Slots and Truth Maintenance

Another option in the description of a slot, is whether the information in the slot

should be subject to truthmaintainence or not. (The default is no). If the slot is

subject to truthmaintenance then any predication mentioning it should include the

ltms::ltmsmixin. The provided predicate ltms:valueof includes both slot mod

elling and LTMS mixins. Suppose that we wanted to reason about Adders as part

of troubleshooting program which uses TruthMaintenance techniques (such a pro

gram is included in the Jericho demo suite). We would define Adder as follows:

(defineobjecttype adder

:slot ((status :truthmaintenance t)

(addend :truthmaintenance t)

(augend :truthmaintenance t)

(sum :truthmaintenance t)))

And we would joshua:tell that the value of the addend of adder22 is 10 as fol

lows:

(tell [ltms:valueof (adder22 addend) 10]).

[Note: It would be an error to use the predicate Valueof].

8.6.4. Slots and Attached Actions

Another feature supported by slots is the ability to attach a Lisp expression to a

particular slot which is triggered whenever the value is changed. This is specified

by the :attachedactions keyword (the default is no attached actions). If we want

ed to enable the ability to attach such Lisp expressions to the SUM of adders we

would specify:

115

March 1999 The Joshua Object Facility

(defineobjecttype adder

:slot ((status :truthmaintenance t)

(addend :truthmaintenance t)

(augend :truthmaintenance t)

(sum :truthmaintenance t :attachedactions t)))

This allocates extra space in the SUM slot of every adder to hold the attached lisp

expression. The attached action is simply a Lisp function which is run every time

the slot changes value. To actually attach an action, the function AddAction is

used:

(addaction ’(adder22 sum) #’printpathnameandvalue)

(defun printpathnameandvalue (cell currentvalue predication ignore)

(if (eql (predicationtruthvalue predication) *true*)

(format t "~&The value of ~s is ~s" cell currentvalue)

(format t "~&The value of ~s isn’t ~s any more"

cell currentvalue)))

joshua:addaction takes two required arguments and one optional argument. The

first argument is either a path to a slot or an actual slot and the second argument

is the function to attach to that slot. The function is called for side effect; when

invoked, it is passed the following arguments: the slot, the currentvalue of the

slot, the predication associated with the value of the slot, and the previous truth

value of the predication. The function is called whenever the slot assumes a new

value or whenever a current value is removed; the truthvalue of the predication

argument and the previous truthvalue can be used to distinguish the two cases

(as shown above).

The optional argument to joshua:addaction is a "name" for the action. It defaults

to :action. Naming an action allows the user to attach more than one action to a

slot. Individual actions may be removed from a slot by using joshua:remove

action.

Attached actions can be used for a variety of purposes: For example, they can be

used to implement validity checks on the values inserted in a slot, or they can be

used in setvalued slots to check that the cardinality of the set is within some

bounds.

8.6.5. Invoking Methods Associated with the Object Associated with a Slot

A final capability of slots is the ability to invoke a method associated with the ob

ject with with the slot is associated whenever the value of the slot changes. [Note:

This is different than an attachedaction (see the section "Slots and Attached Ac

tions", page 114) in that an attachedaction is associated with a particular object

while a method is associated with every object of the type.] For example, if we

wanted every Adder to notice the changing of its status attribute, we would indi

cate this as follows:

116

The Joshua Object Facility March 1999

(defineobjecttype adder

:slot ((status :truthmaintenance t :objectnotifying t)

(addend :truthmaintenance t)

(augend :truthmaintenance t)

(sum :truthmaintenance t :attachedactions t)))

When the status attribute of an adder changes, Joshua will call the (SETF STA

TUS) method of the ADDER flavor. The arguments passed are: the value in the

slot and the predication associated with the slot. Thus, if the :objectnotifying op

tion were specified as above, one would be expected to define a method such as the

following:

(defmethod ((setf status) adder) (currentvalue currentpredication)

(when (and (eql currentvalue :broken)

(eql (predicationtruthvalue predication) *true*))

(Soundthealarm self)))

which checks to see that the current state of the adder is :BROKEN and if so,

sounds its alarm.

8.6.6. Equalities Between Slot Values

When an object is decomposed into a subpart hierarchy, it often happens that

there are connections between certain attributes of the subparts. For example, a

"Voltage Divider" is a simple electrical circuit consisting of two connected resis

tors. The voltage at terminal1 of one of the two resistors will necessarily be equal

to the voltage at terminal2 of the other resistor.

There will be similar connections in a factory, where the output of one machine is

the input of another, or in a accounting system where the result of one calculation

is an input to another. joshua:defineobjecttype provides a means of expressing

such equalities as follows:

(defineobjecttype voltagedivider

:slots (voltage current outputvoltage terminal1voltage terminal2voltage)

:parts ((resistor1 resistor)

(resistor2 resistor))

:equalities (((resistor1 current) (resistor2 current))

((resistor1 current) (current))

((resistor1 terminal2voltage) (resistor2 terminal1voltage))

((resistor1 terminal1voltage) (terminal1voltage))

((resistor2 terminal2voltage) (terminal2voltage))))

which, in effect, specifies the wiring diagram shown in Figure 39.

If two slots are specified to be equal, then any time the value of one of the slots is

determined, the value of the other will automatically be deduced.

117

March 1999 The Joshua Object Facility

Terminal-2

Terminal-1

Current

Voltage

Terminal-1

Terminal-2

Current

Voltage

Resistor-1

Resistor-2

Voltage
Divider’s

Current
Divider’s

Equality Links

Figure 39. Equality Links in a Two Resistor Voltage Divider

8.7. Other Options in Define-Object-Type

A Joshua Object is, in fact, a Flavor Instance. It is often useful to be able to in

clude in Joshua Objects instance variables which do not hold slots as their values.

Similarly, it is useful to be able to mix a normal flavor into an ObjectType defini

tion. The syntax of DefineObjectType supports this, using the :otherinstance

variables and :otherflavors keyword arguments. For example,

118

The Joshua Object Facility March 1999

(DefineObjectType voltagedivider

:slots (voltage current outputvoltage terminal1voltage terminal2voltage)

:parts ((resistor1 resistor)

(resistor2 resistor))

:otherinstancevariables (documentation)

:otherflavors (electroniccomponentwithdocumentationmixin)

)

This has the effect of mixing the electroniccomponentwithdocumentationmixin

flavor into the voltagedividers flavor. In addition, every instance of the voltage

divider objecttype will have a "documentation" instance variable.

Finally, it is sometimes useful to be able to include some initialization code as part

of the DefineObjectType form. This can be done using the :initializations key

word argument. The value of this argument is a list of Lisp forms which are run

after an instance of the type is created. In effect, this code is appended to the the

makeinstance method of the ObjectType; thus, self is bound to the created object

while this code executes. For example, the following definition

(defineobjecttype manufacturingsite

:slots (productioncapacity

clock

inputrequest

inputrequestacknowledge

(output :attachedactions t))

:otherinstancevariables ((thingsbeingproduced (makeheap)))

:initializations ((tell ‘[valueof (,self output) NIL]))

)

initializes the output slot of manufacturing sites to be nil.

8.8. The Predicates Used in the Joshua Object Facility

There are four Predicates used in the Joshua Object facility. Besides Define

ObjectType, these are the main interfaces to the facility. Each of these predicates

is supplied in two forms: The first mixes in the standard Joshua TMS capabilities

(ltms::ltmspredicatemixin) while the second omits TMS capabilities (and is based

on joshua:defaultpredicatemodel). The basic capabilities of each of the four

predicates is supplied as a PredicateModel which can be combined with user sup

plied PredicateModels to provide whatever capabilities you need.

The four predicates are:

119

March 1999 The Joshua Object Facility

Purpose Without TMS With TMS Model mixin

Slot Accessing valueof ltms:valueof slotvaluemixin

PartWhole partof ltms:partof partofmixin

ObjectType objecttypeof ltms:objecttypeof typeofmixin

Equality equated ltms:equated equatedmixin

joshua:partof and joshua:objecttypeof are askonly predicates; they cannot be

used in joshua:tell. This is because the information they refer to is the unchange

able information of the partwhole and objecttype hierarchies created by

joshua:defineobjecttype. joshua:valueof is the normal way of accessing the val

ues of slots; we have seen examples of its use above. joshua:equated can be used

to create equalities not specified by joshua:defineobjecttype. For example:

(let ((warehouse1 (makeobject ’warehouse :name ’warehouse1))

(factory1 (makeobject ’factory1 :name ’factory1)))

(tell ‘[equated (warehouse1 output) (factory1 input)]))

connects the output slot of Warehouse1 to the input slot of Factory1.

120

The Joshua Object Facility March 1999

121

March 1999 Joshua Language Dictionary

9. Joshua Language Dictionary

9.1. Dictionary Entries

joshua:actontruthvaluechange databasepredication oldtruth Generic Function

value

databasepredication A predication

oldtruthvalue The truth value that just changed

Called whenever the truthvalue of predication changes from oldtruthvalue

to some new truthvalue. The new truthvalue is available in the predica

tion by the time actontruthvaluechange is called. It can be examined us

ing joshua:predicationtruthvalue.

This protocol function allows you to take actions that depend on the truth

value of a predication as the truth values change. (You might want to do

that, for example, in advanced uses of modeling.)

When a predication changes truthvalue, the TMS may make several other

predications to change their truthvalues as well. The TMS is responsible

for first calling joshua:noticetruthvaluechange on every changed predi

cation before this protocol function is invoked. Thus whenever an

joshua:actontruthvaluechange method is called, it may safely assume

that the world has been updated into a consistent state.

See the sections on "Signalling Truth Value Changes" and joshua:notice

truthvaluechange

joshua:addaction slotorpath function &optional (name :action) Generic Function

This function is part of the Joshua object facility. It allows actions, which

are arbitrary functions, to be associated with a slot of a Joshua object. The

function will be called whenever the value of a slot changes.

The function is called for side effect; when invoked, it is passed the follow

ing arguments: the slot, the currentvalue of the slot, the predication asso

ciated with the value of the slot, and the previous truthvalue of the predi

cation. The function is called whenever the slot assumes a new value or

whenever a current value is removed; the truthvalue of the predication ar

gument and the previous truthvalue can be used to distinguish the differ

ent possibilities.

Actions may be removed from slots by using joshua:removeaction.

The optional argument to joshua:addaction is a "name" for the action. It

defaults to :action. Naming an action allows the user to attach more than

one action to a slot.

122

Joshua Language Dictionary	 March 1999

joshua:addbackwardquestiontrigger predication truthvalue Generic Function

triggerobject context questionname

predication	 The pattern under which the backward question is to be

indexed.

truthvalue	 The truth value under which the pattern is to be in

dexed.

triggerobject	 The backward question trigger datastructure to be in

dexed.

context	 The context of the backward question. Useful in ad

vanced modeling applications.

questionname	 The name of the backward question being indexed.

Tailoring of backwardquestion indexing is usually accomplished by provid

ing methods for the joshua:locatebackwardquestiontrigger and

joshua:mapoverbackwardquestiontriggers protocol functions. The

joshua:addbackwardquestiontrigger and joshua:deletebackward

questiontrigger methods provided as Joshua’s defaults call joshua:locate

backwardquestiontrigger as a subroutine. All of the interesting tailoring

of their behavior can be obtained by providing a joshua:locatebackward

questiontrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what questions are currently indexed where. Even in advanced modeling ap

plications it is unlikely that you will need to define a method for the

joshua:addbackwardquestiontrigger protocol function.

See the section "The Joshua Question Indexing Protocol", page 48.

joshua:addbackwardruletrigger predication truthvalue trigger Generic Function

object context rulename

predication	 The pattern under which the backward rule is to be in

dexed.

truthvalue	 The truth value under which the backward rule is to be

indexed.

triggerobject	 The backward rule trigger datastructure to be indexed.

context	 The entire ifpart of the rule. Useful in advanced mod

eling applications.

rulename	 The name of the rule being indexed.

Tailoring of backward rule indexing is usually accomplished by providing

methods for the joshua:locatebackwardruletrigger and joshua:map

overbackwardruletriggers protocol functions. The joshua:addbackward

ruletrigger and joshua:deletebackwardruletrigger methods provided as

123

March 1999	 Joshua Language Dictionary

Joshua’s defaults call joshua:locatebackwardruletrigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid

ing a joshua:locatebackwardruletrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli

cations it is unlikely that you will need to define a method for the

joshua:addbackwardruletrigger protocol function.

See the section "The Contract of the Trigger Adding Functions", page 38.

joshua:addforwardruletrigger predication truthvalue trigger Generic Function

object context rulename

predication	 The pattern under which the forward rule is to be in

dexed.

truthvalue	 The truth value under which the pattern is to be in

dexed.

triggerobject	 The forward rule trigger datastructure to be indexed.

context	 The entire ifpart of the rule. Useful in advanced mod

eling applications.

rulename	 The name of the rule being indexed.

Tailoring of forward rule indexing is usually accomplished by providing

methods for the joshua:locateforwardruletrigger and joshua:mapover

forwardruletriggers protocol functions. The joshua:addforwardrule

trigger and joshua:deleteforwardruletrigger methods provided as

Joshua’s defaults call joshua:locateforwardruletrigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid

ing a joshua:locateforwardruletrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli

cations it is unlikely that you will need to define a method for the

joshua:addforwardruletrigger protocol function.

See the section "The Contract of the Trigger Adding Functions", page 38.

joshua:ask query continuation &key (:dobackwardrules t) :do Function

questions

Queries the virtual database and backward rules and questions.

Note: joshua:ask is a macro, and as such it cannot be used as an argu

ment to the function funcall.

query	 Should be a predication.

124

Joshua Language Dictionary	 March 1999

continuation	 Should be a function of one argument, describing what

you want done with the answers to the query.

Note that the argument given to continuation might be

ephemeral in one of two ways: it could be stackconsed,

and it could contain logic variables whose bindings will

be undone when you exit this frame. Instantiated

queries almost always need to be copied with

joshua:copyobjectifnecessary, because the variable

bindings are ephemeral. See example 6 below.

If, on the other hand, you are collecting database predi

cations, they are not ephemeral, and you don’t want to

copy them. (Copying a database predication causes loss

of the database information associated with the predi

cation.)

Keywords:

:dobackwardrules	 If this keyword has a nonnil value, backward chaining

rules are checked for solutions. The default is t. Use

:dobackwardrules nil to check out just the database

solution.

:doquestions	 If this keyword has a nonnil value, any questions that

claim to answer query are run to solicit more solutions

from the user. The default is nil.

joshua:ask uses the database, backward rules, and questions to satisfy the

query predication. Each time joshua:ask finds a solution to query it calls

the continuation, passing it a list that contains the answer and information

about how the answer was derived.

joshua:ask doesn’t return an interesting value. Normally the continuation

performs some action with each solution. You can collect values in the con

tinuation, or return a value to some caller of joshua:ask using throw,

returnfrom, or some similar Lisp form. Such uses of throw and return

from are like the Prolog cut feature. See examples 6 through 9.

Any logic variables used in query can be referred to as though they were

lexical Lisp variables within continuation; joshua:ask establishes a binding

contour for the logic variables. (See example 1 below.) In this sense,

joshua:ask is like let combined with mapc. Like let, joshua:ask establish

es lexical binding contours for the logic variables in the query. Like mapc,

it iteratively calls the continuation on the answer. For a discussion of scop

ing rules: See the section "Variables and Scoping in Joshua" in User’s

Guide to Basic Joshua.

joshua:ask calls the continuation function with a single argument, back

wardsupport, a list containing information about the solution process. The

list contains the instantiated query, its truth value, and the support for the

query; the form of the support varies, depending on how the query was sat

isfied.

125

March 1999	 Joshua Language Dictionary

Typically you’ll want to deal only with part of the information provided in

backwardsupport rather than with the entire list. For instance, you might

want to see only the answer, or only the database predication that matched

the answer, or only the support for the answer.

Joshua supplies accessor functions to extract various elements of the list in

backwardsupport, making it available to you for interpretation.

In addition, Joshua provides convenience functions that extract some element

of the list in backwardsupport and interpret it for you. These functions let

you postpone dealing with the details of backwardsupport and accessor

functions until you need them for more advanced work. So before reading

on you might want to skip ahead to the section "Streamlining Typical Con

tinuation Requests with Convenience Functions" and see if these functions

meet your current needs.

Continuation Argument

backwardsupport A list of the following form:

•	 The first element is always the unified query, that is, the query that was

passed to joshua:ask, with appropriate variables instantiated as a side

effect of unification.

•	 The second element is the truth value of the query. This corresponds to

the truth value of the matching predication in the database at the time

joshua:ask looked at it.

•	 The rest of the elements are the support for the instantiated query. The

support can take several forms, depending on how the query was satis

fied.

°	 When the query is satisfied by matching a predication in the database,

the support is that database object.

°	 When the query answer comes from a conjunction (and), the support

is the symbol and, followed by the backward support for each of the

compound predications.

°	 When the query answer comes from a disjunction (or), the support is

the symbol or, followed by the support for the single predication from

the or that succeeded.

°	 When the query answer is derived from a backward rule, the support

has the format

((rule rulename) . rulesupport)

where

126

Joshua Language Dictionary	 March 1999

•	 rule is the symbol rule

•	 rulename is the name of the rule used to satisfy the query

•	 rulesupport is a list containing (recursively) the backward support

used to satisfy parts of the rule body.

°	 When the query answer comes from a question, the support is like

that for rules, except that it uses the question name instead of the

rule name.

°	 When the query answer comes from the predicates joshua:known or

joshua:provable, the support is the respective symbol name

(joshua:known or joshua:provable), followed by the support for the

predication that served as the symbol’s argument.

°	 When the query originates from an joshua:ask or an joshua:askdata

method, the support is whatever the writer of that method provided.

See the section "Customizing the Data Index", page 81.

In schematic form, the backwardsupport list looks as follows:

The backwardsupport list:

(<unified query> <truthvalue> . <derivation>)

(<(unified) query>)

(<t/f>)

(<derivation>) Possibilities for these elements are:

(<database predication>)

(AND <conjunct1 derivation> <conjunct2 derivation> ...)

(OR <successful disjunct derivation>)

((RULE <rule name>) <conjunct1 t/f derivation> <conjunct2 t/f derivation> ...)

((QUESTION <question name>) <succeed argument>)

(KNOWN <derivation>)

(PROVABLE <derivation>)

Extracting Parts of the Continuation with Accessor Functions

Joshua provides four accessor functions to extract specific portions of back

wardsupport. Use these functions if you want to interpret the answer your

self. Use the convenience functions described below if you want the system

to interpret the information for you.

joshua:askquery	 Extracts the instantiated query (the first element) from

backwardsupport. For example:

(ask [...] #’(lambda (backwardsuppport)

(print (askquery backwardsupport))))

127

March 1999	 Joshua Language Dictionary

joshua:askquerytruthvalue

Extracts the truth value of the instantiated query (the

second element) from backwardsupport. For example:

(ask [...] #’(lambda (backwardsupport)

(print

(askquerytruthvalue	 backwardsupport))))

joshua:askdatabasepredication

Extracts the database object that matched query. If the

backward support is a rule, displays the rule name (see

example 4). Use this function only when you know the

support is a database object (that is, with :do

backwardrules nil. For example:

(ask [...]

#’(lambda (backwardsupport)

(print (askdatabasepredication backwardsupport)))

:dobackwardrules nil)

joshua:askderivation

Extracts the support information in backwardsupport.

Makes fewer assumptions than joshua:askdatabase

predication about where the support came from. For

example:

(ask [...] #’(lambda (backwardsupport)

(print (askderivation	 backwardsupport))))

Streamlining Typical Continuation Requests with Convenience Functions

When an joshua:ask query succeeds, there are some standard things you

might want to do with the answer, such as: printing or formatting the uni

fied query, operating on the database predication supporting the query, or

interpreting all of the backward support.

Joshua provides five convenience functions that extract an appropriate part

of the answer and interpret it in some specific way. The first four are

joshua:ask continuation functions. The fifth is a specialpurpose function

that lets you do database lookup only, and interpret the answer in some

way. joshua:mapoverdatabasepredications uses joshua:ask to search

the database and extract the predication(s) matching its argument pattern.

These functions are:

joshua:printquery	 Extracts and displays the unified query. For exam

ple:

(ask [...] #’printquery)

joshua:sayquery	 Extracts the unified query and displays it in format

ted form.

128

Joshua Language Dictionary March 1999

joshua:printqueryresults

Takes the information in backwardsupport and dis

plays it with annotations.

joshua:graphqueryresults

The above in graph form.

joshua:mapoverdatabasepredications

For special cases of the solution process, where you

look only in the database for an answer, extracts all

database predications that unify with a predication

pattern and applies some function to each. For ex

ample:

(mapoverdatabasepredications [foo ?x] #’untell)

joshua:mapoverdatabasepredications is equiva

lent to:

(ask query #’(lambda (x) (funcall continuation

(askdatabasepredication x)))

:dobackwardrules nil)

We use some of the convenience functions in the examples to joshua:ask.

For more on each function, please consult its dictionary entry.

Examples of Using joshua:ask

Let’s define some predicates, enter them into the database, then add a

backward rule and a backward question. The rule determines what is an

eater’s favorite food. The question elicits information to satisfy the rule’s

subgoal.

(definepredicate favoritemeal (eater food))

(definepredicate guzzles (eater food))

(defun eatit ()

(clear)

(tell [and [favoritemeal bears honey]

[favoritemeal mosquitoes people]

[favoritemeal spiders flies]

[favoritemeal monkeys bananas]

[guzzles ted icecream]])

(cp:executecommand "Show Joshua Database"))

129

March 1999 Joshua Language Dictionary

Show Joshua Database

True things

[FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL SPIDERS FLIES]

[FAVORITEMEAL MONKEYS BANANAS]

[GUZZLES TED ICECREAM]

False things

None

(defrule notfinicky (:backward)

if [guzzles ?eater ?food]

then [favoritemeal ?eater ?food])

(defquestion guzzler? (:backward)

[guzzles ?eater ?food])

Next we joshua:ask what Joshua knows about everybody’s favorite meals.

Example 1 uses the variables in the unified query to print an Englishlike

sentence (not fussy about number agreement between subject and verb)

about everybody’s meals. It ignores the backwardsupport argument and us

es a format directive. It looks in the database and rules, but not in ques

tions.

Example 1.

(ask [favoritemeal ?eater ?food]

#’(lambda (ignore)

(format t "~%~S is the preferred food of ~S." ?food ?eater)))

BANANAS is the preferred food of MONKEYS.

FLIES is the preferred food of SPIDERS.

PEOPLE is the preferred food of MOSQUITOES.

HONEY is the preferred food of BEARS.

ICECREAM is the preferred food of TED.

Example 2 prints the instantiated query for everybody’s meals, using the

convenience function, joshua:printquery. It uses the database only, ignor

ing both rules and questions.

Example 2.

(ask [favoritemeal ?eater ?food] #’printquery :dobackwardrules nil)

;print just those in the database

[FAVORITEMEAL MONKEYS BANANAS]

[FAVORITEMEAL SPIDERS FLIES]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL BEARS HONEY]

Example 3 prints the instantiated query for the meals of bears, using the

convenience function, joshua:printquery. It looks in the database and

backward rules, but not in questions.

130

Joshua Language Dictionary March 1999

Example 3.

(ask [favoritemeal bears ?food] #’printquery)

;print out bears’ favoritemeal foods

[FAVORITEMEAL BEARS HONEY]

Example 4 prints the predication object that satisfied the query for every

body’s meals using the accessor function joshua:askdatabasepredication.

It looks in the database and backward rules, but not in questions. Notice

that when the query is satisfied from a rule, the rule name is printed, not

a predication object. It is best to use joshua:askdatabasepredication with

:dobackwardrules nil, that is, when you know the support is only in the

database.

Example 4.

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(print (askdatabasepredication backwardsupport))))

[FAVORITEMEAL MONKEYS BANANAS]

[FAVORITEMEAL SPIDERS FLIES]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL BEARS HONEY]

(RULE NOTFINICKY)

Example 5 prints the instantiated query for everybody’s meals. It uses the

database, backward rules, and questions. Note that we supplied just one an

swer interactively to the question, although we could have supplied more.

Example 5.

(ask [favoritemeal ?eater ?food] #’printquery :doquestions t)

;look for backward questions as well

[FAVORITEMEAL MONKEYS BANANAS]

[FAVORITEMEAL SPIDERS FLIES]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL TED ICECREAM]

[FAVORITEMEAL CHRISTOPHER BANANAPIE]

Example 6 collects a list of patterns that describe everybody’s meals. It us

es the database and rules, but not questions. Note the use of joshua:copy

objectifnecessary. This is because the bindings in the query are undone

131

March 1999 Joshua Language Dictionary

upon exit from the continuation, so we must make a copy in which to pre

serve them.

Note that the resulting list is not a list of things that are in the database,

but rather a list of freefloating predications that are copies of the query. If

you want the latter, use joshua:askdatabasepredication with :do

backwardrules nil and don’t copy it. See example 7.

Example 6.

(defun collectanswers ()

(let ((answers nil))

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(push (copyobjectifnecessary

(askquery backwardsupport)) answers)))

answers))

COLLECTANSWERS

(collectanswers)

([FAVORITEMEAL TED ICECREAM] [FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL SPIDERS FLIES] [FAVORITEMEAL MONKEYS BANANAS])

Example 7 is identical to example 6, except that here we collect database

predications instead of instantiated queries, and the former don’t need to be

copied. Since we are only looking in the database we specify :dobackward

rules nil.

(defun collectanswersdatabasepredications ()

(let ((answers nil))

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(push (askdatabasepredication backwardsupport)

answers)

:dobackwardrules nil))

answers))

COLLECTANSWERSDATABASEPREDICATIONS

(collectanswersdatabasepredications)

([FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL SPIDERS FLIES] [FAVORITEMEAL MONKEYS BANANAS])

Better style for the above example would be:

(collectanswersdatabasepredications2 ()

(let ((answers nil))

(mapoverdatabasepredications [favoritemeal ?eater ?food]

#’(lambda (dbpredication)

(push dbpredication answers)))

answers))

132

Joshua Language Dictionary March 1999

Often you’re interested in whether there is a solution, but not any particu

lar solution. Example 8 illustrates the use of returnfrom in a continuation

to return when the first solution is found.

Example 8.

(defun solutionexistsp ()

(ask [favoritemeal ?eater ?food]

#’(lambda (ignore)

(returnfrom solutionexistsp t)))

;; return nil if nothing succeeded

nil))

(solutionexistsp)

T

Example 9 is like the example above, but it returns a copy of the query, in

stead of a boolean. This is useful if you want to know something about the

solution, in addition to its existence. (However, if you want to use database

related properties, such as TMSrelation, use joshua:askdatabase

predication and don’t copy it).

Example 9.

(defun firstsolution ()

(block findasolution

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(returnfrom findasolution

(copyobjectifnecessary (askquery backwardsupport)))))

;; return nil if nothing succeeded

nil))

(firstsolution)

[FAVORITEMEAL MONKEYS BANANAS]

Modeling Note:

Chances are that you seldom want to define a method that takes over the

entire functionality of joshua:ask. It’s more likely you want to define a

method for one of the generic functions it calls, such as joshua:fetch,

joshua:askdata, joshua:askrules, joshua:askquestions, or joshua:map

overforwardruletriggers.

Also, there is a sys:downwardfunarg declaration on continuation, so your

implementations of joshua:ask should not use continuation in other than

stacklike ways.

Related Functions:

joshua:tell

joshua:clear

joshua:copyobjectifnecessary

joshua:mapoverdatabasepredications

133

March 1999	 Joshua Language Dictionary

See the section "Querying the Database" in User’s Guide to Basic Joshua.

See the section "The Joshua Database Protocol", page 8. See the section

"Customizing the Data Index", page 81.

joshua:askdata predication truthvalue continuation	 Generic Function

predication	 A predication to search for.

truthvalue	 The truth value being asked about. Must be either

joshua:*true* or joshua:*false*.

continuation	 A function to be called when the data is found.

joshua:askdata is the database part of the joshua:ask protocol. It is an

intermediate level of the protocol, between joshua:ask and joshua:fetch. It

is called by the default joshua:ask method, and the default method for

joshua:askdata calls joshua:fetch. You will probably not call this function

directly, except when writing joshua:ask methods. More commonly, you

might write your own joshua:askdata method as a kind of data modeling.

The complete contract of joshua:askdata is:

•	 Look in the virtual database for predication or anything which unifies

with it.

•	 Make sure that the current truth value of the entry in the database

matches truthvalue.

•	 Unify self with a copy of the database predication.

•	 (Assuming all has gone well so far) build the appropriate backward sup

port and call continuation with the backward support.

The backward support for an joshua:askdata method should be a list of

three elements:

•	 self, the (now unified) query predication.

•	 truthvalue, the truth value being joshua:asked.

•	 The derivation. This will usually be the database predication. If there is

no database predication, this should be some other indication of the

derivation of this query succcess. Typically, this would be a symbol indi

cating the reason for success.

Actually, if your model is storing the database predications as predication

objects, you probably don’t need to write an joshua:askdata method. Writ

ing your own joshua:fetch method and using the default joshua:askdata

method is more convenient. Defining an joshua:askdata method is usually

done when you don’t want to actually store the predication objects. See the

134

Joshua Language Dictionary March 1999

first version of the goodtoeat model in the section"Customizing the Data

Index" for an example of this.

See the generic function joshua:askrules, page 142. See the generic func

tion joshua:askquestions, page 140.

joshua:askdataandquestionsonlymixin Flavor

This flavor defines an joshua:ask method that only looks in the database

and asks questions (if :doquestions is nonnil), but never tries backward

rules.

The default joshua:ask method looks first in the database, then tries back

ward rules (if :dobackwardrules is nonnil), then asks questions (if :do

questions is nonnil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:definepredicate or joshua:definepredicatemodel. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi

cates.

Related Flavors:

joshua:defaultaskmodel

joshua:askdataonlymixin

joshua:askrulesonlymixin

joshua:askquestionsonlymixin

joshua:askdataandrulesonlymixin

joshua:askrulesandquestionsonlymixin

joshua:askdataandrulesonlymixin Flavor

This flavor defines an joshua:ask method that only looks in the database

and tries backward rules, but never asks questions.

The default joshua:ask method looks first in the database, then tries back

ward rules (if :dobackwardrules is nonnil), then asks questions (if :do

questions is nonnil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:definepredicate or joshua:definepredicatemodel. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi

cates.

Related Flavors:

135

March 1999 Joshua Language Dictionary

joshua:defaultaskmodel

joshua:askdataonlymixin

joshua:askrulesonlymixin

joshua:askquestionsonlymixin

joshua:askdataandquestionsonlymixin

joshua:askrulesandquestionsonlymixin

joshua:askdatabasepredication backwardsupport Function

An accessor function for use in an joshua:ask continuation. It extracts the

database predication that matched the query from the continuation argu

ment, backwardsupport, that contains information about the satisfied query.

We describe this continuation argument fully in the dictionary entry for

joshua:ask.

Note that if the backward support did not come from the database,

joshua:askdatabasepredication gives a bogus answer; in some cases,

such as userwritten models, it may even cause a trip to the debugger.

Thus, you should use joshua:askdatabasepredication only with :do

backwardrules nil.

Examples:

We build a library database using joshua:tell statements as well as a for

ward rule that says the library owns any work authored by Shakespeare.

We also include an LTMS in our predicate definitions so that we can later

apply joshua:explain to the database predications we find.

(definepredicate authorof (work author) (ltms:ltmspredicatemodel))

(definepredicate ownslibrary (work) (ltms:ltmspredicatemodel))

(defrule Shakespeareholdings (:forward)

if [authorof ?work Shakespeare]

then [ownslibrary ?work])

(defun buildauthortitleindex2 ()

(clear)

(tell [and [authorof "King Lear" Shakespeare]

[authorof "Hedda Gabler" Ibsen]

[ownslibrary "Trumpeting Joshua"]

[authorof "A Doll’s House" Ibsen]])

(cp:executecommand "Show Joshua Database"))

BUILDAUTHORTITLEINDEX2

(buildauthortitleindex2)

True things

[OWNSLIBRARY "Trumpeting Joshua"] [AUTHOROF "Hedda Gabler" IBSEN]

[OWNSLIBRARY "King Lear"] [AUTHOROF "King Lear" SHAKESPEARE]

[AUTHOROF "A Doll’s House" IBSEN]

False things

None

136

Joshua Language Dictionary March 1999

Now we ask Joshua to find and joshua:explain the database predications

that tell what the library owns.

(ask [ownslibrary ?work]

#’(lambda (backwardsupport)

(explain (askdatabasepredication backwardsupport))))

[OWNSLIBRARY "Trumpeting Joshua"] is *True*.

It’s a :Premise.

[OWNSLIBRARY "King Lear"] is *True*.

It’s derived from the rule ShakespearHoldings, using:

[AUTHOROF "King Lear" SHAKESPEARE]

Usually you can use the convenience function joshua:mapoverdatabase

predications instead of joshua:askdatabasepredication.

For comparison we use the same library example for both functions.

For more on these and related functions: See the function joshua:ask, page

123.

joshua:askdata truthvalue continuation of joshua:defaultask Method

model

This is the default joshua:askdata method. It does something like the fol

lowing (somewhat sanitized) code:

(definepredicatemethod (askdata defaultaskmodel)

(truthvalue continuation)

(fetch self

#’(lambda (databasepredication)

(when (= truthvalue

(predicationtruthvalue databasepredication))

;; the truth value we’re looking for matches the

;; database predication

(withunification

;; if the database predication has variables, copy it

;; so the database isn’t sideeffected

(unify self

(copyobjectifnecessary databasepredication))

;; the unification succeeded, so call the continuation

(stacklet ((backwardsupport ‘(,self

,truthvalue

,databasepredication)))

(funcall continuation backwardsupport)))))))

joshua:askdataonlymixin Flavor

This flavor defines an joshua:ask method thatwhich only looks in the

database, and never tries rules or questions.

The default joshua:ask method looks first in the database, then tries back

ward rules (if :dobackwardrules is nonnil), then asks questions (if :do

questions is nonnil).

137

March 1999 Joshua Language Dictionary

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:definepredicate or joshua:definepredicatemodel. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi

cates.

Related Flavors:

joshua:defaultaskmodel

joshua:askrulesonlymixin

joshua:askquestionsonlymixin

joshua:askdataandrulesonlymixin

joshua:askdataandquestionsonlymixin

joshua:askrulesandquestionsonlymixin

joshua:askderivation backwardsupport Function

An accessor function for use in an joshua:ask continuation. It extracts the

support information about the satisfied query from the continuation argu

ment backwardsupport.

Note that the accessor function joshua:askdatabasepredication makes

more assumptions about the support than joshua:askderivation does.

Here is a schematic representation of the contents of backwardsupport.

joshua:askderivation extracts only the derivation portion. For more detail

please consult the dictionary entry for joshua:ask.

The backwardsupport list:

(<unified query> <truthvalue> . <derivation>)

(<(unified) query>)

(<t/f>)

(<derivation>) Possibilities for these elements are:

(<database predication>)

(AND <conjunct1 derivation> <conjunct2 derivation> ...)

(OR <successful disjunct derivation>)

((RULE <rule name>) <conjunct1 t/f derivation> <conjunct2 t/f derivation> ...)

((QUESTION <question name>) <succeed argument>)

(KNOWN <derivation>)

(PROVABLE <derivation>)

Like the other accessor functions, joshua:askderivation does not interpret

the information it extracts. Generally you won’t need to use it very often.

Note that the convenience functions joshua:printqueryresults and

joshua:graphqueryresults, respectively, display and graph an annotated

version of the support information, so that you don’t have to interpret it

yourself.

138

Joshua Language Dictionary	 March 1999

For comparison we’ll use the same examples to illustrate all three of these

functions.

Examples:

The first example shows the support for a query satisfied by database

lookup ⎯ the database predication that satisfied the query is printed.

(definepredicate typeof (object type))

(tell [typeof Iliad epic])

Example 1.

(ask [typeof ?book epic]

#’(lambda (backwardsupport)

(print (askderivation backwardsupport))))

([TYPEOF ILIAD EPIC])

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the definitions.

; Example 2. Query is derived from backward rules

; Define the predicates

(definepredicate edible (object))

(definepredicate isfood (object))

(definepredicate contains (object substance))

(definepredicate sweet (object))

; Define the rules

(defrule food? (:backward)

if [edible ?object]

then [isfood ?object])

(defrule sweet? (:backward)

if [or	 [contains ?object chocolate]

[contains ?object sugar]

[contains ?object honey]]

then [sweet ?object])

(defrule dessert? (:backward)

if [and [isfood ?object]

[sweet ?object]]

then [typeof ?object dessert])

; tell some sticky facts

(tell [edible chocolatecoatedants])

(tell [contains chocolatecoatedants honey])

Now we joshua:ask what foods qualify as desserts and why. The display is

139

March 1999 Joshua Language Dictionary

a list starting with rule dessert? that satisfied the query; next is the first

subgoal that was satisfied, together with its truth value, and the name of

the rule which satisfied it (rule food?). That rule’s first subgoal is then

listed with its truth value and the database predication that satisfied it,

and so on, through all the backward support.

(ask [typeof ?object dessert]

#’(lambda (backwardsupport)

(print (askderivation backwardsupport))))

((RULE DESSERT?)

([ISFOOD CHOCOLATECOATEDANTS] 1 (RULE FOOD?)

([EDIBLE CHOCOLATECOATEDANTS] 1 [EDIBLE CHOCOLATECOATEDANTS]))

([SWEET CHOCOLATECOATEDANTS] 1 (RULE SWEET?)

([CONTAINS CHOCOLATECOATEDANTS HONEY] 1

[CONTAINS CHOCOLATECOATEDANTS HONEY])))

For more on these and related functions: See the function joshua:ask, page

123.

joshua:askquery backwardsupport Function

An accessor function for use inside an joshua:ask continuation. It extracts

the instantiated query from the continuation argument backwardsupport.

backwardsupport is fully described in the dictionary entry for joshua:ask.

Example:

Here we collect and save all the answers from a query. (See example 6 in

the dictionary entry for joshua:ask.)

(defun collectanswers ()

(let ((answers nil))

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(push (copyobjectifnecessary

(askquery backwardsupport))

answers)))

answers))

To extract and print out the instantiated query, use the convenience func

tion joshua:printquery.

For more on these and related functions: See the function joshua:ask, page

123.

joshua:askquerytruthvalue backwardsupport Function

An accessor function for use inside an joshua:ask continuation. It extracts

the truth value of the instantiated query from the continuation argument

backwardsupport.

backwardsupport is fully described in the dictionary entry for joshua:ask.

The truth value is a number, as follows:

140

Joshua Language Dictionary	 March 1999

0 Truth value of joshua:*unknown*

1 Truth value of joshua:*true*

2 Truth value of joshua:*false*

3 Truth value of joshua:*contradictory*

The joshua:truthvalue presentation type translates these numbers into

symbols naming a truth value.

Most of the time you know the query’s truth value from the query pattern

itself, so that you have little need of this function. The truth value infor

mation is mostly there for system use, to let the system interpret the

query.

Examples:

(definepredicate statusof (object status))

(tell [statusof smokealarm off])

; Example 1.

(ask [statusof ?indicator off]

#’(lambda (backwardsupport)

(print (askquerytruthvalue backwardsupport))))

1

; Example 2. Use truthvaluename to translate the number

(ask [statusof ?indicator off]

#’(lambda (backwardsupport)

(print (truthvaluename (askquerytruthvalue backwardsupport)))))

TRUE

For more on this and related functions: See the function joshua:ask, page

123.

joshua:askquestions predication truthvalue continuation Generic Function

predication	 A predication to be the goal for rules.

truthvalue	 The truth value being asked about. Must be either

joshua:*true* or joshua:*false*.

continuation	 A function to be called when the rule is satisfied.

joshua:askquestions is the questionasking part of the joshua:ask proto

col. It is an intermediate level of the protocol, between joshua:ask and

joshua:mapoverbackwardquestiontriggers. It is called by the default

joshua:ask method, and the default method for joshua:askquestions calls

joshua:mapoverbackwardquestiontriggers. You will probably not call

this function directly, except when writing joshua:ask methods. Since ques

tion compilation is not yet completely generic, you probably don’t want to

define your own joshua:askquestions methods.

141

March 1999	 Joshua Language Dictionary

The complete contract of joshua:askquestions is:

•	 Look in the question database for questions with a pattern predication

matching predication or anything which unifies with it.

•	 Make sure that truthvalue is appropriate. (If the question can be asked

negatively, then either truth value is appropriate. If the question can on

ly be asked positively, the truth value must be joshua:*true*.)

•	 Unify predication (self in the method) with a copy of the pattern predi

cation.

•	 Get the answer to the query in some appropriate way. If the query

should succeed, call the continuation function.

The backward support for an joshua:askquestions method should be a list

containing:

•	 predication (self in the method), the (now unified) query predication.

•	 truthvalue, the truth value being joshua:asked.

•	 (question name), where name is the name of the question.

•	 The derivation. This can be any extra information about how the ques

tion was answered or why it succeeded.

joshua:askquestionsonlymixin	 Flavor

This flavor defines an joshua:ask method that only asks questions (if :do

questions is nonnil).

The default joshua:ask method looks first in the database, then tries back

ward rules (if :dobackwardrules is nonnil), then asks questions (if :do

questions is nonnil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:definepredicate or joshua:definepredicatemodel. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi

cates.

Related Flavors:

142

Joshua Language Dictionary	 March 1999

joshua:defaultaskmodel

joshua:askdataonlymixin

joshua:askrulesonlymixin

joshua:askdataandrulesonlymixin

joshua:askdataandquestionsonlymixin

joshua:askrulesandquestionsonlymixin

joshua:askrules predication truthvalue continuation doquestions Generic Function

predication	 A predication to be the goal for rules.

truthvalue	 The truth value being asked about. Must be either

joshua:*true* or joshua:*false*.

continuation	 A function to be called when the rule is satisfied.

doquestions	 If nonnil, allow asking questions in subgoals of the

rule.

joshua:askrules is the backwardchaining part of the joshua:ask protocol.

It is an intermediate level of the protocol, between joshua:ask and

joshua:mapoverbackwardruletriggers. It is called by the default

joshua:ask method, and the default method for joshua:askrules calls

joshua:mapoverbackwardruletriggers. You will probably not call this

function directly, except when writing joshua:ask methods. Since rule com

pilation is not yet completely generic, you probably don’t want to define

your own joshua:askrules methods.

The complete contract of joshua:askrules is:

•	 Look in the rule database for rules with a thenpart matching predication

or anything which unifies with it.

•	 Make sure that the truth value of the thenpart matches truthvalue.

• Unify predication	 (self in the method) with a copy of the thenpart.

•	 joshua:ask the ifpart. In the continuation of the joshua:ask build the

appropriate backward support and call the continuation of joshua:ask

rules with the backward support.

The backward support for an joshua:askrules method should be a list

containing:

• predication (self	 in the method), the (now unified) query predication.

•	 truthvalue, the truth value being joshua:asked.

•	 (rule name), where name is the name of the rule.

143

March 1999 Joshua Language Dictionary

• The derivation. This will be a list of the support for the ifpart.

See the section "Finding Backward Rule Triggers", page 43.

joshua:askrulesandquestionsonlymixin Flavor

This flavor defines an joshua:ask method that only tries backward rules (if

:dobackwardrules is nonnil) and asks questions (if :doquestions is

nonnil), but never looks in the database.

The default joshua:ask method looks first in the database, then tries back

ward rules (if :dobackwardrules is nonnil), then asks questions (if :do

questions is nonnil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:definepredicate or joshua:definepredicatemodel. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi

cates.

Related Flavors:

joshua:defaultaskmodel

joshua:askdataonlymixin

joshua:askrulesonlymixin

joshua:askquestionsonlymixin

joshua:askdataandrulesonlymixin

joshua:askdataandquestionsonlymixin

joshua:askrulesonlymixin Flavor

This flavor defines an joshua:ask method that only tries backward rules (if

:dobackwardrules is nonnil).

The default joshua:ask method looks first in the database, then tries back

ward rules (if :dobackwardrules is nonnil), then asks questions (if :do

questions is nonnil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:definepredicate or joshua:definepredicatemodel. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi

cates.

Related Flavors:

144

Joshua Language Dictionary	 March 1999

joshua:defaultaskmodel

joshua:askdataonlymixin

joshua:askquestionsonlymixin

joshua:askdataandrulesonlymixin

joshua:askdataandquestionsonlymixin

joshua:askrulesandquestionsonlymixin

joshua:basictmsmixin	 Flavor

This flavor must be included in any TMS model predicate. It does not de

fine any of the TMS protocol methods itself, but it ensures that TMS predi

cates support the correct protocol methods.

joshua:clear &optional (cleardatabase t) (undefrulerules nil) Function

With arguments t t , empties the database and "undoes" all rule definitions.

cleardatabase	 Specifies whether or not to clear the database. Default

is t.

undefrulerules	 Specifies whether or not to delete all rule definitions.

Default is nil.

Clearing the database is equivalent to joshua:untelling each fact in the

database.

Note that undefining all rule definitions is a drastic thing to do, as it

clears out all rules in your world. Any application depending on these rules

will no longer work. Clear out all rules only if you want a "clean" environ
ment, for example, if you need to get rid of a runaway rule that you cannot

stop by other means.

Examples:

Show Joshua Database

True things

[FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL SPIDERS FLIES]

[FAVORITEMEAL MONKEYS BANANAS]

False things

None

(clear)

Show Joshua Database

True things

None

False things

None

Related Command:

145

March 1999	 Joshua Language Dictionary

"Clear Joshua Database Command"

See the section "Removing Predications From the Database" in User’s Guide

to Basic Joshua.

See the section "The Joshua Database Protocol", page 8.

See the section "Customizing the Data Index", page 81.

Clear Joshua Database Command

Clears predications from the Joshua Database.

Predications	 Which predications to remove from the database. Clear Joshua

Database asks the database for all predications matching those

specified in the Predications argument and joshua:untells

them from the database. The value of Predications can also be

All or None.

:Other Truth Values Too

Whether or not to clear the predications in the database which

match those specified by the Predications argument, but have

the opposite truth value. This argument defaults to Yes.

:Query	 Whether to ask you before making changes to the database. By

default, the command stops and asks before removing any pred

ications or rules.

:Undefine Rules	 If Undefine Rules is Yes, the command will undefine all of the

Joshua Rules. This argument defaults to No.

:Verbose	 Whether to print information about what the command is do

ing.

Clear Joshua Database provides a convenient interface to the joshua:untell func

tion. It asks the database for all predications matching those specified by the ar

guments, prompts you for confirmation, and joshua:untells each predicate. It also

allows you to undefine all the Joshua rules, resulting in a fresh Joshua environ

ment.

Note that undefining all rule definitions is a drastic thing to do, as it clears out

all rules in your world. Any application depending on these rules will no longer

work. Clear out all rules only if you want a "clean" environment, for example, if

you need to get rid of a runaway rule that you cannot stop by other means.

Related Functions:

joshua:clear

joshua:untell

joshua:*contradictory*	 Variable

A named constant used by Joshua to denote an interim state of computation

wherein a predication is believed to be both joshua:*true* and

joshua:*false*. When this occurs, Joshua invokes the appropriate Truth

Maintenance System to resolve the contradictory state.

146

Joshua Language Dictionary March 1999

joshua:*contradictory* is not meaningful unless a TMS is present. Howev

er, not all Truth Maintenance Systems are required to use this value.

Related Topics:

joshua:*true*

joshua:*false*

joshua:*unknown*

joshua:truthvalue

joshua:predicationtruthvalue

See the section "Truth Values" in User’s Guide to Basic Joshua. See the

section "Justification and Truth Maintenance" in User’s Guide to Basic

Joshua.

joshua:copyobjectifnecessary object Function

Copies the object handed to it if it contains variables, or is otherwise

ephemeral.

object Any object, for example, a list, or a predication

Variables in object are renamed during copying, so that variables in the

copy differ from variables in the original.

joshua:copyobjectifnecessary is useful for making copies of predications

that may be stackconsed, or whose variables may be temporarily unified.

The latter, for example, is true of variables in the query to joshua:ask.

joshua:copyobjectifnecessary creates a separate copy of its argument in

the heap.

Examples: Here we reuse some of the examples introduced with

joshua:ask. We define some predicates and a rule, then enter some facts

into the database.

(definepredicate favoritemeal (eater food))

(definepredicate guzzles (eater food))

(clear)

(tell [and [favoritemeal bears honey]

[favoritemeal mosquitoes people]

[favoritemeal spiders flies]

[favoritemeal monkeys bananas]

[guzzles ted icecream]])

147

March 1999 Joshua Language Dictionary

Show Joshua Database

True things

[FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL SPIDERS FLIES]

[FAVORITEMEAL MONKEYS BANANAS]

[GUZZLES TED ICECREAM]

False things

None

(defrule notfinicky (:backward)

if [guzzles ?eater ?food]

then [favoritemeal ?eater ?food])

Example 1.

;;;If you don’t copy the query, you lose the information!

(defun collectanswerswrong ()

(let ((answers nil))

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(push (askquery backwardsupport) answers)))

answers))

COLLECTANSWERSWRONG

(collectanswerswrong)

#<Error printing object CONS 42353464>

Example 2.

;;;Using copyobjectifnecessary saves the information

(defun collectanswers ()

(let ((answers nil))

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(push (copyobjectifnecessary

(askquery backwardsupport)) answers)))

answers))

COLLECTANSWERS

(collectanswers)

([FAVORITEMEAL TED ICECREAM] [FAVORITEMEAL BEARS HONEY]

[FAVORITEMEAL MOSQUITOES PEOPLE]

[FAVORITEMEAL SPIDERS FLIES] [FAVORITEMEAL MONKEYS BANANAS])

148

Joshua Language Dictionary	 March 1999

(defun firstsolution ()

(block findasolution

(ask [favoritemeal ?eater ?food]

#’(lambda (backwardsupport)

(returnfrom findasolution

(copyobjectifnecessary (askquery backwardsupport)))))

;; return nil if nothing succeeded

nil))

FIRSTSOLUTION

(firstsolution)

[FAVORITEMEAL MONKEYS BANANAS]

Related Functions:

joshua:ask

joshua:databasepredication &key (printtruthvalue t) Presentation Type

Databasepredication is a subtype of predication that includes only predica

tions that have been in the database.

printtruthvalue	 When printtruthvalue is not nil, the predication is pre

sented with a truthvalue indicator (¬ , ?, or ↔ , that is,

not, * unknown*, * contradictory*, respectively). By de

fault the system prints truthvalue indicators for all

database predications.

This type is useful when defining commands or handlers that can apply on

ly to predications that have been in the database. Joshua programs some

times store extra information on predications as they are put in the

database; TMS justification is one example. When a command depends on

this information being present it should accept a database predication as its

argument rather than just a predication.

databasepredication can only accept input from the mouse, as that is the

only way to uniquely identify a database predication.

Related Topic:

joshua:predication

joshua:defaultaskmodel Flavor

This flavor provides the Joshua default behavior for the joshua:ask proto

col. It has methods for joshua:ask, joshua:askdata, joshua:askrules, and

joshua:askquestions.

Related Flavor:

joshua:defaultpredicatemodel

149

March 1999	 Joshua Language Dictionary

joshua:defaultpredicatemodel	 Flavor

This is the default flavor for Joshua predications ⎯ the one you get when

you don’t specify any model to joshua:definepredicate. It defines all the

default behavior for the Joshua protocol. It does not provide any TMS be

havior.

This flavor is made up of joshua:discriminationnetdatamixin and

joshua:defaultprotocolimplementationmodel.

Related topics:

ltms:ltmspredicatemodel

joshua:definepredicate

joshua:defaultprotocolimplementationmodel	 Flavor

This flavor provides the Joshua default behavior for the highlevel protocol.

It is composed of joshua:defaultrulecompilationmodel, joshua:default

askmodel and joshua:defaulttellmodel.

Related Function:

joshua:definepredicatemodel

joshua:defaultrulecompilationmodel	 Flavor

This flavor defines all the default Joshua rule compilation behavior.

Related topics:

joshua:defaultprotocolimplementationmodel

joshua:definepredicatemodel

joshua:defaulttellmodel Flavor

This flavor provides the Joshua default behavior for the joshua:tell proto

col. It has methods for joshua:tell, joshua:insert, joshua:justify,

joshua:noticetruthvaluechange, joshua:unjustify, and joshua:untell.

Related Flavor:

joshua:defaultpredicatemodel

joshua:defineobjecttype name &key :slots :parts :equalities :ini Macro

tializations :includedobjecttypes :otherinstance

variables :otherflavors

This macro is part of the Joshua object facility. It is used to define classes

of objects.

name	 A symbol which will become the typename of these ob

jects.

:slots	 A list of slot descriptions, where each description is ei

ther a symbol which will become the slotname, or a list

consisting of a symbol followed by keywordvalue pairs.

Possible keywords are:

150

Joshua Language Dictionary	 March 1999

:initform	 Specifies an initial value for the

slot. See the section "Initial Values

of Slots", page 113.

:setvalued	 Specifies whether the slot is set

valued. See the section "Set Valued

and Single Valued Slots", page 113.

The value of this argument should

be t to create a setvalued slot; it

defaults to nil if not mentioned.

:truthmaintenance

Specifies whether the slot’s values

are maintained by the truth

maintenance system. The value of

this argument should be t to create

a truthmaintained slot; it defaults

to nil if not mentioned. See the sec

tion "Slots and Truth Maintenance",

page 114.

:attachedactions	 Specifies that the user may wish to

add actions to individual instances

of objects containing this slot. See

the section "Slots and Attached Ac

tions", page 114.

:objectnotifying	 Specifies that the user intends to

define a setf method on the slot val

ue of the object type. See the sec

tion "Invoking Methods Associated

with the Object Associated with a

Slot", page 115.

(defineobjecttype randommachine

:slots (oilviscosity

(gears :setvalued	 t)

(fuelvolume :attachedactions t

:truthmaintenance	 t)

...)

...)

:parts	 A list of part descriptions, where each description is a

list containing a partname and the type of the part.

:equalities	 A list of equality descriptions, where each description is

a list of pathnames relative to the object being created.

See the section "Equalities Between Slot Values", page

116.

:initializations	 A list of forms to evaluate at makeinstance time. See

the section "Other Options in DefineObjectType", page

117.

151

March 1999	 Joshua Language Dictionary

:includedobjecttypes

Specifies a list of other Joshuaobjecttypes from which

to inherit. See the section "Type Hierarchy in the

Joshua Object Facility", page 110.

:otherinstancevariables

A list of regular flavor instance variables to be included

in the object definition. See the section "Other Options

in DefineObjectType", page 117.

:otherflavors	 A list of other flavors to mix in to the object definition.

See the section "Other Options in DefineObjectType",

page 117.

joshua:definepredicate name args &optional (modelandother Macro

components ’(defaultpredicatemodel)) &body

options

Defines a predicate for use in building predications.

name	 Any symbol that does not conflict with the name of an exist

ing flavor or presentation type. So, for example, integer,

cons, and array are not good predicate names. In fact, they

can be disastrous. Doing joshua:definepredicate on these

will likely cause problems in both the CL type system and

the presentation system.

args	 A list of symbols, similar to Lisp lambda lists. &optional ar

guments can be defaulted as in Lisp. Note that, unlike Lisp,

&rest arguments can also be defaulted. &rest arguments can

be used in "tail" fashion, as in: [foo A B . ?quux], which

matches all foo predicates with arguments A and B, followed

by anything else. &key, &aux, and other lambdalist keywords

are not supported.

modelandothercomponents

Lists optional models defined with joshua:definepredicate

model. You can also use any flavor, as long as it doesn’t use

:orderedinstancevariables. The rules of procedure are iden

tical to those of defflavor.

options	 Any option acceptable to defflavor. :constructor is unlikely

to be useful, as joshua:definepredicate already uses it. In

addition, see :destructureintoinstancevariables, below.

There are two ways that you can make the predicate arguments lexically

available to methods. For frequent use, specify the option :destructureinto

instancevariables in your predicate definition. This keeps the predicate ar

guments destructured permanently in each predication, taking up more

space but providing faster access. For occasional use you can call the macro

joshua:withstatementdestructured. Since the macro destructures the ar

152

Joshua Language Dictionary	 March 1999

guments each time you call it, it is slower, but such predications take up

less space. The latter, for example, is usually appropriate for joshua:say

methods. The former might be more appropriate for inner loops.

Examples:

(definepredicate fruit (afruit))

(definepredicate bird (bird) (ltms:ltmspredicatemodel))

(definepredicate thingstopack (traveller &rest objects))

(definepredicate gun (range calibre)

:destructureintoinstancevariables)

(definepredicate hasdisease (patient disease &rest symptoms)

(:destructureintoinstancevariables disease)) ; partial destructuring

Related Functions:

joshua:undefinepredicate

joshua:makepredication

joshua:predicationp

Related Flavor:

joshua:predication

See the section "Joshua Predications" in User’s Guide to Basic Joshua.

joshua:definepredicatemethod (protocolfunction flavor &rest	 Macro

options) args &body body

joshua:definepredicatemethod defines a particular implementation of a

protocol function for a model.

protocolfunction	 A symbol which is the name of a Joshua protocol func

tion.

flavor	 A symbol which is the name of a Joshua predicate mod

el.

options A list of options for the method type. See the special

form defmethod in Symbolics Common Lisp Program

ming Constructs for more information. Most Joshua

predicate methods will not need any options.

args The list of arguments to the method.

body The Lisp code which implements the method.

Since most of the protocol functions implement themselves as methods, this

expands into a defmethod most of the time. However, there are two caveats

that necessitate your using joshua:definepredicatemethod instead of a

bare defmethod:

153

March 1999	 Joshua Language Dictionary

•	 Some of the protocol functions are not methods, so joshua:define

predicatemethod has to expand into something different in those cases.

(For example, some of the methods have to be in your compile environ

ment, before the predicate/model flavors are around.)

•	 Some of the protocol functions are methods, but use different names or

argument conventions than those that are uservisible. For example,

joshua:definepredicatemethod may, for efficiency reasons, decide to

implement a protocol function with lots of keyword arguments as an in

ternal function with positional arguments.

Examples:

(definepredicatemethod (tell tellerrormodel) (&rest ignore)

(error "~S was built using TELLERRORMODEL, so you can’t TELL it." self))

(definepredicatemethod (say hacker) (&optional (stream *standardoutput*))

(withstatementdestructured (name)

(format stream "~&~S is a hacker." name)))

Related function:

joshua:undefinepredicatemethod

See the special form defmethod in Symbolics Common Lisp Programming

Constructs.

joshua:definepredicatemodel name instancevariables compo	 Macro

nents &body options

Defines a flavor which may be used as a model or model component for

predicates.

name	 A symbol which is the name of the model being defined.

instancevariables	 A list of the names of instance variables which will

keep some of the state of the predicate.

components	 A list of component flavors or models.

options	 Options to be passed on to defflavor.

joshua:definepredicatemodel is quite similar to defflavor. joshua:define

predicatemodel forces name to be an abstract flavor, and requires

joshua:predication be a flavor component of any instantiable flavor built

on name.

Related function:

joshua:undefinepredicatemodel

joshua:defquestion name (controlstructure &rest control Macro

structureargs) pattern &key :code

Defines a question.

154

Joshua Language Dictionary	 March 1999

name	 The name of the question.

controlstructure	 Specifies the direction of chaining the question responds

to. Currently, only :backward chaining questions are

supported.

controlstructureargs

Like joshua:defrule, these are arguments to the control

structure. Currently supported are :importance and

:documentation. Both work as they do in rules: The

former lets you specify the priority in which you want

your questions to run (however, they’ll always run after

rules); the latter lets you add a string to document the

meaning of the question. This string can then be re

trieved with the Lisp function joshua::documentation.

pattern	 A single predication. The question triggers when this

pattern is matched in an joshua:ask, for :backward

question.

Keywords:

:code	 Any Lisp code. This is for customized versions of

joshua:defquestion.

Backward questions behave like backward chaining rules, except that they

run after all backward rules. They treat the user as an extension of the

database, and solicit more solutions from him. (For the basics of rule oper

ation: See the section "Rules and Inference" in User’s Guide to Basic

Joshua.)

Like rules, questions have a name, a trigger pattern, and a body. Like

rules, questions are a way of generating information.

When you joshua:ask something with :doquestions joshua::t and the

query pattern unifies with pattern in the question, the question body runs.

Questions run only after the database has been searched and all appropriate

backward rules have been triggered.

If you don’t supply the :code keyword, joshua:defquestion supplies a body

for you.

At run time, the query unifies with the question trigger. If there are no

logic no logic variables in the unified query, a Yes or No question is gener

ated once. The default answer is No. Answering Yes makes the query that

triggered the question succeed. Answering No makes the query fail, which

can mean either that the query is known to be joshua:*false*, or that it is

not known to be joshua:*true*.

If the unified query contains logic variables, the question loops, presenting

iterations of an AVV (Accept Variable Values) menu, each soliciting bind

ings for those variables.

155

March 1999 Joshua Language Dictionary

Questions can be used to interact with a user, with some other process run

ning on the machine, or even some other device. For example, a question

could go out over the network and ask some other device to answer a ques

tion.

Joshua has a default way of asking questions; you can also write your own.

The default version uses either the default joshua:say method to format

pattern or a userdefined joshua:say method if available.

Examples:

We define a predicate and then we define a question that triggers on a

predication pattern built from this predicate.

(definepredicate foo (something somethingelse))

(defquestion question1 (:backward :documentation "This has no apparent use")

[foo 1 ?x])

Example 1 is a query with no logic variables in the unified query pattern.

Example 1:

(ask [foo 1 2] #’printquery :doquestions t)

Is it true that "[FOO 1 2]"? [default No]: Yes

[FOO 1 2]

NIL

For example 2 we define a joshua:say method, and the question uses that

method.

Example 2:

(definepredicatemethod (say foo) (&optional (stream *standardoutput*))

(withstatementdestructured (something somethingelse) ()

(format stream "the arguments ~A and ~A are correct"

something somethingelse)))

(ask [foo 1 2] #’printquery :doquestions t)

Is it true that "the arguments 1 and 2 are correct"? [default No]: Yes

[FOO 1 2]

NIL

Example 3 uses a query with logic variables in the query pattern.

156

Joshua Language Dictionary	 March 1999

Example 3:

To write your own code to do questions, use the :code keyword. This key

word takes arguments and a body, as follows:

args	 (query truthvalue continuation &optional querycontext)

body	 The body of a joshua:defquestion works like Lisp code

in the body of a backward rule. If the value of body is

nil, the query that triggered the question fails. If the

value of body is nonnil, the query succeeds. Calling the

joshua:succeed function explicitly within the body al

lows the query to succeed many times.

Within body, query is the query predication given to joshua:ask, after the

query has been unified with the question’s trigger.

If truthvalue is joshua:*true*, Joshua is trying to determine whether the

query is known to be true, as opposed to false or unknown. Similarly for a

truthvalue of joshua:*false* Joshua tries to determine whether the query is

known to be false, as opposed to true or unknown.

The querycontext argument can almost always be ignored.

body should do the following:

•	 If there are no logic variables in the query, decide somehow (perhaps by

asking the user a question) if the query is true. If so, call continuation.

You usually rely on the form (joshua:succeed) to call continuation for

you.

•	 If there are logic variables present, solicit sets of bindings for them from

somewhere (for example, the user). For each such set, call continuation

(usually via (joshua:succeed)).

Examples of customwritten questions:

157

March 1999 Joshua Language Dictionary

First we define the predicates, a joshua:say method, a question, and a

backward rule.

(definepredicate wrote (author book))

(definepredicate understands (reader book))

(definepredicatemethod (say understands)

(&optional (stream *standardoutput*))

(withstatementdestructured (reader book) self

(format stream "~A understands ~A." reader book)))

(defquestion writingsofcaesar (:backward) [wrote caesar ?book]

:code

((query truthvalue continuation &optional ignore)

(unless (eql truthvalue *true*

(error "I can only ask positive questions.")))

(typecase ?book

(unboundlogicvariable

;;asked with ?book unbound

(loop for prompt = "Tell me something that Caesar wrote: "

then "Tell me something else Caesar wrote: "

for answer = (accept

’((tokenortype (("No more" . nomore))

((string))))

:prompt prompt :default "De Bello Gallico")

until (eq answer ’nomore)

do (withunification

(unify ?book answer)

(succeed))))

(otherwise

;;asked with ?book bound

(yesornop "~&Did Caesar write ~A? " ?book)))))

(defrule writersunderstandtheirwork (:backward)

if [wrote ?author ?work]

then [understands ?author ?work])

Now we joshua:ask the query.

(ask [understands Caesar ?book] #’sayquery :doquestions t)

Tell me something that Caesar wrote: [default "De Bello Gallico"]:

De Bello Gallico

CAESAR understands De Bello Gallico.

Tell me something else Caesar wrote: [default "De Bello Gallico"]:

A Canticle for Leibowitz

CAESAR understands A Canticle for Leibowitz.

Tell me something else Caesar wrote: [default "De Bello Gallico"]: No more

NIL

158

Joshua Language Dictionary	 March 1999

(ask [understands Caesar "Passion on the Nile"] #’sayquery :doquestions t)

Did Caesar write Passion on the Nile? (Yes or No) Yes

CAESAR understands Passion on the Nile.

NIL

Related Functions:

joshua:undefquestion

joshua:ask

joshua:askquestions

joshua:mapoverbackwardquestiontriggers

joshua:locatebackwardquestiontrigger

See the section "Asking the User Questions" in User’s Guide to Basic

Joshua.

joshua:defrule rulename (controlstructure &rest controlstructure Function

args) if ifpart then thenpart

Defines a forward or backward chaining rule. The controlstructure argu

ment specifies the direction of the rule.

Forward chaining rules respond to new facts entered with joshua:tell; the

response (that is, the rule body or thenpart), can involve deducing addition

al facts that are automatically added to the database, or it can involve exe

cuting any Lisp program.

Backward chaining rules respond to a goal entered with joshua:ask by try

ing to satisfy it; this can involve satisfying a series of successive subgoals,

or any Lisp program. Backward chaining does not automatically add new

facts to the database. See the section "Rules and Inference" in User’s Guide

to Basic Joshua.

rulename Any symbol that uniquely identifies the rule.

controlstructure One of the keywords :forward or :backward corre

sponding, respectively, to a forward rule or a back

ward rule. Future releases may add more possible con

trol structures.

controlstructureargs	 :importance lets you control the order of rule execu

tion. :documentation lets you add a string that docu

ments the meaning of the rule. Future releases may

add more keywords.

:importance takes a value argument that can be:

•	 Numeric; any noncomplex number, including +1e∞
or 1e∞ (infinity).

159

March 1999	 Joshua Language Dictionary

•	 A symbol (in which case, the system treats it as a

special variable whose runtime value should be a

number).

•	 A form; the compiler enwraps it with (lambda () ...)

and compiles it. It should return a number when

called.

The larger the value argument, the higher the priori

ty. Rules with no value argument run first, after

which rules with a value argument are run in order

from the highest to the lowest value.

Some expense is associated with ordering using

:importance. In forward chaining rules it causes a

"bestfirst" search through a heap of rules according

to the value associated with :importance. Backward

chaining only orders the local "bestfirst" search of

rules at the current choice point.

A more symbolic type of reasoning, or some level of

modeling are usually preferable to the indiscriminate

use of :importance.

if	 The symbol joshua::if.

ifpart	 Specifies the conditions under which the rule suc

ceeds. The form of the ifpart is identical for forward

and backward rules. Procedurally, the ifparts differ

depending on rule type:

In forward rules the ifpart is the trigger part. It can

be one or more predications, joined by joshua::and or

joshua::or. Lisp forms (called procedural nodes) can

be included in the ifpart of forward rules, as well.

See the section "The Joshua Rule Compiler", page 26.

In backward rules the ifpart is the action part. It can

be one or more predications as above, as well as any

Lisp construct. These become subgoals.

then	 The symbol joshua::then.

thenpart	 Specifies the conclusions drawn from the rule. The

form of the thenpart is identical in forward and back

ward rules. Procedurally, the thenparts differ depend

ing on rule type:

In forward rules the thenpart is the action part. Can

be one or more predications, joined by joshua::and or

joshua::or, as well as any Lisp construct.

160

Joshua Language Dictionary	 March 1999

In backward rules this is the trigger part. Must be a

single (not a compound) predication.

Note that the if and then clauses can occur in either order. For example,

some programmers prefer to place the thenpart of backward rules first, so

that the trigger (procedure head) always comes first. Either of the arrange

ments shown below is valid.

If [...] Then [...]

and

Then [...] If [...]

A rule’s action part (the thenpart of forward rules, and the ifpart of back

ward rules) can specify any suitable action(s), such as adding or retracting

predications, using Lisp code to perform embedded tests or computations,

calling joshua:ask or joshua:tell, interacting with the user, or displaying

messages. When your Lisp code does iterations, call the function

joshua:succeed inside it to let Joshua know that the current set of bind

ings is correct. Otherwise, Lisp code "succeeds" by returning nonnil. See

examples below.

If the action part of a forward rule contains a predication that is not em

bedded in Lisp code, this newly deduced fact is automatically added to the

database when the rule executes (a joshua:tell is implicit). Note that such

a predication can be backquoted. If the predication is embedded in Lisp,

however, you must explicitly use a joshua:tell to insert the fact into the

database.

The action part of a backward rule has an implicit joshua:ask around it.

Backward rule action parts add no predications to the database, unless you

explicitly use a joshua:tell to accomplish this.

A backward rule’s trigger part (the thenpart) must consist of a single

predication. The trigger can contain logic variables. These variables are

bound by the unifier when the trigger part of the rule is matched against

the query; they are then passed to the action part (the ifpart).

A forward rule’s trigger part (the ifpart) may contain an arbitary number

of predications and Lisp forms. The triggers can contain logic variables. A

forward rule’s triggers behave as follow:

•	 If the trigger is a predication, it is satisfied when it has been matched

against a predication in the database. The logic variables in the trigger

are bound by the unifier when the trigger part of the rule is matched

against the database predication.

•	 The trigger may be a Lisp form (we call such triggers procedural

triggers). Such a trigger may be satisfied in two ways: If it returns

joshua::t, it is regarded as satisfied. It is also regarded as satisfied each

time it calls joshua:succeed.

161

March 1999	 Joshua Language Dictionary

•	 If a procedural trigger never calls joshua:succeed, but merely returns

joshua::t or joshua::nil, then it acts as a filter on the previous triggers

(either accepting or rejecting the bindings produced by its predecessors).

•	 A procedural trigger may also act as a generator, producing several ac

ceptable sets of bindings and calling joshua:succeed for each one.

•	 Logic variables which occur for the first time in a procedural trigger

may be bound by calling joshua:unify. Logic variables that are refer

enced in a procedural trigger but which occur in an earlier trigger, are

bound to the value established by the earlier trigger during the execution

of the Lisp trigger.

•	 The logical connective and can be used to group the triggers into sub

groups all of which must be satisfied. The logical connective or can be

used to group the patterns into subgroups any one of which must be sat

isfied.

•	 The trigger part of a forward rule can include the keyword :support fol

lowed by a logic variable after any trigger pattern. During the execution

of the rule, this logic variable is bound to the predication that matched

the trigger pattern immediately preceding the keyword :support.

•	 A procedural trigger may provide an argument to joshua:succeed which

should be a databasepredication. If it does so, this predication is treated

as if it had matched a normal trigger of the rule. If there is a :support

keyword following the procedural trigger, then the logic variable follow

ing it will be bound to the databasepredication.

Joshua stores and retrieves rules by their triggers. When a new rule is de

fined, the rule compiler stores the rule’s trigger in a place appropriate to

the rule type. The system finds and executes applicable rules by locating

their triggers; similarly, it deletes unwanted rules by removing their trig

gers. See the section "The Joshua Rule Indexing Protocol", page 36.

Here are some examples. First, here’s how to use the :documentation key

word. We use a forward rule as an example, but :documentation works

identically for backward rules.

(definepredicate reads (person howmuch))

(definepredicate isbookworm (person))

(defrule simple (:forward :documentation "Identifies bookworms")

if [reads ?person constantly]

then [isbookworm ?person])

To retrieve the documentation string of this rule, use the Lisp function

joshua::documentation.

162

Joshua Language Dictionary	 March 1999

(documentation ’simple)

"Identifies bookworms"

Here are some examples of forward chaining. This first a simple declarative

rule:

(defrule goodcake (:forward)

if [and	 [rises ?cake justright]

[color ?cake evenlygold]

[texture ?cake moist]

[taste ?cake justright]]

then [good ?cake])

Next is an example of using the :support keyword to allow the body of the

rule to reference the triggering facts:

(defrule goodcake (:forward)

if [and	 [rises ?cake justright] :support ?f1

[color ?cake evenlygold] :support ?f2

[texture ?cake moist] :support ?f3

[taste ?cake justright] :support ?f4

]

then [and (Format t "~%The reason I thing that ~s is good is that:"

?cake)

(say ?f1) (say ?f2) (say ?f3) (say ?f4)

[good ?cake]])

Here we show how a Procedural Trigger can be used as a generator. Once

all triggers before the procedural trigger are matched, it executes and gen

erates two acceptable bindings for ?color.

(defrule goodcake (:forward)

if [and	 [rises ?cake justright]

[texture ?cake moist]

(loop for color in ’(evenlygold nicelybrown)

do (unify ?color color)

(succeed))

[taste ?cake justright]

]

then [and (format t "~&~s is a good cake with color ~s"

?cake ?color)

[good ?cake]])

Here is an example of a procedural trigger being used as a filter:

(defrule checktemperature (:forward)

if [and [temperatureused ?object ?temp]

(< 325 ?temp 400)] ; example of Lisp used as a filter

then [correcttemperatureused ?object ?temp])

163

March 1999 Joshua Language Dictionary

(defun checkovensetting ()

(clear)

(tell [temperatureused jellyroll 375])

(ask [correcttemperatureused jellyroll ?temp] #’printquery))

(checkovensetting)

[CORRECTTEMPERATUREUSED JELLYROLL 375]

NIL

Finally, here is an example using nested and’s and or’s:

(defrule deduceancestry (:forward)

if [or [isparentof ?old ?young]

[and [isancestorof ?old ?middle]

[isparentof ?middle ?young]]]

then [isancestorof ?old ?young])

Here are some examples using backward chaining:

(defrule sailoralert (:backward)

if [or [conditionof wind gusting]

[weatherforecast squalls]]

then [issuewarning smallcraft alert])

;;; Lisp code in action part of backward rule

(definepredicate goodtoread (book))

(defparameter *books* ’(decameron canterburytales gargantuaandpantagruel

tomjones catch22))

(defrule readinglist (:backward)

if (typecase ?candidatebook

(unboundlogicvariable

(loop for book in *books*

doing (withunification

(unify ?candidatebook book)

(succeed))))

(otherwise

(member ?candidatebook *books*)))

then [goodtoread ?candidatebook])

(ask [goodtoread ?x] #’printquery)

[GOODTOREAD DECAMERON]

[GOODTOREAD CANTERBURYTALES]

[GOODTOREAD GARGANTUAANDPANTAGRUEL]

[GOODTOREAD TOMJONES]

[GOODTOREAD CATCH22]

NIL

You can inhibit backward chaining rule invocation by passing joshua::nil as

the :dobackwardrules keyword argument to joshua:ask (the default value

is joshua::t). In this case the system does only a database lookup.

164

Joshua Language Dictionary	 March 1999

You can cause backward question invocation by passing joshua::t as the

:doquestions keyword argument to joshua:ask (the default is joshua::nil).

Advanced Concepts Note:

Six builtin models are available for predicates in joshua:ask goals. These

flavors do subsets of what joshua:ask normally does, by leaving out one

or more of the steps joshua:askdata, joshua:askrules, or joshua:ask

questions. Thus the models save a certain amount of overhead when their

predicates are used as goals to joshua:ask. The steps that are done are

indicated by the names:

• joshua:askdataonlymixin

• joshua:askrulesonlymixin

• joshua:askquestionsonlymixin

• joshua:askdataandrulesonlymixin

• joshua:askdataandquestionsonlymixin

• joshua:askrulesandquestionsonlymixin

Related Functions:

joshua:undefrule

joshua:tell

joshua:ask

joshua:askrules

See the section "Rules and Inference" in User’s Guide to Basic Joshua. See

the section "The Joshua Rule Facilities ", page 23.

joshua:deletebackwardquestiontrigger predication truthvalue Generic Function

questionname context

predication	 The pattern under which the backward question is in

dexed.

truthvalue	 The truth value of the pattern under which the back

ward question is indexed.

questionname	 The name of the question to be deleted.

context	 The entire trigger part of the backward question. Use

ful in advanced modeling applications.

joshua:undefquestion calls this protocol function with the pattern from the

trigger part of a backward question. The function "unindexes" the trigger

datastructure of the backward question which corresponds to the pattern.

After the pattern is "unindexed" the question is no longer accessible.

Tailoring of backwardquestion indexing is usually accomplished by provid

ing methods for the joshua:locatebackwardquestiontrigger and

joshua:mapoverbackwardquestiontriggers protocol functions. The

165

March 1999	 Joshua Language Dictionary

joshua:addbackwardquestiontrigger and joshua:deletebackward

questiontrigger methods provided as Joshua’s defaults call joshua:locate

backwardquestiontrigger as a subroutine. All of the interesting tailoring

of their behavior can be obtained by providing a joshua:locatebackward

questiontrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what questions are currently indexed where. Even in advanced modeling ap

plications it is unlikely that you will need to define a method for the

joshua:deletebackwardquestiontrigger protocol function.

See the section "The Joshua Question Indexing Protocol", page 48.

joshua:deletebackwardruletrigger predication truthvalue rule Generic Function

name context

predication	 The pattern under which a backward rule is indexed.

truthvalue	 The truth value of the pattern under which the back

ward rule is indexed.

rulename	 The name of the rule to be deleted.

context	 The entire ifpart of the rule. Useful for advanced mod

eling.

joshua:undefrule calls this protocol function with the pattern from the

then part of a backward chaining rule. The function "unindexes" the trig

ger datastructure of the backward rule which corresponds to the pattern.

After the pattern is "unindexed" the rule is no longer accessible. Tailoring

of backward rule indexing is usually accomplished by providing methods for

the joshua:locatebackwardruletrigger and joshua:mapoverbackward

ruletriggers protocol functions. The joshua:addbackwardruletrigger

and joshua:deletebackwardruletrigger methods provided as Joshua’s de

faults call joshua:locatebackwardruletrigger as a subroutine. All of the

interesting tailoring of their behavior can be obtained by providing a

joshua:locatebackwardruletrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli

cations it is unlikely that you will need to define a method for the

joshua:deletebackwardruletrigger protocol function.

See the section "The Joshua Rule Indexing Protocol", page 36.

joshua:deleteforwardruletrigger predication truthvalue rule Generic Function

name context

predication	 The pattern under which the forward rule is indexed.

166

Joshua Language Dictionary	 March 1999

truthvalue	 The truth value of the pattern under which the forward

rule is indexed.

rulename	 The name of the rule to be deleted.

context	 The entire ifpart of the rule. Useful for advanced mod

eling.

joshua:undefrule calls this protocol function once for each pattern in the If

part of a forward chaining rule. The function "unindexes" the trigger data

structure of the forward rule which corresponds to the pattern. After each

pattern is "unindexed" the rule is no longer accessible. Tailoring of forward

rule indexing is usually accomplished by providing methods for the

joshua:locateforwardruletrigger and joshua:mapoverforwardrule

triggers protocol functions. The joshua:addforwardruletrigger and

joshua:deleteforwardruletrigger methods provided as Joshua’s defaults

call joshua:locateforwardruletrigger as a subroutine. All of the interest

ing tailoring of their behavior can be obtained by providing a

joshua:locateforwardruletrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli

cations it is unlikely that you will need to define a method for the

joshua:deleteforwardruletrigger protocol function.

See the section "The Joshua Rule Indexing Protocol", page 36.

joshua:differentobjects object1 object2 Function

Returns nil if the arguments are eql or if either argument is an uninstanti

ated logic variable (in the latter case the two objects can potentially be

made to be the same by the unifier). Otherwise, joshua:differentobjects

returns t.

object1	 A Lisp object.

object2	 A Lisp object.

This function is useful in making rules that weed out inappropriate self

referential behavior. For example, in a program simulating the behavior of

a monkey that can pick up objects, it is important to ensure that the mon

key does not try to pick up itself.

This function is often useful in the ifpart of rules, or in Lisp code.

(defrule pickup (:backward)

if (differentobjects ?obj ’monkey)

then [canpickup monkey ?obj])

To invoke this rule, you would type something like:

(ask [canpickup monkey wrench] #’printquery)

See the section "Using Joshua Within Lisp Code" in User’s Guide to Basic

Joshua.

167

March 1999 Joshua Language Dictionary

Disable Joshua Tracing Command

Turns off Joshua tracing.

Type of Tracing The type of tracing to disable. It can be one of forward rules,

backward rules, predications, TMS operations, or all. The type

of tracing defaults to all.

Disable Joshua Tracing turns off the Joshua tracing facility.

Related Commands:

"Enable Joshua Tracing Command"
"Reset Joshua Tracing Command"

joshua:discriminationnetclear rootnode Function

joshua:discriminationnetclear clears all the data out of the discrimina

tion net whose root is rootnode. This function works by lopping off all the

outgoing arcs from rootnode. The garbage collector reclaims all the de

scendants.

joshua:discriminationnetclear is called by (joshua:clear

joshua:discriminationnetdatamixin).

rootnode The root node of a discrimination net.

Related Functions:

joshua:discriminationnetuninsert

joshua:discriminationnetinsert

See the section "The Joshua Database Protocol", page 8.

joshua:discriminationnetdatamixin Flavor

This flavor provides the Joshua default behavior for storing data predica

tions in a discrimination net. It has methods for joshua:fetch,

joshua:insert, joshua:uninsert, and joshua:clear.

Related topics:

joshua:defaultpredicatemodel

joshua:discriminationnetfetch

joshua:discriminationnetinsert

joshua:discriminationnetuninsert

joshua:discriminationnetclear

joshua:discriminationnetfetch rootnode predication continua Function

tion rootnode predication continuation

joshua:discriminationnetfetch searches the discrimination net whose root

is rootnode using predication as a pattern, and calls continuation for each

item in the discrimination net that might unify with predication.

168

Joshua Language Dictionary	 March 1999

joshua:discriminationnetfetch is called by (joshua:fetch

joshua:discriminationnetdatamixin). It is the default implementation of

the joshua:fetch generic function for the virtual database. joshua:fetch

does the data retrieval for the Joshua protocol function joshua:ask, which

satisfies backward goals.

rootnode	 The root node of a discrimination net.

predication	 A predication to be searched for.

continuation	 A function of one argument, to be called on each can

didate the discrimination net finds.

Related Functions:

joshua:discriminationnetinsert

joshua:discriminationnetclear

See the section "The Joshua Database Protocol", page 8.

joshua:discriminationnetinsert rootnode predication	 Function

joshua:discriminationnetinsert takes predication and inserts it into the

discrimination net whose root is rootnode. It is called by (joshua:insert

joshua:discriminationnetdatamixin), the default implementation of the

joshua:insert generic function for the virtual database. joshua:insert is the

first step of the Joshua protocol function joshua:tell, that adds data into

the database.

joshua:discriminationnetinsert adds data to the discrimination net by

sideeffecting a leaf node (that is, adding a predication). The appropriate

nodes in the discrimination net are created if necessary.

rootnode	 The root node of a discrimination net.

predication	 is a predication to be added to the database.

The discrimination net discriminates fully with two exceptions. Logic vari

able arguments are not uniquely identified; they discriminate to a node la

beled ji::*variable*. Similarly, embedded lists discriminate to a node labeled

ji::*embeddedlist*. That is, as far as the discrimination net is concerned,

all variables are alike, and all lists are alike.

joshua:discriminationnetinsert does not deal with any justification, for

wardrule triggering, or unification issues.

joshua:discriminationnetinsert returns two values:

•	 The canonical version of predication that was stored in the database. If

another predication that is a variant of predication already exists in the

database, joshua:discriminationnetinsert returns the older version. See

the function joshua:variant, page 252.

169

March 1999	 Joshua Language Dictionary

•	 A flag that determines whether predication was added to the database or

not. This flag is either t if predication is newly added, or nil if a variant

was already in the database. Note that this is what joshua:insert is con

tracted to return; thus, joshua:discriminationnetinsert is one possible

realization of joshua:insert.

Related Functions:

joshua:discriminationnetuninsert

joshua:discriminationnetfetch

joshua:discriminationnetclear

See the section "The Joshua Database Protocol", page 8.

joshua:discriminationnetuninsert rootnode predication	 Function

This is the dual to joshua:discriminationnetinsert. It removes predication

from the discrimination net whose root node is rootnode. For example, this

is called by (joshua:uninsert joshua:discriminationnetdatamixin) to im

plement the joshua:uninsert generic function for the default data model.

rootnode	 The root of a discrimination net.

predication	 The database predication to be removed from the dis

crimination net. This must be the actual predication ob

ject from the database, and not a copy.

Related Functions:

joshua:discriminationnetinsert

joshua:discriminationnetclear

See the section "The Joshua Database Protocol", page 8.

Enable Joshua Tracing Command

Turns on Joshua Tracing.

Type of Tracing	 The type of tracing to enable. You can enable the tracing of

forward rules, backward rules, predications, TMS operations, or

All. Unless otherwise specified (by using the :Menu option for

example), tracing is turned on with the same options and trac

ing events that were in effect the last time you used tracing.

:Menu	 Brings up a menu of detailed tracing options for the type of

tracing being enabled. This menu provides a greater degree of

control over exactly what gets traced and when the tracing fa

cility interacts with the user.

:Trace Events	 When enabling a particular type of tracing this option allows

you to specify precisely which events will be displayed during

tracing. These can also be set by using the :Menu option.

170

Joshua Language Dictionary	 March 1999

:Step Events	 Allows you to specify at which events the tracing facility will

stop and prompt for interaction. These can also be set by using

the :Menu option.

The Enable Joshua Tracing command turns on the Joshua tracing tools and allows

you to customize tracing to your particular application or preference. The Joshua

tracing facility is very flexible. You can, for example, trace just forward rules that

are triggered by predications matching a particular pattern:

Enable Joshua Tracing Forward Rules :Menu Yes

Or, you can even just trace predications built on a particular model:

Enable Joshua Tracing Predications :Menu Yes

The best way to familiarize yourself with this facility is to type Enable Joshua

Tracing All :Menu Yes. This brings up a menu of all the types of Joshua tracing

and the options available for each one. By moving the mouse over each option you

can see the documentation for that option in the mouse documentation line.

Related Commands:

"Disable Joshua Tracing Command"
"Reset Joshua Tracing Command"

See the section "Tracing Predications" in User’s Guide to Basic Joshua. See the

section "Tracing Rules" in User’s Guide to Basic Joshua.

joshua:equated slot1 slot2	 Joshua Predicate

This predicate is part of the Joshua object facility. It is used to assert and

query the equalitylinks between slots of Joshua objects.

Note that where equalities are between attributes of different subparts of

the same object, and when those equalities hold for all objects of a certain

type, it may be easier to declare those equalities at the time when the class

of objects is defined by joshua:defineobjecttype.

171

March 1999 Joshua Language Dictionary

ltms:equated slot1 slot2 Joshua Predicate

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:equated, except it refers to slots whose values are truth

maintained. Slots are declared as truthmaintained at the time the class of

objects is defined by joshua:defineobjecttype.

joshua:equatedmixin Flavor

This flavormixin is part of the Joshua object facility. It may be used to add

equalitylink behaviour, like that of the default equality predicate

joshua:equated, to predicate models defined by the user.

joshua:expandforwardruletrigger ruletrigger supportvariable Generic Function

name truthvalue context

predication A triggerpattern of a forward chaining rule.

supportvariablename

The name (if any) of the logicvariable which should be

bound to the object which matches the pattern.

truthvalue The truth value of the pattern.

context The entire Ifpart of the rule. This can be useful in ad

vanced modelling applications.

joshua:expandforwardruletrigger is called by the Joshua rule compiler

as the first step of translating the syntax of a forwardchaining rule into

compiled Lisp code.

joshua:expandforwardruletrigger is called once for each predication in

cluded in the trigger of the rule. Its job is to return a list structure that

explains to the rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:forward)

If [and [foo1 ?x ?y] :support ?f1

[not [foo2 ?y ?z]] :support ?f2

]

Then [foo3 ?x ?y ?z])

joshua:expandforwardruletrigger will be called three times (once for the

entire joshua::and and then once for each predication inside the

joshua::and). joshua:expandforwardruletrigger takes four arguments:

the pattern to expand, the name of its :support variable (or nil), its truth

value and the entire Ifpart (which can be treated as the "context" of the

pattern). Thus, the arguments passed in for these three calls wil be:

[and [foo1 ?x ?y] :support ?f1

[not [foo2 ?y ?z]] :support ?f2] nil *true* and <the whole Ifpart>

[foo1 ?x ?y] ?f1 and *true* <the whole Ifpart>

[foo2 ?y ?z] ?f2 *false* <the whole Ifpart>

172

Joshua Language Dictionary	 March 1999

Note that although we have displayed the patterns as if they were predica

tions, this is not actually true. joshua:expandforwardruletrigger runs at

compile time and manipulates a sourcecode representation of predications

and logicvariables, see the section "The Source Representaton of Predica

tions and Logicvariables".

joshua:expandforwardruletrigger should return a list structure (called a

triggerdescription) which must be one of the following forms:

1.	 (:match pattern name truthvalue). This trigger description informs the

rule compiler that the current trigger should be treated simply as a

pattern to be matched.

•	 pattern is the predication that represents the pattern to be matched.

•	 name is the logic variable which the rule triggering mechanisms

should bind to the predication that matched this trigger.

•	 truthvalue (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the

matching predication is required to have in order to trigger the

rule.

2.	 (:and triggerdescriptions) This trigger description informs the rule

compiler that the current pattern is actually a conjunction of patterns

all of which must be matched to trigger the rule. The systemprovided

default method for AND predications returns this type of trigger de

scription. The second element of the trigger description must be a list

of trigger descriptions, i.e. lists returned by calling joshua:expand

forwardruletrigger.

3.	 (:or triggerdescriptions) This trigger description informs the rule

compiler that the current pattern is actually a disjunction of patterns

any of which must be matched to trigger the rule. The system provid

ed default method for OR predications returns this type of trigger de

scription. The second element of the trigger description must be a list

of trigger descriptions, i.e. lists returned by calling joshua:expand

forwardruletrigger.

4.	 (:procedure lispexpression name) This trigger description informs the

rule compiler that the current trigger is not a pattern to be matched,

but rather a Lisp expression that appears in the trigger position. Such

expressions are executed once all proceeding patterns in the rule have

been matched. The expression can act as a filter by returning either

joshua::t or joshua::nil. joshua::t indicates success; in this case the

bindings accumulated up to this point are considered acceptable and

rule triggering continues. joshua::nil indicates failure; in this case the

bindings are considered unacceptable.

173

March 1999	 Joshua Language Dictionary

The expression can also act as a generator in which it produces sever

al new sets of bindings each of which is consistent with the bindings

that were in effect when the rule was triggered. To do this it should

bind whatever logicvariables it wants to and then call

joshua:succeed. joshua:succeed takes a restargument; the rule com

piler will arrange for this values passed to joshua:succeed to be

bound to the logicvariable which is the third element of the trigger

description.

See the function joshua:succeed, page 232.

5.	 (:ignore) This trigger description informs the rule compiler that it

should ignore this trigger. The are two reasons for using this type of

trigger description. The first is to allow a rule to have patterns includ

ed in it simply for the sake of clarity. The second is to include pat

terns only to specify context.

A Procedural trigger description can be used to implement a mixed

chaining strategy in which a forwardrule trigger invokes backward chain

ing capabilities. This would be useful if it is known that a particular type

of predication is never actually asserted but is only deduced by backward

chaining rules.

The following rule is how one would implement this mixedchaining strate

gy if it were known that FOO2 predications are only deduced by backward

chaining rules:

(definepredicate foo1 (a b))

(definepredicate foo2 (a b))

(definepredicate backwardfoo2 (a b))

(definepredicate foo3 (a b c))

(defrule foo (:forward)

If [and [foo1 ?a ?b]

(ask	 [foo2 ?b ?c]

#’(lambda (ignore) (succeed)))]

Then	 [foo3 ?a ?b ?c])

(defrule foo2backward (:backward)

If [backwardfoo2 ?b ?a]

Then	 [foo2 ?a ?b])

The structure of the rete network for this rule is a simple linear chain con

sisting of a match node followed by a procedural node (acting as a genera

tor) as shown in figure 30.

If we execute the following two joshua:tell’s then the rule will be triggered

by the second statement which matches the first pattern of the rule. Execu

tion then proceeds to the procedural node which chains backward using the

rule FOO2BACKWARD. This is shown in figure 31.

174

Joshua Language Dictionary March 1999

Figure 40. Graph of the Mixed Chaining Rule Foo

Figure 41. Trace of The Mixed Chaining Rule Foo

However this rule can be made more declarative appearing by using

joshua:expandforwardruletrigger as follows:

(definepredicatemodel mixedchainingmixin () ())

(definepredicatemethod

(expandforwardruletrigger mixedchainingmixin)

(name truthvalue ignore)

(let ((query (if (eql truthvalue *true*)

self

‘[not ,self))))

‘(:procedure (prog1 nil

(ask ,query

#’(lambda (ignore)

(succeed))))

,name)))

175

March 1999 Joshua Language Dictionary

(definepredicate foo2 (a b)

(mixedchainingmixin defaultpredicatemodel))

(defrule foo (:forward)

If [and [foo1 ?a ?b]

[foo2 ?b ?c]]

Then [foo3 ?a ?b ?c])

(clear)

(tell [backwardfoo2 3 2])

(tell [foo1 1 2])

Now the rule FOO appears to simply match two patterns. However, it actual

ly compiles into exactly the same rete network as shown in figure 40.

Sometimes using joshua:ask in the trigger part of a rule may not be the

appropriate way to achieve a mixed chaining strategy. One reason, is that

joshua:ask queries the world for facts that are deducible at that moment.

If a new fact arrives later that would have made the goal deducible,

joshua:ask will, of course, not notice this. However, forward chaining rules

should draw conclusions whenever the data warrants the deduction.

A solution to this problem is to use a more explicit form of reasoning in

which goal directed reasoning is conducted by forward rules which are trig

gered by explicit predications stating the existence of a goal.

Here is an alternative mixed chaining scheme which implements backward

chaining by explicitly telling show predications. These trigger forward rules

which then work to find a way to satisfy the goal included in the show

statement.

For example, the following rule:

(defrule foo2explicitgoal (:forward)

If [and [show [foo2 ?a ?b]]

[backwardfoo2 ?b ?a]]

Then [foo2 ?a ?b])

Will deduce FOO2 anytime that BACKWARDFOO2 is asserted and there is a SHOW

predication stating that we want this conclusion to be drawn. The rule is

more flexible than a backward rule, since it does not depend on the relative

order of posting the goal and asserting the data necessary to deduce it. (Of

course, this rule is also less efficient than a backward rule).

We can use joshua:expandforwardruletrigger just as we did in the pre

vious section to make the rule FOO use this form of mixed chaining while

retaining its declarative appearance, as follows:

(definepredicatemodel mixchainmixin ()

())

(defvar *insidealternativebackwardchainingmixin* nil)

176

Joshua Language Dictionary	 March 1999

(definepredicatemethod

(expandforwardruletrigger mixchainmixin)

(name truthvalue context)

(if *insidealternativebackwardchainingmixin*

‘(:match ,self ,name ,truthvalue)

(let ((*insidealternativebackwardchainingmixin* t))

(let ((query (if	 (eql truthvalue *true*)

self

‘[not ,self))))

‘(:and

,(expandforwardruletrigger

‘(tell [show ,query]) nil *true* context)

,(expandforwardruletrigger

self name truthvalue context))))))

(definepredicate show (predication))

(definepredicate foo2 (a b)

(mixchainmixin defaultpredicatemodel))

This joshua:expandforwardruletrigger method expands the FOO2 pattern

of the rule into two components. The first joshua:tell’s the SHOW statement

that triggers the FOO2EXPLICITGOAL rule. The second is a simple match

node that waits for the FOO2 goal to become true. The joshua:expand

forwardruletrigger method is somewhat tricky because it wants to expand

the intial [foo2 ...] pattern into two nodes, one of which joshua:tells

[show [foo2 ...]] and the other of which matches [foo2 ...]. A special

variable is bound to prevent an infinite recursion in the expansion of this

pattern.

Figure32shows the Rete net for this rule.

Figure 42. Graph of Mixed Chaining Rule Foo

177

March 1999 Joshua Language Dictionary

Notice that the rule contains two match nodes, one for each pattern. The

match node for the FOO1 pattern leads to a procedural node which

joshua:tells a [show [foo2 ...]] predication and then joshua:succeeds.

Following this the two paths merge. If the Foo1 statement is asserted first

the rule will assert the SHOW statement which will cause the FOO2EXPLICIT

GOAL rule to wait for a FOO2BACKWARD statement. At which point the FOO2

EXPLICITGOAL rule will assert a FOO2 statement which will match the other

trigger pattern of the FOO rule. If the facts are asserted in the other order,

the rule will also deduce the desired conclusion, as shown in figures 33 and

Figure 43. Trace of Explicitly Controlled Mixed Chaining

Figure 44. Trace of Explicitly Controlled Mixed Chaining

Here’s an example using the :ignore trigger description:

(defrule adderforward (:forward)

If [and [typeof ?a adder]

[Valueof addend ?a ?value1]

[Valueof augend ?a ?value2]]

Then ‘[valueof output ?a ,(+ ?value1 ?value2)])

A triggerindexing scheme might be used which guarantees that this rule

will only be triggered by Valueof assertions that describe the values of the

ADDEND and AUGEND of adders. In such a case the first pattern is required

during rule compilation to inform the joshua:locateforwardruletrigger

method that it is indexing patterns having to do with adders. However,

178

Joshua Language Dictionary	 March 1999

once such a triggerindexing scheme is established the first pattern is actu

ally redundant.

(definepredicatemethod

(expandforwardruletrigger typeofmodel) (ignore ignore ignore)

‘(:ignore))

(definepredicate	 typeof (object type)

(typeofmodel defaultprotocolimplementationmodel))

See the section "The Joshua Rule Compiler", page 26.

joshua:expandbackwardruleaction ruleaction sup Joshua Protocol Method

portvariablename truthvalue other

askargs context

predication	 An action of a backward chaining rule (i.e. part of the

Ifpart)

name	 The name (if any) of the logicvariable which should be

bound to the backward support of this query.

truthvalue	 The truth value of the pattern.

otheraskargs	 Keyword arguments to joshua:ask which should be in

cluded with this query.

context	 The entire Ifpart of the rule, which can be regarded as

the context of this query.

joshua:expandbackwardruleaction is called by the Joshua rule compiler

as the first step of translating the syntax of a backwardchaining rule into

compiled Lisp code.

What the Backward Rule-compiler Does to the Actions of a Rule

The backward rule compiler turns the Ifpart of a rule into a series of nest

ed joshua:ask’s. For example, the actions of the following rule:

(defrule foobar (:backward)

If [and	 [foo1 ?x ?y] :support ?f1 :dobackwardrules nil

[not [foo2 ?y ?z]] :support ?f2

]

Then [foo3 ?x ?y ?z])

are converted into a highly optimized version of the following code:

179

March 1999	 Joshua Language Dictionary

(ask [foo1 ?x ?y]

#’(lambda (support2196)

(unify ?f1 support2196)

(ask [not [foo2 ?y ?z]]

#’(lambda (support2197)

(unify ?f2 #:support2197)

(let ((ji::rulesupport

(list	 ji::.goal. ji::.truthvalue.

’(rule foobar)

support2196 support2197)))

(funcall ji::.continuation. ji::rulesupport))))

:dobackwardrules nil))

The backward rule compiler also handles the keyword arguments which can

be attached to patterns in the Ifpart of the rule. See the section "Advanced

Features of Joshua Rules", page 24.

The Contract of the Generic Function joshua:expand-backward-rule-action

The joshua:expandbackwardruleaction protocol function controls how

the conversion is performed.

joshua:expandbackwardruleaction is called once for each predication in

cluded in the Ifpart of the rule. Its job is to return a list structure that

explains to the rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:backward)

If [and	 [foo1 ?x ?y] :support ?f1 :dobackwardrules nil

[not [foo2 ?y ?z]] :support ?f2

]

Then [foo3 ?x ?y ?z])

joshua:expandbackwardruleaction will be called three times (once for

the entire joshua::and and then once for each predication inside the

joshua::and). joshua:expandbackwardruleaction takes five arguments:

the pattern to expand, the name of its :support variable (or nil), its truth

value, the value of the keyword arguments attached to this pattern that

should be passed onto joshua:ask (e.g. :dobackwardrules and :do

questions) and the entire Ifpart (which can be treated as the "context" of

the pattern). Thus, the arguments passed in for these three calls wil be:

[and [foo1 ?x ?y] :support ?f1 :dobackwardrules nil

[not [foo2 ?y ?z]] :support ?f2] nil *true* (t t) <the whole Ifpart>

[foo1 ?x ?y] ?f1 *true* (nil t) <the whole If part>

[foo2 ?y ?z] ?f2 *false* (t t) <the whole If part>

Note that although we have displayed the patterns as if they were predica

tions, this is not actually true. joshua:expandbackwardruleaction runs

at compile time and manipulates a sourcecode representation of predica

tions and logicvariables, see the section "The Source Representaton of

Predications and Logicvariables".

180

Joshua Language Dictionary	 March 1999

joshua:expandbackwardruleaction should return a list structure (called

a actiondescription) which must be one of the following forms:

1.	 (:match pattern name truthvalue askkeywordargs). This action de

scription informs the rule compiler that the current action should be

treated simply as a pattern to be joshua:ask’ed. This action will com

pile into an joshua:ask form whose continuation will perform the ac

tions following this one.

•	 pattern is the source representation of the predication that should be

joshua:ask’ed. This is normally just the first argument to

joshua:expandbackwardruleaction.

•	 name is the name of a logic variable which should be bound to the

querysupport passed by joshua:ask to its continuation; this allows

procedural code in the IfPart of the rule to examine the support for

the various actions.

•	 truthvalue (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the

matching predication is required to have in order to satisfy the

joshua:ask.

•	 The values of the keyword arguments to be passed to joshua:ask.

This should normally be identical to the equivalent argument passed

into joshua:expandbackwardruleaction.

2.	 (:and actiondescriptions) This action description informs the rule com

piler that the current pattern is actually a conjunction of actions all of

which must be satisfied. The systemprovided default method for AND

predications returns this type of action description. The second ele

ment of the trigger description must be a list of action descriptions,

i.e. lists returned by calling joshua:expandbackwardruleaction.

3.	 (:or actiondescriptions) This action description informs the rule com

piler that the current pattern is actually a disjunction of actions any

one of which must be satisfied in order to satify the whole action. The

system provided default method for OR predications returns this type

of action description. The second element of the action description

must be a list of action descriptions, i.e. lists returned by calling

joshua:expandbackwardruleaction.

4.	 (:procedure lispexpression name) This action description informs the

rule compiler that the current trigger is not a pattern to be

joshua:ask’ed but rather a Lisp expression that appears in the Ifpart

of the backward rule. Such expressions are executed once all proceed

ing actions in the rule have been satisfied. The expression can act as

a filter by returning either joshua::t or joshua::nil. joshua::t indi

181

March 1999	 Joshua Language Dictionary

cates success; in this case the bindings accumulated up to this point

are considered acceptable and rule execution continues. joshua::nil in

dicates failure; in this case the bindings are considered unacceptable.

The expression can also act as a generator in which it produces sever

al new sets of bindings each of which is consistent with the bindings

that were in effect just before the action began execution. To do this

it should bind whatever logicvariables it wants to and then call

joshua:succeed. joshua:succeed takes a restargument; the rule com

piler will arrange for this value passed to joshua:succeed to be bound

to the logicvariable which is the third element of the action descrip

tion.

See the function joshua:succeed, page 232.

5.	 (:ignore) This action description informs the rule compiler that it

should ignore this action. The are two reasons for using this type of

action description. The first is to allow a rule to have actions included

in it simply for the sake of clarity. The second is to include actions

only to specify context.

Explain Predication Command

Traces the chain of TMS justifications for databasepredication through rules to

primitive support (premises and assumptions).

databasepredication	A predication object that is in the database. Must be the actual

database object, and not a copy of it.

depth	 Specifies how many layers deep into the explanation to go be

fore cutting off.

This is a command interface to Joshua’s joshua:explain function.

joshua:explain databasepredication &optional depth (stream Function

standardoutput)

Traces the chain of TMS justifications for databasepredication through

rules to primitive support (premises and assumptions).

databasepredication	A predication object that is in the database. Must be

the actual database object, and not a copy of it.

depth	 Specifies how many layers deep into the explanation to

go before cutting off.

stream	 Specifies a stream to which to display the output.

In general, joshua:explain is useful only if databasepredication is built on

some model that supports the TMS protocol.

Examples:

182

Joshua Language Dictionary March 1999

(definepredicate higherinfoodchain (eater lowerinfoodchain)

(ltms:ltmspredicatemodel))

(definepredicate favoritemeal (eater food) (ltms:ltmspredicatemodel))

; A good example of how to implement transitive relations

(defrule basicfoodchain (:forward)

if [favoritemeal ?eater ?eatee]

then [higherinfoodchain ?eater ?eatee])

(defrule transitivefoodchain (:forward)

if [and [favoritemeal ?eater ?eatee]

[higherinfoodchain ?eatee ?food]]

then [higherinfoodchain ?eater ?food])

(defun meals ()

(clear)

(tell [and [favoritemeal redherring worm]

[favoritemeal worm algae]])

(tell [favoritemeal MissMarple redherring] :justification :assumption)

(cp:executecommand "Show Joshua Database"))

(meals)

True things

[HIGHERINFOODCHAIN MISSMARPLE REDHERRING]

[HIGHERINFOODCHAIN MISSMARPLE WORM]

[HIGHERINFOODCHAIN MISSMARPLE ALGAE]

[HIGHERINFOODCHAIN WORM ALGAE]

[HIGHERINFOODCHAIN REDHERRING ALGAE]

[HIGHERINFOODCHAIN REDHERRING WORM]

[FAVORITEMEAL MISSMARPLE REDHERRING]

[FAVORITEMEAL WORM ALGAE]

[FAVORITEMEAL REDHERRING WORM]

False things

None

183

March 1999 Joshua Language Dictionary

(ask [higherinfoodchain MissMarple ?food]

#’(lambda (backwardsupport)

(explain (askdatabasepredication backwardsupport))))

[HIGHERINFOODCHAIN MISSMARPLE REDHERRING] is true

It was derived from rule BASICFOODCHAIN

[FAVORITEMEAL MISSMARPLE REDHERRING] is true

It is an :ASSUMPTION

[HIGHERINFOODCHAIN MISSMARPLE WORM] is true

It was derived from rule TRANSITIVEFOODCHAIN

[FAVORITEMEAL MISSMARPLE REDHERRING] is true

It is an :ASSUMPTION

[HIGHERINFOODCHAIN REDHERRING WORM] is true

It was derived from rule BASICFOODCHAIN

[FAVORITEMEAL REDHERRING WORM] is true

It is a :PREMISE

[HIGHERINFOODCHAIN MISSMARPLE ALGAE] is true

It was derived from rule TRANSITIVEFOODCHAIN

[FAVORITEMEAL MISSMARPLE REDHERRING] is true

It is an :ASSUMPTION

[HIGHERINFOODCHAIN REDHERRING ALGAE] is true

It was derived from rule TRANSITIVEFOODCHAIN

[FAVORITEMEAL REDHERRING WORM] is true

It is a :PREMISE

[HIGHERINFOODCHAIN WORM ALGAE] is true

It was derived from rule BASICFOODCHAIN

[FAVORITEMEAL WORM ALGAE] is true

It is a :PREMISE

Related Functions:

joshua:graphtmssupport

See the section "Explaining Program Beliefs" in User’s Guide to Basic

Joshua.

joshua:*false* Variable

A named constant used by Joshua to denote a truth value of false. You can

compare truth values using eql.

Related Topics:

joshua:*true*

joshua:*unknown*

joshua:*contradictory*

joshua:truthvalue

joshua:predicationtruthvalue

See the section "Truth Values" in User’s Guide to Basic Joshua.

184

Joshua Language Dictionary	 March 1999

joshua:fetch predication continuation Function

The dual to joshua:insert, joshua:fetch is the first phase of joshua:ask. It

takes predication and searches for it in the virtual database. It calls contin

uation for each occurrence of something in the database that might unify

with predication. It is the responsibility of joshua:askdata to do the unifi

cation, if that is the programmer’s intent.

Note that joshua:fetch is required to call its continuation on objects that

are actually in the database, not reconstructed copies. See joshua:askdata

for more discussion of this issue.

predication A pattern to search for. joshua:fetch must call continu

ation on a superset of the predications in the database

that unify with predication.

continuation A function of one argument that joshua:fetch calls on

each candidate.

For some examples: See the function joshua:insert, page 189.

See the section "The Joshua Rule Indexing Protocol", page 36.

Graph Forward Rule Triggers Command

Graphs the forward rule Rete network.

Forward rules or all

Graph the Rete network for which forward rules.

:Follow Extraneous Paths

Whether to include the rules which share match or merge

nodes with the specified rules. This defaults to Yes.

:Orientation Draw the graph in which direction: vertical or horizontal.

:Output Destination Where to display the information.

Graph Forward Rule Triggers displays the graph of the forward rule Rete network

for one or more rules. It is useful for determining the extent of node sharing be

tween forward rules. The graph also includes a number for each node, indicating

the number of environments currently held by that node. This can give you a

rough measure of how much work is being done at each point in the network. See

the section "Forward Rule Triggers: the Rete Network", page 27.

joshua:graphdiscriminationnet rootnode	 Function

joshua:graphdiscriminationnet displays the discrimination net as a hori

zontal tree with the root on the leftmost side and the leaf nodes on the far

right.

rootnode	 The root node of a discrimination net, usually from

the variable ji:*datadiscriminationnet*.

185

March 1999	 Joshua Language Dictionary

The different predications that discriminate to a single node are displayed

individually in the leaf node.

See figure 9, for an example.

See the section "Organization of the Default Discrimination Net", page 17.

joshua:graphqueryresults backwardsupport &key (:orientation Function

:vertical) (:stream *standardoutput*)

A convenience function for use in an joshua:ask continuation.

joshua:graphqueryresults draws a graph of the support information in

backwardsupport, that is, the successful query, and the reasons it succeed

ed.

backwardsupport is fully described in the dictionary entry for joshua:ask.

joshua:graphqueryresults both extracts and interprets the information

for you.

backwardsupport	 A support argument passed by joshua:ask to a continu

ation.

:orientation	 Specifies the graph orientation. Default is vertical.

:stream	 The stream on which the graph is output. Default is

standardoutput.

The convenience function joshua:printqueryresults prints the same infor

mation as joshua:graphqueryresults.

The accessor function joshua:askderivation extracts all the support for a

satisfied query but without interpreting it. For the sake of comparison we’ll

use the same examples to illustrate all three of these functions.

Examples: First, a query satisfied from the database. The graph shows the

database predication that matched the query.

(definepredicate edible (object))

(definepredicate isfood (object))

(definepredicate contains (object substance))

(definepredicate sweet (object))

(definepredicate typeof (object type))

(tell [edible chocolatecoatedants])

(tell [contains chocolatecoatedants honey])

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

186

Joshua Language Dictionary	 March 1999

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the rule definitions.

(defrule food? (:backward)

if [edible ?object]

then [isfood ?object])

(defrule sweet? (:backward)

if [or	 [contains ?object chocolate]

[contains ?object sugar]

[contains ?object honey]]

then [sweet ?object])

(defrule dessert? (:backward)

if [and [isfood ?object]

[sweet ?object]]

then [typeof ?object dessert])

Now we joshua:ask what foods qualify as desserts and why. In the graph,

ovals denote queries that were not satisfied directly by the database. Rect

angles denote queries that were satisfied by the database.

The top of the graph shows the satisfied goal, and names the rule that sat

isfied it. The rest of the graph shows successive subgoals and how each

was satisfied.

Since backward chaining stops when it finds database predications, the bot

tom leaves of the graph tree are queries that were satisfied by the

database. Hence they are rectangles, whereas intermediate nodes are ovals.

The arrows move in the ifthen (logical conclusion) direction.

Here’s an extension to the previous example, to show how the graph dis

plays truth values of joshua:*false*. We add a rule to eliminate first

course choices: the rule says that things that are liquid and are not

desserts are not a main course.

(definepredicate isconsistencyof (food consistency))

187

March 1999 Joshua Language Dictionary

(defrule soup? (:backward)

if [and [not [typeof ?food dessert]]

[isconsistencyof ?food liquid]]

then [not [typeof ?food maincourse]])

(tell [not [typeof chickenbroth dessert]])

(tell [isconsistencyof chickenbroth liquid])

The graph displays the satisfied query prefixed by [not ...]. The database

predication matching the query appears without the prefix, just as it would

in the database display. The label above it indicates that its truth value is

joshua:*false*. (Predications with a truth value of joshua:*true* are not

labelled as such in the graph Database heading.)

Related Functions:

joshua:ask

joshua:printqueryresults

See the section "Querying the Database" in User’s Guide to Basic Joshua.

See the section "Explaining Backward Chaining Support" in User’s Guide to

Basic Joshua.

joshua:graphtmssupport &rest predications Function

Displays a graph of the TMS support for predications, that is, of the depen

dency information which a Truth Maintenance System stores in the

database along with predications. The graph traces the support chain

through the dependency records created by forward rules (or other callers

of joshua:justify such as the the :justification keyword argument to

joshua:tell) to the underlying primitive support (assumptions and premis

es). (Backward chaining support is not graphed, since the rule result is not

stored in the database. For that, you probably want joshua:graphquery

results.)

Example:

(definepredicate dreamsin (language dreamer) (ltms:ltmspredicatemodel))

(definepredicate countsin (language person) (ltms:ltmspredicatemodel))

(definepredicate nativespeakerof (language speaker)

(ltms:ltmspredicatemodel))

188

Joshua Language Dictionary March 1999

(defrule nativespeaker? (:forward)

if [and [dreamsin ?language ?person]

[countsin ?language ?person]]

then [nativespeakerof ?language ?person])

(tell [dreamsin Spanish Violet] :justification :assumption)

(tell [countsin Spanish Violet])

Show Joshua Database (matching pattern [default All])

[nativespeakerof ?x ?y] (opposite truthvalue too? [default Yes]) Yes

True things

[NATIVESPEAKEROF SPANISH VIOLET]

False things

None

You must give joshua:graphtmssupport the actual predication object that

resides in the database, rather than a copy of it. In our example we re

trieve the predication object by clicking the mouse over it in the database

display.

Since the support graph traces the support for facts that are in the

database, all nodes are rectangles. (Compare the display of joshua:graph

queryresults.) The top of the graph tree shows the predication whose sup

port we want to know about. We see that this predication was derived from

a forward rule, which in turn was derived from some predications. The bot

tom leaves of the graph tree show primitive support (premise or assump

tion) denoting the end of the forward chaining process. The arrows point in

the ifthen (logical conclusion) direction.

Here’s an example showing the support graph for a predication whose truth

value is joshua:*false*.

(definepredicate hasticket (claimant)(ltms:ltmspredicatemodel))

(definepredicate admissible (claimant)(ltms:ltmspredicatemodel))

189

March 1999	 Joshua Language Dictionary

(defrule nofreelunch (:forward)

if [not [hasticket ?x]]

then [not [admissible ?x]])

(tell [not [hasticket Jane]])

Predications with a truth value of joshua:*false* appear with an indication

that they are false.

See the section "Explaining Program Beliefs" in User’s Guide to Basic

Joshua.

joshua:insert predication Function

This is the first step used by tell. It takes predication and puts it into the

virtual database. It does not deal with any justification or forward rule

triggering issues. joshua:insert returns two values:

1.	 The canonical version of predication that is stored in the database.

(That can be distinct from predication if another predication that is a

joshua:variant of predication has previously been joshua:inserted.

The one already in the database is returned.) See the function

joshua:variant, page 252.

2.	 A flag that indicates whether predication was already in the database.

If the predication is was not in the database then this value should be

t, (indicating that an insertion did, in fact, take place).

joshua:insert and joshua:fetch are probably methods you will want to de

fine often in your data models, as they control the way your predications

are stored. See the example developed in the section "Customizing the Data

Index".

190

Joshua Language Dictionary	 March 1999

joshua:justify conclusion truthvalue &optional mnemonic true Function

support falsesupport unknownsupport

Sets the truthvalue of things that go into the database and gives a TMS

the information necessary for maintaining dependencies. For predications

that implement a TMS, joshua:justify is the protocol function that builds

and installs the justification.

conclusion	 The predication being justified.

truthvalue	 Should be one of joshua:*true*, joshua:*false*,

joshua:*unknown*, or joshua:*contradictory*. If the

justification is active, then the conclusion will assume

this truthvalue.

mnemonic	 An informative term. If the justification is being used

to record the actions of a rule, then it is conventional

to provide the name of the rule as the mnemonic. Justi

fications built by the rulecompiler follow this conven

tion. Some TMS’s may use the mnemonic to distinguish

specially understood types of justifications such as

premises.

truesupport	 A list of database predications, all of which must have

truthvalue joshua:*true* for the justification to be ac

tive.

falsesupport	 A list of database predications, all of which must have

truthvalue joshua:*false* for the justification to be ac

tive.

unknownsupport	 A list of database predications, all of which must have

truthvalue joshua:*unknown* for the justification to

be active. Some TMS’s (e.g. the LTMS) may require

this argument to nil.

If all the predications in the set of truesupport have truthvalue

joshua:*true*, all the predications in the falsesupport have truthvalue

joshua:*false* and all the predications in the unknownsupport have truth

value joshua:*unknown*, then the justification is considered to be active.

An active justification causes the conclusion to assume its desired truth

value.

Examples:

Suppose you want to find all the isexiledfrom statements in your

database and add a new justification to them. For example, your database

might contain:

(definepredicate isexiledfrom (person place) (ltms:ltmspredicatemodel))

(tell [isexiledfrom Prospero Padua])

(tell [isexiledfrom HenryJames US])

191

March 1999	 Joshua Language Dictionary

Show	 Joshua Database (matching pattern [default All]) All

True things

[ISEXILEDFROM HENRYJAMES US]

[ISEXILEDFROM PROSPERO PADUA]

False things

None

(justify [ISEXILEDFROM HENRYJAMES US] *true* :assumption)

NIL

(explain [ISEXILEDFROM HENRYJAMES US])

[ISEXILEDFROM HENRYJAMES US] is true

It is a :PREMISE

NIL

(unjustify [ISEXILEDFROM HENRYJAMES US])

NIL

(explain [ISEXILEDFROM HENRYJAMES US])

[ISEXILEDFROM HENRYJAMES US] is true

It is an :ASSUMPTION

NIL

and you want to add an :assumption justification to each of those. You

would use joshua:justify and joshua:ask as follows:

(ask	 [isexiledfrom ? ?]

#’(lambda (backwardsupport)

(justify	 (askdatabasepredication backwardsupport)

(askquerytruthvalue backwardsupport)

:assumption))

:dobackwardrules nil)

Related Functions:

joshua:unjustify

See the section "Justification and Truth Maintenance" in User’s Guide to

Basic Joshua. See the section "The Truth Maintenance Protocol", page 54.

joshua:known proposition Joshua Predicate

This modal operator checks if proposition is known to be either

joshua:*true* or joshua:*false*.

proposition A Joshua predication pattern to match.

The query: (ask [known [foo ?x]] #’ ...)

Succeeds when: either [foo ?x] or [not [foo ?x]] succeed

If successful, joshua:known calls the continuation on the instantiated

query.

192

Joshua Language Dictionary March 1999

Examples:

We use the predicate shapeof and the statements about shapes that we

used to illustrate the predicate joshua:provable. Here they are.

(definepredicate shapeof (object shape))

(tell [and [shapeof door oval]

[not [shapeof leaf pointed]]])

[AND [SHAPEOF DOOR OVAL] [NOT [SHAPEOF LEAF POINTED]]]

Show Joshua Database

True things

[SHAPEOF DOOR OVAL]

False things

[SHAPEOF LEAF POINTED]]

The database contains one statement about shapes that is joshua:*true*

and one that is joshua:*false*. joshua:known succeeds in each case, re

turning the instantiated query. Note that there is no indication of truth

value in the instantiated query. That is because when we ask if something

is joshua:known, we are interested only in the existence of an answer, not

in its particular truth value. (backwardsupport for the joshua:ask does in

dicate what the truth value of the instantiated query was.)

(ask [known [shapeof ?object ?shape]] #’printquery)

[KNOWN [SHAPEOF DOOR OVAL]]

[KNOWN [SHAPEOF LEAF POINTED]] ; argument was actually false

A more interesting question is to ask whether a predication is not known to

Joshua.

The query: (ask [not [known [foo ?x]]] #’ ...)

Succeeds when: [foo ?x] and [not [foo ?x]] both fail

Examples:

; The proposition is not in the database or in rules

(ask [not [known [shapeof nose pointed]]] #’printquery)

[not [KNOWN [SHAPEOF NOSE POINTED]]]

joshua:known can also be used in backward rules. The goal of the very in

considerate rule in the next example is to select a dancing partner. The

rule filters out those whose ability at ?activity is unknown, keeping those

who are good or bad.

(definepredicate needapartner (activity))

(definepredicate isgoodat (activity person))

(definepredicate useaspartner (person activity))

193

March 1999 Joshua Language Dictionary

(defrule twoleftfeetwilldo (:backward)

if [and [needapartner ?activity]

[known [isgoodat ?activity ?person]]]

then [useaspartner ?person ?activity])

(defun testknown ()

(clear)

(tell [and [needapartner dancing]

[isgoodat dancing Tom]

[not [isgoodat dancing Fred]]])

’Done.)

(testknown)

DONE.

(ask [useaspartner ?person ?activity] #’printquery)

[USEASPARTNER TOM DANCING]

[USEASPARTNER FRED DANCING]

The goal of the rule in the next example is to hire an applicant if his/her

qualifications are excellent, even if nothing is known about the applicant’s

experience level.

(definepredicate hasqualifications (person qualifications))

(definepredicate previousexperience (person experience))

(definepredicate hirecandidate (name))

(tell [and [hasqualifications Fred poor]

[hasqualifications Joan excellent]])

[AND [HASQUALIFICATIONS FRED POOR] [HASQUALIFICATIONS JOAN EXCELLENT]]

(defrule inexperiencenoobstacle (:backward)

if [and [hasqualifications ?applicant excellent]

[not [known [previousexperience ?applicant ?howmuch]]]]

then [hirecandidate ?applicant])

(ask [hirecandidate Fred] #’printquery)

(ask [hirecandidate ?applicant] #’printquery)

[HIRECANDIDATE JOAN]

Related Predicate:

joshua:provable

194

Joshua Language Dictionary	 March 1999

joshua:locatebackwardquestiontrigger predication truthvalue Generic Function

continuation context questionname

predication	 A pattern under which to index a backward question.

truthvalue	 The truth value of the pattern under which the ques

tion should be indexed.

continuation	 A function passed in which can determine whether a

new question trigger is necessary.

context	 Useful in advanced modeling applications.

questionname	 The name of the backwardquestion being indexed.

Tailoring of backwardquestion indexing is usually accomplished by provid

ing methods for the joshua:locatebackwardquestiontrigger and

joshua:mapoverbackwardquestiontriggers protocol functions. The

joshua:addbackwardquestiontrigger and joshua:deletebackward

questiontrigger methods provided as Joshua’s defaults call joshua:locate

backwardquestiontrigger as a subroutine. All of the interesting tailoring

of their behavior can be obtained by providing a joshua:locatebackward

questiontrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what questions are currently indexed where. The joshua:locatebackward

questiontrigger method is responsible for managing the data structures

used to index backward question triggers. Each backward chaining question

has a unique trigger structure, indexed by the pattern (and its truth value)

of the question. Just as joshua:insert maps variant predications to a

unique location in a data index, joshua:locatebackwardquestiontrigger

locates the unique place in a question index where Joshua stores a back

ward chaining question’s trigger structure.

To accomplish this, the joshua:locatebackwardquestiontrigger method is

required to follow a rather complicated pattern of behavior. This pattern is

divided into four parts:

1.	 Using predication and truthvalue it should determine where the trig

ger should be stored. This location should contain either joshua::nil or

a list of backward question triggers (we’ll call this the trigger set).

2.	 continuation should be called with the trigger set as an argument. It

will return three values:

a.	 A new trigger set which includes a backward question trigger da

tastructure corresponding to predication and truthvalue (the pat

tern under which this trigger is indexed).

b.	 A flag indicating whether a new trigger datastucture was added

to the trigger set. If this value is joshua::t then trigger set did not

195

March 1999	 Joshua Language Dictionary

already contain a backward question trigger datastructure for

predication with truth value truthvalue.

c.	 The canonical trigger which is the unique backward question trig

ger for this question.

3.	 If the value of flag is joshua::t, then joshua:locatebackward

questiontrigger should update its index so that the location which

used to contain trigger set will now contain new trigger set. During this

step joshua:locatebackwardquestiontrigger may take whatever ac

tions it likes to optimize the question index.

4.	 The method should return canonical trigger as its value.

The reason for this complicated pattern of behavior is as follows:

joshua:locatebackwardquestiontrigger is used as a subroutine of both

joshua:addbackwardquestiontrigger and joshua:deletebackward

questiontrigger. Knowledge of how to index a pattern is localized in the

joshua:locatebackwardquestiontrigger methods, while the knowledge of

the internal structure of the backward trigger datastructures is localized in

joshua:addbackwardquestiontrigger and joshua:deletebackward

questiontrigger. These two higher levels routines call joshua:locate

backwardquestiontrigger passing to it continuation, a function which un

derstands how to manipulate sets of backward question trigger data

structures.

Continuation adds (or deletes) a backward question trigger datastructure

for the current question (if necessary) and returns enough information so

that joshua:locatebackwardquestiontrigger will know what actions were

taken.

joshua:locatebackwardquestiontrigger should return canonical trigger as

its value so the question’s debugging information can point to the actual

data structure corresponding to its trigger patterns.

As an example, consider the following method which indexes backward

question triggers on the property list of the predicate in the pattern.

(definepredicatemodel predicatebackwardquestionindexing () ())

196

Joshua Language Dictionary	 March 1999

(definepredicatemethod

(locatebackwardquestiontrigger predicatequestionindexing)

(truthvalue continuation ignore ignore)

;; This is part one, locate the current trigger set

(let ((oldtriggers (get (predicationpredicate self)

’backwardquestiontriggers)))

;; part two, call the continuation

(multiplevaluebind (newtriggers changedp node)

(funcall continuation oldtriggers)

;; part three, update the index with new triggers, if something changed

(when changedp

(setf (get (predicationpredicate self)

’backwardquestiontriggers) newtriggers))

;; part four, return the canonical backward question trigger

node)))

;;; This map method finds the triggers stored by the previous guy.

(definepredicatemethod

(mapoverbackwardquestiontriggers predicatequestionindexing)

(continuation)

;; how to collect all backward triggers that might be interested in me

(declare (sys:downwardfunarg continuation)) ;backward reference

(loop for retenode in (get (predicationpredicate self)

’backwardquestiontriggers)

doing (funcall continuation Retenode)))

The context argument is provided to allow the joshua:locatebackward

questiontrigger method to use a context sensitive indexing technique.

See the section "The Joshua Question Indexing Protocol", page 48.

joshua:locatebackwardruletrigger predication truthvalue con Generic Function

tinuation context rulename

predication	 A pattern under which to index a backward rule.

truthvalue	 The truth value of the pattern under which the rule

should be indexed.

continuation	 A function passed in which can determine whether a

new rule trigger is necessary.

context	 The entire ifpart of the rule. Useful in advanced mod

eling applications. rulename

The name of the backward rule being indexed.

Tailoring of backward rule indexing is usually accomplished by providing

methods for the joshua:locatebackwardruletrigger and joshua:map

overbackwardruletriggers protocol functions. The joshua:addbackward

ruletrigger and joshua:deletebackwardruletrigger methods provided as

197

March 1999	 Joshua Language Dictionary

Joshua’s defaults call joshua:locatebackwardruletrigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid

ing a joshua:locatebackwardruletrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where.

The joshua:locatebackwardruletrigger method is responsible for manag

ing the data structures used to index backward rule triggers. Each back

ward chaining rule has a unique trigger structure, indexed by the pattern

(and its truth value) of the thenpart of the rule. Just as joshua:insert

maps variant predications to a unique location in a data index,

joshua:locatebackwardruletrigger locates the unique place in a rule in

dex where Joshua stores a backward chaining rule’s trigger structure.

To accomplish this, the joshua:locatebackwardruletrigger method is re

quired to follow a rather complicated pattern of behavior. This pattern is

divided into four parts:

1.	 Using predication and truthvalue it should determine where the trig

ger should be stored. This location should contain either joshua::nil or

a list of backward rule triggers (we’ll call this the trigger set).

2.	 continuation should be called with the trigger set as an argument. It

will return three values:

a.	 A new trigger set which includes a backward rule trigger data

structure corresponding to predication and truthvalue (the pattern

under which this trigger is indexed).

b.	 A flag indicating whether a new trigger datastucture was added

to the trigger set. If this value is joshua::t then trigger set did not

already contain a backward rule trigger datastructure for predi

cation with truth value truthvalue.

c.	 The canonical trigger which is the unique backward rule trigger

for this rule.

3.	 If the value of flag is joshua::t, then joshua:locatebackwardrule

trigger should update its index so that the location which used to con

tain trigger set will now contain new trigger set. During this step

joshua:locatebackwardruletrigger may take whatever actions it

likes to optimize the rule index.

4.	 It should return canonical trigger as its value.

The reason for this complicated pattern of behavior is as follows:

joshua:locatebackwardruletrigger is used as a subroutine of both

joshua:addbackwardruletrigger and joshua:deletebackwardrule

198

Joshua Language Dictionary March 1999

trigger. Knowledge of how to index a pattern is localized in the

joshua:locatebackwardruletrigger methods, while the knowledge of the

internal structure of the backward trigger datastructures is localized in

joshua:addbackwardruletrigger and joshua:deletebackwardrule

trigger. These two higher levels routines call joshua:locatebackwardrule

trigger passing to it continuation, a function which understands how to ma

nipulate sets of backward rule trigger datastructures.

Continuation adds (or deletes) a backward rule trigger datastructure for

the current rule (if necessary) and returns enough information so that

joshua:locatebackwardruletrigger will know what actions were taken.

joshua:locatebackwardruletrigger should return canonical trigger as its

value so the rule’s debugging information can point to the actual data

structure corresponding to its trigger patterns.

As an example, consider the following method which indexes backward rule

triggers on the property list of the predicate in the pattern.

(definepredicatemodel predicatebackwardruleindexing () ())

(definepredicatemethod (locatebackwardruletrigger predicateruleindexing)

(truthvalue continuation ignore ignore)

;; This is part one, locate the current trigger set

(let ((oldtriggers (get (predicationpredicate self) ’backwardruletriggers)))

;; part two, call the continuation

(multiplevaluebind (newtriggers changedp node)

(funcall continuation oldtriggers)

;; part three, update the index with new triggers, if something changed

(when changedp

(setf (get (predicationpredicate self) ’backwardruletriggers) newtriggers))

;; part four, return the canonical backward rule trigger

node)))

;;; This map method finds the triggers stored by the previous guy.

(definepredicatemethod (mapoverbackwardruletriggers predicateruleindexing)

(continuation)

;; how to collect all backward triggers that might be interested in me

(declare (sys:downwardfunarg continuation)) ;backward reference

(loop for retenode in (get (predicationpredicate self) ’backwardruletriggers)

doing (funcall continuation Retenode)))

The context argument is provided to allow the joshua:locatebackward

ruletrigger method to use a context sensitive indexing technique. For ex

ample, consider the following backward rule which describes the behavior of

an adder:

199

March 1999	 Joshua Language Dictionary

(defrule adderbehavior (:backward)

If [and

[typeof ?a adder]

[statusof ?a working]

[valueof input1 ?a ?input1]

[valueof input2 ?a ?input2]

(unify ?sum (+ ?input1 ?input2))]

Then [valueof output ?a ?sum])

It might be appropriate to use an objectoriented set of data structures to

manage the indexing of this rule’s trigger data structures. In such a

scheme, there is one object representing the class of all adders and an addi

tional object for each specific adder being reasoned about. The triggers for

the rule should be attached to the object representing the class of all ad

ders, since this is information shared by all the individual adders. Consider

what happens when joshua:locatebackwardruletrigger is called to index

this rule under the pattern [valueof output ?a ?sum]. It should attach the

corresponding trigger datastructure to the SUM slot of the object represent

ing the class of all adders. However, it cannot determine this without know

ing that this is a rule about adders and that information is contained in the

pattern [typeof ?a adder]. It is for this reason that the entire ifpart of the

rule is passed into joshua:locatebackwardruletrigger

See the section "The Joshua Rule Indexing Protocol", page 36.

joshua:locateforwardruletrigger predication truthvalue contin Generic Function

uation context rulename

predication	 A pattern under which to index a forward rule trigger.

truthvalue	 The truth value under which the rule should be in

dexed.

continuation	 A function passed in which can determine whether a

new rule trigger is necessary.

context	 The entire ifpart of the rule. Useful in advanced mod

eling applications.

rulename	 The name of the rule being indexed.

Tailoring of forward rule indexing is usually accomplished by providing

methods for the joshua:locateforwardruletrigger and joshua:mapover

forwardruletriggers protocol functions. The joshua:addforwardrule

trigger and joshua:deleteforwardruletrigger methods provided as

Joshua’s defaults call joshua:locateforwardruletrigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid

ing a joshua:locateforwardruletrigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where.

200

Joshua Language Dictionary	 March 1999

The joshua:locateforwardruletrigger method is responsible for managing

the data structures used to index forward rule triggers. (In Joshua forward

rule triggers serve the role of match nodes in a Rete Network). In general,

Joshua tries to share forward rule triggers as much as possible. If the same

pattern appears in the IF part of two forward chaining rules, Joshua tries

to use the same forward rule trigger for both occurances of the pattern.

(By the pattern we mean two predications which are joshua:variants of

each other and which have the same truth value.) Thus just as

joshua:insert is should map variant predications to the same location in a

data model, joshua:locateforwardruletrigger should map joshua:variant

patterns to the same location in a rule index.

To accomplish this, the joshua:locateforwardruletrigger method is re

quired to follow a rather complicated pattern of behavior. This pattern is

divided into four parts:

1.	 Using predication and truthvalue it should determine where the trig

ger should be stored. This location should contain either joshua::nil or

a list of forward rule triggers (we’ll call this the trigger set).

2.	 continuation should be called with the trigger set as an argument. It

will return 3 values:

a.	 A new trigger set which includes a forward rule trigger data

structure corresponding to predication and truthvalue (the pattern

under which this trigger is indexed).

b.	 A flag indicating whether a new trigger datastucture was added

to the trigger set. If this value is joshua::t then trigger set did not

already contain a forward rule trigger datastructure for predica

tion with truth value truthvalue.

c.	 The canonical trigger which is the unique forward rule trigger da

tastructure which for the pattern predication with truth value

truthvalue.

3.	 If the value of flag is joshua::t, then joshua:locateforwardrule

trigger should update its index so that the location which used to con

tain trigger set will now contain new trigger set. During this step

joshua:locateforwardruletrigger may take whatever actions it likes

to optimize the rule index.

4.	 The method should return canonical trigger as its value.

The reason for this complicated pattern of behavior is as follows:

joshua:locateforwardruletrigger is used as a subroutine of both

joshua:addforwardruletrigger and joshua:deleteforwardruletrigger.

Knowledge of how to index a pattern is localized in the joshua:locate

forwardruletrigger methods, while the knowledge of the internal struc

201

March 1999 Joshua Language Dictionary

ture of the forward trigger datastructures is localized in joshua:add

forwardruletrigger and joshua:deleteforwardruletrigger. These two

higher levels routines call joshua:locateforwardruletrigger passing to it

continuation, a function which understands how to manipulate sets of for

ward rule trigger datastructures.

Continuation adds (or deletes) a forward rule trigger datastructure for the

current rule (if necessary) and returns enough information so that

joshua:locateforwardruletrigger will know what actions were taken.

joshua:locateforwardruletrigger should return canonical trigger as its

value so the rule’s debugging information can point to the actual data

structure corresponding to its trigger patterns.

As an example, consider the following method which indexes forward rule

triggers on the property list of the predicate in the pattern.

(definepredicatemodel predicateforwardruleindexing () ())

(definepredicatemethod (locateforwardruletrigger predicateruleindexing)

(truthvalue continuation ignore ignore)

;; This is part one, locate the current trigger set

(let ((oldtriggers (get (predicationpredicate self) ’forwardruletriggers)))

;; part two, call the continuation

(multiplevaluebind (newtriggers changedp node)

(funcall continuation oldtriggers)

;; part three, update the index with new triggers, if something changed

(when changedp

(setf (get (predicationpredicate self) ’forwardruletriggers) newtriggers))

;; part four, return the canonical forward rule trigger

node)))

;;; This map method finds the triggers stored by the previous guy.

(definepredicatemethod (mapoverforwardruletriggers predicateruleindexing)

(continuation)

;; how to collect all forward triggers that might be interested in me

(declare (sys:downwardfunarg continuation)) ;forward reference

(loop for retenode in (get (predicationpredicate self) ’forwardruletriggers)

doing (funcall continuation Retenode)))

The context argument is provided to allow the joshua:locateforwardrule

trigger method to use a context sensitive indexing technique. For example,

consider the following forward rule which describes the behavior of an ad

der:

202

Joshua Language Dictionary March 1999

(defrule adderbehavior (:forward)

If [and

[typeof ?a adder]

[statusof ?a working]

[valueof input1 ?a ?input1]

[valueof input2 ?a ?input2]]

Then ‘[valueof output ?a ,(+ ?input1 ?input2)])

It might be appropriate to use an objectoriented set of data structures to

manage the indexing of this rule’s trigger data structures. In such a

scheme, there is one object representing the class of all adders and an addi

tional object for each specific adder being reasoned about. The triggers for

the rule should be attached to the object representing the class of all ad

ders, since this is information shared by all the individual adders. Notice,

however, that joshua:locateforwardruletrigger is called once for each

trigger pattern. Consider what happens when it is called with [valueof in

put1 ?a ?input1] as its argument. It should attach the corresponding

trigger datastructure to the input1 slot of the object representing the

class of all adders. However, it cannot determine this without knowing that

this is a rule about adders and that information is contained in the pattern

[typeof ?a adder]. It is for this reason that the entire ifpart of the rule is

passed into joshua:locateforwardruletrigger.

There is a strong similarity between the role played by joshua:locate

forwardruletrigger and that played by the combination of joshua:insert

and joshua:uninsert. joshua:locateforwardruletrigger manages the in

dexing (and unindexing) of forward rules. joshua:insert manages the index

ing of facts and joshua:uninsert manages the unindexing of facts. There is

also a lack of symmetry in that there are two distinct methods for facts

and only one method for rules. The decision to modularlize the two process

es differently was based on efficiency consideration. Facts are added and re

moved much more frequently than rules; thus, it was felt that a slight loss

of modularity would be tolerable to achieve higher performance while in

serting (and removing) facts.

See the section "The Joshua Rule Indexing Protocol", page 36. See the sec

tion "Customizing the Rule Index", page 88.

joshua:logicvariablename logicvariable Function

Returns the symbol which is the name of logicvariable.

logicvariable

An unbound logic variable.

For example:

(typecase x

(unboundlogicvariable (logicvariablename x))

(otherwise x))

203

March 1999 Joshua Language Dictionary

joshua:logicvariablemakerp form Function

form An sexpression.

A predicate of one argument. It returns joshua::t if the argument is a log

icvariablemaker and joshua::nil otherwise.

(setq x (read))?A

yields:

(ji::logicvariablemaker |?A|)

and

(logicvariablemakerp x)

yields:

T

joshua:logicvariablemakername lvmaker Function

lvmaker A logicvariablemaker sexpression.

This returns the name of the logicvariablemaker. For example:

(read)?L

yields:

(JI::LOGICVARIABLEMAKER |?L|)

and

(logicvariablemakername (JI::LOGICVARIABLEMAKER |?L|))

yields

|?L|

ltms:ltmsmixin Flavor

This flavor provides the Joshua LTMS methods. Since it defines only TMS

protocol methods, it must be combined with some model which defines the

other protocol methods.

Related topics:

ltms:ltmspredicatemodel

joshua:basictmsmixin

joshua:definepredicatemodel

joshua:definepredicate

204

Joshua Language Dictionary March 1999

ltms:ltmspredicatemodel Flavor

This flavor combines the Joshua LTMS behavior with the default predicate

behavior. It is composed of ltms:ltmsmixin and joshua:defaultpredicate

model.

Related functions:

joshua:definepredicatemodel

joshua:definepredicate

joshua:makepredication statement &optional area Function

Construct a predication out of the specified statement (in the optional area

supplied). The newly constructed predication is not entered in the database,

unless you combine joshua:makepredication with joshua:tell.

You should seldom need to know about this, as the [] syntax is used in

Joshua contexts as a reader macro for joshua:makepredication.

statement A list whose first element is the name of a (defined)

predicate. The rest of the list elements are the argu

ments to the predicate.

area Storage area to cons in

Examples:

(definepredicate shapeof (object shape))

(makepredication ’(shapeof window round))

[SHAPEOF WINDOW ROUND] ; this is not in the database

(tell (makepredication ’(shapeof window round)))

[SHAPEOF WINDOW ROUND] ; new predication added to the database

T

joshua:makepredication is useful for constructing Joshua predications

from data generated within Lisp code. (Still, backquoting [] expressions

should suffice most of the time.)

Related Functions:

joshua:definepredicate

See the section "Predications and Predicates" in User’s Guide to Basic

Joshua.

joshua:makeobject objecttype &key :name Function

This function instantiates Joshua objects.

joshua:mapoverdatabasepredications predicationpattern func Macro

tion

A convenience macro for joshua:ask. Use it whenever you want to find an

answer to a query in the database without using rules or questions.

205

March 1999 Joshua Language Dictionary

joshua:mapoverdatabasepredications finds all database predications that

unify with predicationpattern and applies function to each.

predicationpattern A pattern to match against database predications.

function Specifies the operation to do on each database predica

tion that unifies with predicationpattern. Should be a

function of one argument.

(mapoverdatabasepredications <predication> <continuation>) is equiva

lent to:

(ask [foo ?x]

#’(lambda (support)

(funcall <cont>

(askdatabasepredication support)))

:dobackwardrules nil)

Example:

We’ll build an authortitle index for a library, using joshua:tell statements.

We’ll include an LTMS in our predicate definitions, so that we can later

get joshua:explain to tell us about some database predications.

(definepredicate authorof (work author) (ltms:ltmspredicatemodel))

(defun buildauthortitleindex1 ()

(clear)

(tell [and [authorof "The Interpretation of Dreams" Freud]

[authorof "Hedda Gabler" Ibsen]

[authorof "Totem and Taboo" Freud]

[authorof "A Doll’s House" Ibsen]])

(cp:executecommand "Show Joshua Database"))

BUILDAUTHORTITLEINDEX1

(buildauthortitleindex1)

True things

[AUTHOROF "A Doll’s House" IBSEN]

[AUTHOROF "Totem and Taboo" FREUD]

[AUTHOROF "Hedda Gabler" IBSEN]

[AUTHOROF "The Interpretation of Dreams" FREUD]

False things

None

The first example looks in the library database and removes from it all of

Freud’s books (perhaps for rebinding due to overuse). We use joshua:map

overdatabasepredications to get our hands on the actual predication ob

jects so that we can remove them.

To allow easy replacement of this information we’ll joshua:unjustify the

facts rather than actually removing them with joshua:untell. The truth

value of each of these facts becomes joshua:*unknown*, even though they

206

Joshua Language Dictionary March 1999

physically remain in the system.

(defun awaywithsigmund ()

(mapoverdatabasepredications [authorof ?work Freud] #’unjustify)

(cp:executecommand "Show Joshua Database"))

AWAYWITHSIGMUND

(awaywithSIGMUND)

True things

[AUTHOROF "A Doll’s House" IBSEN]

[AUTHOROF "Hedda Gabler" IBSEN]

False things

None

Let’s add a forward rule that says the library owns any work that was au

thored by Shakespeare, and then build another database.

(definepredicate ownslibrary (work) (ltms:ltmspredicatemodel))

(defrule Shakespeareholdings (:forward)

if [authorof ?work Shakespeare]

then [ownslibrary ?work])

(defun buildauthortitleindex2 ()

(clear)

(tell [and [authorof "King Lear" Shakespeare]

[authorof "Hedda Gabler" Ibsen]

[ownslibrary "Trumpeting Joshua"]

[authorof "A Doll’s House" Ibsen]])

(cp:executecommand "Show Joshua Database"))

BUILDAUTHORTITLEINDEX2

(buildauthortitleindex2)

True things

[OWNSLIBRARY "Trumpeting Joshua"] [AUTHOROF "Hedda Gabler" IBSEN]

[OWNSLIBRARY "King Lear"] [AUTHOROF "King Lear" SHAKESPEARE]

[AUTHOROF "A Doll’s House" IBSEN]

False things

None

We can now ask Joshua to joshua:explain the database predications about

works the library owns.

(mapoverdatabasepredications [ownslibrary ?work] #’explain)

[OWNSLIBRARY "Trumpeting Joshua"] is true

It is a :PREMISE

[OWNSLIBRARY "King Lear"] is true

It was derived from rule SHAKESPEAREHOLDINGS

[AUTHOROF "King Lear" SHAKESPEARE] is true

It is a :PREMISE

207

March 1999	 Joshua Language Dictionary

Here’s an example showing the display when the database predication has a

truth value of joshua:*false*. The predication displays without indicating

its truth value; that information is supplied by the accompanying explana

tion.

(tell [not [ownslibrary "Everyday Sanskrit"]])

¬ [OWNSLIBRARY "Everyday Sanskrit"]

T

(mapoverdatabasepredications [not [ownslibrary ?work]] #’explain)

[OWNSLIBRARY "Everyday Sanskrit"] is false

It is a :PREMISE

The accessor function joshua:askdatabasepredication can also be used to

extract database predications from the backward support supplied to the

joshua:ask continuation. Most of the time joshua:mapoverdatabase

predications probably serves just as well, and it is easier to use. For com

parison we are using the same examples to illustrate both functions.

Related Functions:

joshua:ask

See the section "Querying the Database" in User’s Guide to Basic Joshua.

joshua:mapoverbackwardquestiontriggers predication contin Generic Function

uation

predication	 Is the query being joshua:asked.

continuation	 Is a function of one argument. The argument passed to

this function should be a backwardquestiontrigger.

joshua:mapoverbackwardquestiontriggers is the Joshua protocol func

tion is responsible for finding backwardquestions capable of satisfying a

query given to joshua:ask. It searches the question index to find a set of

backwardquestion triggers whose patterns might unify with predication

(predication is the query given to joshua:ask). joshua:mapoverbackward

questiontriggers calls continuation once for each backwardquestiontrigger

found, thereby invoking the question.

joshua:mapoverbackwardquestiontriggers is implemented by protocol

methods (either the system supplied default or a user defined method im

plementing a special questionindexing model). To make such methods easi

er to write, all the knowledge of how to actually invoke a backward ques

tion is packaged in the continuation function which is passed into

joshua:mapoverbackwardquestiontriggers by the joshua:askquestions

protocol function.

joshua:mapoverbackwardquestiontriggers is the dual protocol function

to joshua:locatebackwardquestiontrigger. Both of these functions are

used to manipulate the questionindex. joshua:locatebackwardquestion

trigger is responsible for inserting and deleting backwardquestiontriggers

208

Joshua Language Dictionary	 March 1999

while joshua:mapoverbackwardquestiontriggers is responsible for look

ing up questiontriggers in response to a query.

Related Function:

joshua:locatebackwardquestiontrigger

See the section "The Joshua Question Indexing Protocol", page 48.

joshua:mapoverbackwardruletriggers predication continua Generic Function

tion

predication	 Is the query being joshua:asked.

continuation	 Is a function of one argument. The argument passed to

this function should be a backwardchaining rule

trigger.

joshua:mapoverbackwardruletriggers is the Joshua protocol function

which is responsible for finding backwardchaining rules capable of satisfy

ing a query given to joshua:ask. It searches the rule index to find a set of

backwardchaining rule triggers whose patterns might unify with predica

tion (predication is the query given to joshua:ask). joshua:mapover

backwardruletriggers calls continuation once for each backwardchaining

ruletrigger found, thereby invoking the rule.

joshua:mapoverbackwardruletriggers is implemented by protocol meth

ods (either the system supplied default or a user defined method imple

menting a special ruleindexing model). To make such methods easier to

write, all the knowledge of how to actually invoke a backward chaining rule

is packaged in the continuation function which is passed into joshua:map

overbackwardruletriggers by the joshua:askrules protocol function.

joshua:mapoverbackwardruletriggers is the dual protocol function to

joshua:locatebackwardruletrigger. Both of these functions are used to

manipulate the ruleindex. joshua:locatebackwardruletrigger is responsi

ble for inserting and deleting backwardchaining ruletriggers while

joshua:mapoverbackwardruletriggers is responsible for looking up rule

triggers in response to a query. See the generic function joshua:locate

backwardruletrigger, page 196. See the section "The Joshua Rule Index

ing Protocol", page 36. See the section "Customizing the Rule Index", page

88.

joshua:mapoverforwardruletriggers predication continuation Generic Function

predication	 Is the fact being inserted into the database by

joshua:tell.

continuation	 Is a function of one argument. The argument given to

this function must be a forward rule trigger.

joshua:mapoverforwardruletriggers is the Joshua protocol function

which is responsible for finding forwardchaining rules which should be

209

March 1999 Joshua Language Dictionary

triggered in response to the new predication being added to the virtual

database by joshua:tell. It searches the rule index to find a set of forward

chaining rule triggers whose patterns might unify with predication (predica

tion is the fact being inserted into the database by joshua:tell).

joshua:mapoverforwardruletriggers calls continuation once for each for

wardchaining ruletrigger found, thereby invoking the rule.

joshua:mapoverforwardruletriggers is implemented by protocol methods

(either the system supplied default or a user defined method implementing

a special ruleindexing model). To make such methods easier to write, all

the knowledge of how to actually invoke a forward chaining rule is pack

aged in the continuation function which is passed into joshua:mapover

forwardruletriggers by the default joshua:tell method.

joshua:mapoverforwardruletriggers is the dual protocol function to

joshua:locateforwardruletrigger. Both of these functions are used to ma

nipulate the ruleindex. joshua:locateforwardruletrigger is responsible

for inserting and deleting forwardchaining ruletriggers while joshua:map

overforwardruletriggers is responsible for looking up ruletriggers in re

sponse to a query. See the generic function joshua:locateforwardrule

trigger, page 199. See the section "The Joshua Rule Indexing Protocol",

page 36. See the section "Customizing the Rule Index", page 88.

joshua:mapoverobjecthierarchy functiontoapply &optional Function

initialobject

Maps a function over an object and all its parts, recursively descending the

part hierarchy. If the optional argument initialobject is not supplied then

the function will be applied to all objects. If initialobject is supplied, then

only the piece of the part hierarchy starting from that object will be

mapped over.

joshua:mapoverslotsinobjecthierarchy functiontoapply &op Function

tional initialobject

This function is a utility provided as part of the Joshua object facility. It

combines the operations provided by joshua:mapoverobjecthierarchy and

joshua:mapoverslotsofobject. It applies a function to all the slots of an

object and its parts. When the optional argument initialobject is not sup

plied then the function will be applied to all objects.

Note that the function is applied to the slot itself, and not to the value of

the slot. If the value of the slot is desired, use joshua:slotcurrentvalue to

get it.

joshua:mapoverslotsofobject functiontoapply object Function

This function is a utility provided as part of the Joshua object facility. It

maps a function over all the slots of an object.

Note that the function is applied to the slot itself, and not to the value of

the slot. If the value of the slot is desired, use joshua:slotcurrentvalue to

get it.

210

Joshua Language Dictionary March 1999

ji:modelcanthandlequery Flavor

This flavor is the base flavor for conditions that are signalled by

joshua:askdata and joshua:fetch to indicate that they have been passed a

query which is more general than they can handle.

The Joshua Database Protocol allows you to structure your data in ways

that are appropriate for your application; sometimes this involves trading

off generality for performance. For example, if a significant portion of your

data consists of objectattributevalue triples (such as the color of the block

is blue), then you might want to use an objectoriented representation (such

as joshua::flavor instances) to store this data. However, using this repre

sentation makes it awkward or slow to respond to a query that asks for ev

ery object with a specific property, such as:

[haseyecolor ?who blue]

An implementation of joshua:askdata or joshua:fetch would ideally an

swer such a query even if it did so slowly. However, such queries may be of

such little value to an application that a developer decides not to waste ef

fort on implementing a method that can respond to the query.

It is important, however, that joshua:fetch and joshua:askdata methods

do not cause errors when faced with a query that they do not wish to han

dle. One reason for this is that the command Show Joshua Database may

post such a query even if the application never makes such queries on its

own.

The contract of joshua:askdata and joshua:fetch requires these methods

to joshua::signal a specific condition when they decline to handle a query.

The base flavor for such condition objects is ji:modelcanthandlequery. A

second condition flavor (built on this base flavor) is called ji:modelcan

onlyhandlepositivequeries which (as the name suggests) should be used

if the implementation is presented with a negated query, but only expects

queries which are not negated.

The following is an example of how to use these conditions:

(definepredicatemethod (askdata objectmodel)

(truthvalue continuation)

(unless (eql truthvalue *true*)

(signal ’ji:modelcanonlyhandlepositivequeries

:query self

:model ’portdirectionmodel))

(withstatementdestructured (object value) ()

(typecase object

(unboundlogicvariable

(signal ’ji:modelcanthandlequery

:model ’portdirectionmodel

:query self))

(otherwise < whatever you really want to do >))))

211

March 1999 Joshua Language Dictionary

ji:modelonlyhandlespositivequeries Flavor

This flavor is the flavor of condition objects that are signalled by

joshua:askdata and joshua:fetch to indicate that they have been passed a

negated query when they only handle nonnegated queries.

The Joshua Database Protocol allows you to structure your data in ways

that are appropriate for your application; sometimes this involves trading

off generality for performance. For example, if a significant portion of your

data consists of objectattributevalue triples (such as the color of the block

is blue), then you might want to use an objectoriented representation (such

as joshua::flavor instances) to store this data. However, using this repre

sentation makes it awkward or slow to respond to a query that asks for ev

ery object with a specific property, such as:

[haseyecolor ?who blue]

An implementation of joshua:askdata or joshua:fetch would ideally an

swer such a query even if it did so slowly. However, such queries may be of

such little value to an application that a developer decides not to waste ef

fort on implementing a method that can respond to the query.

It is important, however, that joshua:fetch and joshua:askdata methods

do not cause errors when faced with a query that they do not wish to han

dle. One reason for this is that the command Show Joshua Database may

post such a query even if the application never makes such queries on its

own.

The contract of joshua:askdata and joshua:fetch requires these methods

to joshua::signal a specific condition when they decline to handle a query.

The base flavor for such condition objects is ji:modelcanthandlequery. A

second condition flavor (built on this base flavor) is called ji:modelcan

onlyhandlepositivequeries which (as the name suggests) should be used

if the implementation is presented with a negated query, but only expects

queries which are not negated.

The following is an example of how to use these conditions:

(definepredicatemethod (askdata objectmodel)

(truthvalue continuation)

(unless (eql truthvalue *true*)

(signal ’ji:modelcanonlyhandlepositivequeries

:query self

:model ’portdirectionmodel))

(withstatementdestructured (object value) ()

(typecase object

(unboundlogicvariable

(signal ’ji:modelcanthandlequery

:model ’portdirectionmodel

:query self))

(otherwise < whatever you really want to do >))))

212

Joshua Language Dictionary March 1999

joshua:negatetruthvalue truthvalue &optional (ifunknown Function

joshua:*unknown*)

Negates a numeric truthvalue. That is, joshua:negatetruthvalue turns

joshua:*true* into joshua:*false* and viceversa.

truthvalue

An integer truth value, which must be one of joshua:*true*,

joshua:*false*, or joshua:*unknown*.

ifunknown

The value to return if truthvalue is joshua:*unknown*.

Related Presentation Type:

joshua:truthvalue

See the section "Truth Values" in User’s Guide to Basic Joshua.

joshua:novariablesindatamixin Flavor

This is a predicate model which may be mixed into the definition of any

predicate.

For example,

(definepredicate sickwith (person disease)

(novariablesindatamixin defaultpredicatemodel))

If one attempts to joshua:tell such a predication and if the predication con

tains unbound logicvariables, the an error is signalled. For example:

(tell [sickwith ?x cholera])

Error: Trying to TELL [SICKWITH ?X CHOLERA]

which contains logicvariables

Therefore, the system can safely assume that any database predication of

type joshua:novariablesindatamixin contains only explicit data.

All the predicates used by "The Joshua Object Facility" include joshua:no

variablesindatamixin so most rules that refer only to data within the ob

ject facility will be optimized automatically. These predicates are:

• joshua:partofmixin

• joshua:partofmixin

• joshua:valueof

• ltms:valueof

• joshua:objecttypeof

• ltms:objecttypeof

213

March 1999 Joshua Language Dictionary

• joshua:equated

• ltms:equated

joshua:nontrivialtmsp predication Generic Function

Returns either t or nil to indicate whether predication is based on a flavor

(e.g. ltms:ltmsmixin) that supports a TMS. A return value of t means that

predication does contain TMS information.

See the section "The Truth Maintenance Protocol", page 54.

joshua:noticetruthvaluechange databasepredication oldtruth Function

value

Called whenever the truthvalue of predication changes from oldtruthvalue

to some new truthvalue.

databasepredication A predication

oldtruthvalue The truth value that just changed

The new truthvalue is available in the predication by the time noticetruth

valuechange is called. It can be examined using joshua:predicationtruth

value.

This protocol function allows you to update data structures that depend on

the truth value of a predication as the truth values change. (You might

want to do that, for example, in advanced uses of modeling.)

See the sections on "Signalling Truth Value Changes" and joshua:acton

truthvaluechange

joshua:objecttypeof object type Joshua Predicate

This predicate is part of the Joshua object facility. It is used to query the

Joshua object type hierarchy. It is nearly always the predicate of the first

predication in the triggers of a rule that refers to objects.

joshua:objecttypeof is an askonly predicate. A predication with

joshua:objecttypeof as its predicate cannot be an argument to

joshua:tell.

joshua:objecttypeof is built using joshua:typeofmixin.

ltms:objecttypeof object type Joshua Predicate

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:objecttypeof. Because rules whose triggers are all TMS

predications may appear cleaner or more uniform than rules which mix

TMS and nonTMS predications, ltms:objecttypeof is supplied so that

rules employing other TMS predications may refer to type relationships and

keep their uniform appearance.

214

Joshua Language Dictionary March 1999

joshua:partof superpartobject subpartobject Joshua Predicate

This predicate is part of the Joshua object facility. It is used to query the

Joshua part hierarchy about part relationships. joshua:partof is an ask

only predicate; it cannot be used in joshua:tell.

joshua:partof is built using joshua:partofmixin.

ltms:partof superpartobject subpartobject Joshua Predicate

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:partof. Because rules whose triggers are all TMS predi

cations may appear cleaner or more uniform than rules which mix TMS

and nonTMS predications, ltms:partof is supplied so that rules employing

other TMS predications may refer to part relationships and keep their uni

form appearance.

ltms:partof is built using joshua:partofmixin.

joshua:partofmixin Flavor

This flavormixin is part of the Joshua object facility. It may be used to add

partwhole behaviour, like that of the default partwhole predicate

joshua:partof, to predicate models defined by the user.

joshua:partofmixin inherits from joshua:tellerrormodel and

joshua:askdataonlymixin.

joshua:positionsforwardrulematchercanskip ruletrigger Generic Function

ruletrigger The source representation of a forward rule trigger. See

the section "The Source Representaton of Predications

and Logicvariables".

The protocol function joshua:positionsforwardrulematchercanskip is

used to improve the efficiency of the match function generated by the for

ward rule compiler. It informs the rule compiler that it need not emit

checking code for certain positions in the pattern predication, allowing the

rule compiler to generate a shorter and more efficient matcher. The posi

tions that can be skipped are exactly those which can be guaranteed to

have been checked by the rule indexer. joshua:positionsforwardrule

matchercanskip returns a list of the positions that can be skipped by the

match compiler.

For example, suppose that we are using a forwardrule indexing scheme in

which the trigger for each pattern of the rule is stored on the propertylist

of the predicate symbol of the pattern.

(definepredicatemodel predicateforwardruleindexing () ())

215

March 1999 Joshua Language Dictionary

(definepredicatemethod (locateforwardruletrigger predicateruleindexing)

(truthvalue continuation ignore ignore)

;; This is part one, locate the current trigger set

(let ((oldtriggers (get (predicationpredicate self) ’forwardruletriggers)))

;; part two, call the continuation

(multiplevaluebind (newtriggers changedp node)

(funcall continuation oldtriggers)

;; part three, update the index with new triggers, if something changed

(when changedp

(setf (get (predicationpredicate self) ’forwardruletriggers) newtriggers))

;; part four, return the canonical forward rule trigger

node)))

;;; This map method finds the triggers stored by the previous guy.

(definepredicatemethod (mapoverforwardruletriggers predicateruleindexing)

(continuation)

;; how to collect all forward triggers that might be interested in me

(declare (sys:downwardfunarg continuation)) ;forward reference

(loop for retenode in (get (predicationpredicate self) ’forwardruletriggers)

doing (funcall continuation Retenode)))

When we joshua:tell a predication whose predicate is that same as that in

predication, the joshua:mapoverforwardruletriggers method will only

retrieve triggers for patterns which have this same predicate. The continu

ation called by joshua:mapoverforwardruletriggers will then call the

matcher generated by the forwardrule compiler. Clearly this matching

function need not check that the first symbol in predication matches the

first symbol in predication just joshua:inserted by joshua:tell, since the

joshua:mapoverforwardruletriggers has just done so.

The return value of joshua:positionsforwardrulematchercanskip is a

list of positions that can be skipped by the match compiler. The list of posi

tions consists of sublists of predication; the joshua::car of each of these

sublists is a token for which the matcher need generate no code. For exam

ple, if we use an indexing scheme which guarantees that every symbol in a

pattern is checked by the indexer, then the joshua:positionsforwardrule

matchercanskip method should return a list of every sublist of the pat

tern which begins with a symbol:

[Foobar a ?x b c ?y] →

((foobar a ?x b c ? y)

(a ?x b c ?y)

(b c ?y)

(c ?y))

The default method for the joshua:positionsforwardrulematchercan

skip protocol function skips every symbol in the pattern, since the default

216

Joshua Language Dictionary March 1999

indexer uses every symbol in the pattern. If you create an indexing scheme

of your own which does not check every symbol then you must provide a

method for this protocol function or your forward rules may get incorrectly

compiled. Here is the method that should be provided with the example

above:

(definepredicatemethod

(predicateforwardruleindexing positionsforwardrulematchercanskip) ()

(list (predicationstatement self)))

joshua:predication Flavor

The noninstantiable base flavor for all predications in Joshua. It is mixed

into new predications via joshua:definepredicate.

You can test for this flavor by using typep or joshua:predicationp (into

which typep is optimized).

Related Presentation Types:

joshua:predication

joshua:databasepredication

joshua:predication Presentation Type

The type for accepting or presenting a Joshua predication. When used to

accept a predication from the user, this presentation type will parse the in

put and create a new instance of the predication. If the predication is en

tered by using the mouse, the parser will return the predication that the

user selected. That is, it will not create a new copy of the predication. This

presentation type is convenient for reading in predications, as it confirms

that the predicate is defined and the arguments are correct, and reprompts

until the input is a valid predication.

Example:

(accept ’predication)

Enter a predication: [jericho:goodtoeat bananas]

[JERICHO:GOODTOEAT BANANAS]

PREDICATION

joshua:predicationmakerp form Function

form An sexpression.

A predicate of one argument. It returns joshua::t if the argument is a

predicationmaker and joshua::nil otherwise.

For example:

(setq x (read))[Foobar ?x a]

yields:

(ji::predicationmaker

’(foobar (ji::logicvariablemaker |?x|) a))

217

March 1999 Joshua Language Dictionary

and

(predicationmakerp

(ji::predicationmaker

’(foobar (ji::logicvariablemaker |?x|) a)))

yields:

T

joshua:predicationmakerpredicate form Function

form A predicationmaker sexpression.

This returns the predicate of a predicationmaker form.

For example,

(read)[Foobar a b]

yields:

(JI::PREDICATIONMAKER ’(FOOBAR A B))

and

(predicationmakerpredicate

(JI::PREDICATIONMAKER ’(FOOBAR A B)))

yields:

FOOBAR

joshua:predicationmakerstatement form Function

form A PredicationMaker list.

This returns the "statement" part of the predicationmaker list structure.

For example,

(read)[foobar a b]

yields:

(JI::PREDICATIONMAKER ’(FOOBAR A B))

and

(predicationmakerstatement

(JI::PREDICATIONMAKER ’(FOOBAR A B)))

yields:

218

Joshua Language Dictionary March 1999

(FOOBAR A B)

Similarly,

(read) ‘[foobar ,a b]

> (JI::PREDICATIONMAKER ‘(FOOBAR ,A B))

(predicationmakerstatement *)

> (FOOBAR (#:|,| . A) B)

joshua:predicationp object Function

Checks whether object is a Joshua predication, that is, whether the object is

built on the base flavor joshua:predication. joshua:predication is the root

of the Joshua model tree.

joshua:predicationp returns t if the object is a Joshua predication, other

wise nil.

object An object in the Lisp world.

Examples:

(definepredicate validword (word language))

(tell [validword incarnadine English])

[VALIDWORD INCARNADINE ENGLISH]

T

(predicationp [VALIDWORD INCARNADINE ENGLISH])

; click on object returned by tell

(PREDICATION FLAVOR:VANILLA)

(ask [validword incarnadine ?language]

#’(lambda (backwardsupport)

(when (predicationp (askdatabasepredication backwardsupport))

(print (askdatabasepredication backwardsupport)))))

[VALIDWORD INCARNADINE ENGLISH]

You can use typep to do the same test as joshua:predicationp. In fact, the

compiler optimizes the form:

(typep x ’predication)

into the form:

(predicationp x)

For example:

219

March 1999 Joshua Language Dictionary

(ask [validword incarnadine ?language]

#’(lambda (backwardsupport)

(when (typep (askdatabasepredication backwardsupport)

’predication)

(print (askdatabasepredication backwardsupport)))))

[VALIDWORD INCARNADINE ENGLISH]

Related Functions:

joshua:predication

typep

joshua:predicationpredicate predication Function

Returns the predicate symbol of predication.

predication Any predication.

Related Function:

joshua:predicationstatement

joshua:predicationstatement predication Function

Returns the list corresponding to the statement of predication. The first el

ement of the list is the predicate symbol. The rest of the list contains the

arguments.

predication Any predication.

For example:

(definepredicate employee (name socialsecuritynumber department))

(predicationstatement [employee "John Doe" 345267791 shipping])

(EMPLOYEE "John Doe" 345267791 SHIPPING)

(predicationstatement [not [employee "Eve" 2 gardening]])

(NOT [EMPLOYEE "Eve" 2 GARDENING])

Related Functions:

joshua:makepredication

joshua:predicationpredicate

joshua:predicationtruthvalue predication Function

Returns the numeric truth value of predication.

predication A Joshua predication.

Since truth value is a property of the database, the truth value of a predi

cation not in the database is not defined. In general it will be

joshua:*unknown*.

220

Joshua Language Dictionary	 March 1999

Checking the truth value of a predication is done using joshua:ask. The

joshua:tell protocol or TMS protocol is used to set or change the truth

value. joshua:predicationtruthvalue should only be used in modeling

methods that implement those protocols.

Related Topics:

joshua:tell

joshua:ask

joshua:*true*

joshua:*false*

joshua:*unknown*

joshua:*contradictory*

joshua:truthvalue

See the section "Truth Values" in User’s Guide to Basic Joshua.

joshua:prefetchforwardrulematches predication context contin Function

uation

predication	 The pattern to be matched.

context	 The entire ifpart of the rule. Useful in advanced mod

eling applications. The default implementation ignores

this argument, but rule compilation, where the way to

compile one trigger depends on what other triggers are

present, uses the context.

continuation	 A function passed in which can determine whether a

new rule trigger is necessary.

Takes a predication, a context, and a continuation and applies the continua

tion to all database predications that match the predication argument, with

out regard to truth value.

Its general use is for when rules are defined after some facts have already

been entered into the database with joshua:tell. Newly installed rules may

wish to trigger from those facts.

It is fairly rare that a user, even doing modelling, will need to define this

method. The default definition, which may be inherited from

joshua:defaultprotocolimplementationmodel, simply uses the predica

tion’s joshua:askdata method; the user will only need to define

joshua:prefetchforwardrulematches if they do not define an joshua:ask

data method.

joshua:printquery	 backwardsupport &optional (stream Function

standardoutput)

A convenience function for use in an joshua:ask continuation.

joshua:printquery displays the joshua:ask query with its variables in

stantiated.

221

March 1999	 Joshua Language Dictionary

backwardsupport	 The backward support supplied to the joshua:ask con

tinuation.

stream	 A stream to which to output the information. Defaults

to *standardoutput*.

Examples:

(definepredicate typeof (object type))

(tell [typeof Iliad epic])

(ask [typeof ?book epic] #’printquery)

[TYPEOF ILIAD EPIC]

If you want to use the instantiated query in ways other than printing it, ex

tract it yourself using the accessor function joshua:askquery.

Related Functions:

joshua:ask

joshua:graphqueryresults

joshua:printqueryresults

joshua:sayquery

See the section "Querying the Database" in User’s Guide to Basic Joshua.

joshua:printqueryresults backwardsupport &key (:stream	 Function

standardoutput) (:printer #’prin1)

A convenience function for use in an joshua:ask continuation.

joshua:printqueryresults displays and interprets the support information

in the joshua:ask continuation argument, backwardsupport; that is, it tells

you what queries succeeded, and why.

backwardsupport	 A list containing the satisfied query and information

about its support.

stream	 A stream to which to output the information. Default is

standardoutput.

printer	 A function of two arguments, like prin1, that is used to

print elements of the support. prin1 is the default, but

another reasonable value to give is joshua:say.

Use joshua:graphqueryresults to see a graph of the information provided

by joshua:printqueryresults.

The accessor function joshua:askderivation extracts the support portion of

backwardsupport but does not interpret the information.

For comparison, we use the same examples to illustrate all three functions.

Examples:

222

Joshua Language Dictionary	 March 1999

The first example shows a query satisfied by database lookup. Both the in

stantiated query and its support (here the matching database predication)

are printed.

(definepredicate typeof (object type))

(tell [typeof Iliad epic])

(ask [typeof ?book epic] #’printqueryresults)

[TYPEOF ILIAD EPIC] succeeded: [TYPEOF ILIAD EPIC] was TRUE in the database

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the definitions.

(definepredicate edible (object))

(definepredicate isfood (object))

(definepredicate contains (object substance))

(definepredicate sweet (object))

(defrule food? (:backward)

if [edible ?object]

then [isfood ?object])

(defrule sweet? (:backward)

if [or	 [contains ?object chocolate]

[contains ?object sugar]

[contains ?object honey]]

then [sweet ?object])

(defrule dessert? (:backward)

if [and [isfood ?object]

[sweet ?object]]

then [typeof ?object dessert])

;tell some sticky facts

(tell [edible chocolatecoatedants])

(tell [contains chocolatecoatedants honey])

Now we joshua:ask what foods qualify as desserts and why. A single food,

chocolatecoveredants, succeeded. The display shows the instantiated

query, explaining why it succeeded: support is traced backward from rule

dessert? that satisfied the query, through the support used to satisfy parts

of the rule body.

223

March 1999 Joshua Language Dictionary

(ask [typeof ?object dessert] #’printqueryresults)

[TYPEOF CHOCOLATECOATEDANTS DESSERT] succeeded

It was derived from rule DESSERT?

[ISFOOD CHOCOLATECOATEDANTS] succeeded

It was derived from rule FOOD?

[EDIBLE CHOCOLATECOATEDANTS] succeeded

[EDIBLE CHOCOLATECOATEDANTS] was true in the database

[SWEET CHOCOLATECOATEDANTS] succeeded

It was derived from rule SWEET?

[CONTAINS CHOCOLATECOATEDANTS HONEY] succeeded

[CONTAINS CHOCOLATECOATEDANTS HONEY] was true in the database

Related Functions:

joshua:ask

joshua:graphqueryresults

joshua:printquery

joshua:sayquery

See the section "Querying the Database" in User’s Guide to Basic Joshua.

See the section "Explaining Backward Chaining Support" in User’s Guide to

Basic Joshua.

joshua:provable proposition Joshua Predicate

Checks if proposition is known to be joshua:*true*, (or if it is known to be

joshua:*false*, if [not ...] is wrapped around it.)

This is a modal operator. [provable ...] and [not [provable ...]] corre

spond to the "box" and "diamond" operators of some modal logics.

proposition A Joshua predication pattern to match.

The query: (ask [provable [foo ?x]] #’ ...)

Succeeds when: [foo ?x] would succeed

The query: (ask [provable [not [foo ?x]] #’ ...)

Succeeds when: [not [foo ?x]] would succeed

If successful, joshua:provable calls the continuation on the instantiated

query.

Examples:

Let’s define a predicate, shapeof, joshua:tell some statements about the

shape of objects, and then display the database.

(definepredicate shapeof (object shape))

(tell [and [shapeof door oval]

[not [shapeof leaf pointed]]])

[AND [SHAPEOF DOOR OVAL] [NOT [SHAPEOF LEAF POINTED]]]

224

Joshua Language Dictionary March 1999

Show Joshua Database

True things

[SHAPEOF DOOR OVAL]

False things

[SHAPEOF LEAF POINTED]]

Now we can check which statements about shapes are joshua:*true*, and

which are joshua:*false*.

;; Check if the proposition is joshua:*true*

(ask [provable [shapeof door oval]] #’printquery)

[PROVABLE [SHAPEOF DOOR OVAL]]

;; Comparing provable to known

(ask [provable [shapeof leaf pointed]] #’printquery)

;this fails

(ask [known [shapeof leaf pointed]] #’printquery)

[KNOWN [SHAPEOF LEAF POINTED]]

;; Check if the proposition is joshua:*false*

(ask [provable [not [shapeof leaf pointed]]] #’printquery)

[PROVABLE [NOT [SHAPEOF LEAF POINTED]]]

(ask [provable [not [shapeof ?object ?shape]]] #’printquery)

[PROVABLE [NOT [SHAPEOF LEAF POINTED]]]

;; Comparing provable to known

(ask [provable [not [shapeof door oval]]] #’printquery)

;this fails

(ask [known [not [shapeof door oval]]] #’printquery)

[KNOWN [NOT [SHAPEOF DOOR OVAL]]]

It is more interesting to ask if something is not provable.

The query: (ask [not [provable [foo ?x]]] #’ ...)

Succeeds when: [foo ?x] would have failed

;; Check if we don’t know the proposition to be joshua:*true*

(ask [not [provable [shapeof starfish round]]] #’printquery)

[not [PROVABLE [SHAPEOF STARFISH ROUND]]]

;; Check if we don’t know the proposition to be joshua:*false*

(ask [not [provable [not [shapeof hill conical]]]] #’printquery)

[not [PROVABLE [NOT [SHAPEOF HILL CONICAL]]]]

joshua:provable can also be used in backward rules.

Related Predicate:

joshua:known

225

March 1999	 Joshua Language Dictionary

Reset Joshua Tracing Command

Resets the tracing options to the original defaults.

Type of Tracing	 Which type of tracing to reset. The possible types are forward

rules, backward rules, predications, TMS operations and All.

:Include events	 Whether to reset the traced and stepped events for the Type of

Tracing as well.

The Reset Joshua Tracing command sets the Joshua tracing options back to their

initial defaults. This command is useful if you have been selectively tracing rules

or predications and would like to go back to tracing all rules or all predications.

The Include events option comes in handy when you have been tracing or stepping

particular events and would like to go back to just tracing the default events. This

command does not disable or enable tracing, it just affects which things are

traced.

Related Commands:

"Enable Joshua Tracing Command"
"Disable Joshua Tracing Command"

joshua:removeaction slotorpath &optional (name :action) Generic Function

This function is part of the Joshua object facility. It allows actions, which

were added to slots using joshua:addaction, to be removed from those

slots.

~\\say\\ predication	 Format Directive

A format directive that makes it easy to combine the use of joshua:say

with other kinds of formatted output. It takes one formatargument, the

predication to be joshua:say’d to the output stream.

Examples:

(format t "~&The registry of deeds says that ~\\say\\."

[frobozz Prospero 1616 remoteisland])

This would print the following sentence:

The registry of deeds says that PROSPERO was an owner of a frobozz

in 1616 at REMOTEISLAND.

You can also use ~\\say\\ in other places format strings are used, for in

stance promptandaccept:

(promptandaccept	 ’integer "For what values of ~S is it true that ~\\say\\?"

?x [Riemannzeta 3 ?x])

Related Functions:

joshua:say

See the section "Formatting Predications: the SAY Method" in User’s Guide to Ba

sic Joshua.

226

Joshua Language Dictionary March 1999

joshua:say predication &optional (stream *standardoutput*) Function

Prints out predication on stream, possibly in a way other than prin1 would.

This is good for printing the meaning of a predication in natural language,

as opposed to the predicate calculus notation in which programs are writ

ten. However, you needn’t restrict your thinking about joshua:say to just

natural language. For example, joshua:say could present a predication as a

piece of graphics; see examples below. Judicious use of joshua:say methods

can make it easier to generate user interfaces.

It usually doesn’t matter what value the implementations of joshua:say re

turn, since joshua:say is usually done for sideeffect. The exception is that

if stream is explicitly supplied as nil, the implementations should do what

format would do, that is, return a string if possible. (Graphical joshua:say

methods can’t do this.)

Examples:

(definepredicate frobozz (who when where) ()

:destructureintoinstancevariables)

(definepredicatemethod (say frobozz) (&optional (stream *standardoutput*))

(format stream "~S was an owner of a frobozz in ~S at ~S." who when where))

(say [frobozz Prospero 1616 remoteisland])

prints the sentence:

PROSPERO was an owner of a frobozz in 1616 at REMOTEISLAND.

An example using graphics would be:

(definepredicatemethod (say frobozz) (&optional (stream *standardoutput*))

(dw:withoutputaspresentation

(:stream stream :object self :type (typeof self))

(formatgraphfromroot (list who (list where) (list when))

#’(lambda (x s) (prin1 (car x) s))

#’cdr

:stream stream)))

The joshua:say method now draws a graph representing Prospero’s rela

tionship to his property and the time at which he owned it.

Related Functions:

"~\\Say\\"

See the section "Formatting Predications: the SAY Method" in User’s Guide

to Basic Joshua.

227

March 1999	 Joshua Language Dictionary

joshua:say &optional (stream *standardoutput*) of	 Method

joshua:predication

The default implementation of joshua:say; It just prints predication in the

same way prin1 would, that is, using the bracket syntax. Its purpose is to

make sure all predications support the say operation, even if only in a triv

ial fashion.

joshua:sayquery backwardsupport &optional (stream *standard Function

output*)

A convenience function for use in an joshua:ask continuation. joshua:say

query displays the instantiated query using a userdefined joshua:say

method if available, or the default joshua:say method. The latter simply

prints the instantiated query.

backwardsupport	 The support supplied to the joshua:ask continuation.

stream	 A stream to which to output the information. The de

fault is *standardoutput*.

Examples:

;; sayquery with default say method

(definepredicate loves (person object))

(tell [loves Bob chocolate])

(ask [loves Bob ?x] #’sayquery)

[LOVES BOB CHOCOLATE]

;; sayquery with userdefined say method

(definepredicate typeof (object type))

(definepredicatemethod (say typeof) (&optional (stream *standardoutput*))

(withstatementdestructured (object type) ()

(format stream

"~% The ~A is an example of the ~A literary form." object type)))

(tell [typeof Iliad epic])

[TYPEOF ILIAD EPIC]

(ask [typeof ?book epic] #’sayquery)

The ILIAD is an example of the EPIC literary form.

To use the instantiated query in some other way rather than joshua:saying

it, extract it from the continuation argument using the accessor function

joshua:askquery, and interpret the information.

Related Functions:

228

Joshua Language Dictionary	 March 1999

joshua:ask

joshua:graphqueryresults

joshua:printquery

joshua:printqueryresults

See the section "Querying the Database" in User’s Guide to Basic Joshua.

Show Joshua Database Command

Displays the contents of the Database, or a subset of the contents matching a cer

tain pattern.

matching pattern	 Specifies the predication patterns to display. The default is the

entire database.

The display groups predications under the headings True and False, for predica

tions with a truth value of joshua:*true* and joshua:*false*, respectively.

When specifying a pattern you can further limit the display to patterns with either

truth value.

Examples:

Show	 Joshua Database (matching pattern [default All]) All

True things ; indication of truth value is in the heading

[DREAMSIN SPANISH LUCINDA] [NATIVESPEAKEROF SPANISH LUCINDA]

[DREAMSIN SUMERIAN DRPARCHMENT] [NATIVESPEAKEROF GERMAN DRPARCHMENT]

[COUNTSIN SPANISH LUCINDA]

False things

[COUNTSIN GERMAN HENRY] ; indication of truth value is in the heading

Show	 Joshua Database (matching pattern [default All]) [dreamsin ?x ?y]

(opposite truthvalue too? [default Yes]) Yes

True things

[DREAMSIN SPANISH LUCINDA]

[DREAMSIN SUMERIAN DRPARCHMENT]

False things

None

See the section "Entering and Displaying Predications in the Database" in User’s

Guide to Basic Joshua.

Show Joshua Predicates Command

Shows the currently defined Joshua predicates.

:Include Models	 Whether to include predicates that are used as base flavors for

building other predicates in the output.

:Matching	 Show only predicates whose names contain a substring or sub

strings.

229

March 1999	 Joshua Language Dictionary

:Output Destination Where to display the information.

:Packages	 Only show predicates in the specified package or packages.

Supply a value of All to see all the currently defined Joshua

predicates. Unless you otherwise specify the package, you see

only the predicates defined in the current package.

:Search Inherited Symbols

Whether to include predicates that are inherited by the pack

ages specified in :Packages.

:System	 Show only the predicates that are defined in a particular sys

tem.

The Show Joshua Predicates command provides a convenient tool for browsing

through all the predicates defined in the current world. The output is a table of

predicate names and arguments. There are a number of mouse behaviors defined

for the predicate names that this command displays. These can be seen by mous

ing right on the name.

Show Joshua Predicates :Packages TME

TME:ABNORMAL (WHO FORWHAT) TME:LOVES (LOVER LOVEE)

TME:BIRD (BOID)	 TME:ONEPERROWORCOL (RORC INDEX)

TME:FLY (BOID)	 TME:PENGUIN (BOID)

ISEXAMPLEOF (NAME TYPE) PROVABLE (PROPOSITION)

TME:JEALOUS (WHO) TME:QUEEN (ROW COL)

TME:KILLS (KILLER VICTIM) TME:TRAGEDY (EVENT)

KNOWN (PROPOSITION)

Related Commands:

"Show Joshua Rules Command"
"Show Joshua Tracing Command"

Show Joshua Rules Command

Displays the currently defined rules.

:Triggered By	 Show rules with one or more triggers that unify with the spec

ified predication.

:Matching	 Show rules with names containing one or more substrings.

:Output Destination Where to display the output from this command.

:Packages	 Show the rules defined in which package or packages. This de

faults to the current package.

:Search Inherited Symbols

Include rules that are inherited by Packages.

:System	 Show only the rules defined in a particular system.

:Type	 Show only backward or forward rules. By default the command

shows both backward and forward rules.

230

Joshua Language Dictionary	 March 1999

The Show Joshua Rules command provides a tool for browsing through all the

Joshua rules. It displays a table of all the rules satisfying the given arguments.

Mousing middle on a rule name displays the most recent definition of that rule.

Example:

Show Joshua Rules :Triggered By [tme:loves ? ?] :Packages All

Forward Rules:

JEALOUSY LOVEINIDLENESS ONLYONELOVE QUALITYNOTQUANTITY

UNREQUITEDLOVE

The above example lists all of the rules that could be triggered by a predication of

the form [tme:loves ? ?].

Related Commands:

"Show Joshua Predicates Command"
"Show Joshua Tracing Command"

Show Joshua Tracing Command

Shows information about Joshua tracing.

Type of Tracing	 Which type of tracing to describe. It can be one of forward

rules, backward rules, predications, TMS operations, or all.

:Output Destination Where to display the output from this command.

The Show Joshua Tracing command describes the current state of Joshua tracing,

saying whether each Type of Tracing is on or off. For each active Type of Tracing,

Show Joshua Tracing prints out information about the current options and traced

events.

Example:

Show Joshua Tracing (type of tracing) All

231

March 1999	 Joshua Language Dictionary

Related Commands:

"Show Joshua Rules Command"
"Show Joshua Predicates Command"

Show Rule Definition Command

Shows the latest definition of a Joshua rule.

Rule	 Show the definition of which rule or rules.

:Load	 This argument controls the behavior of the command when the

desired rule definition is not currently in an editor buffer. If

you enter Yes, the command loads the definition into an editor

buffer. If you enter No, it does not. The value of Load defaults

to Query, meaning the command should ask you before loading

any file into the editor.

:Output Destination Where to display the output from this command.

The Show Rule Definition command allows you to see the definition of a Joshua

rule in a Lisp Listener without having to enter the editor. When the rule defini

tion can be found in the editor the command displays the latest version. Other

wise, depending on the value of Load, the command offers to read in the latest

definition from the file containing the rule definition.

Example:

Show Rule Definition JEALOUSY

Rule Jealousy:

(defrule jealousy (:forward :importance 3)

IF [and [jealous ?x]

[loves ?x ?y]

[loves ?z ?y]

(differentobjects	 ?x ?z)]

THEN [kills ?x ?z])

joshua:slotcurrentpredication slot	 Generic Function

This function is part of the Joshua object facility. It finds the predication

expressing the current objectattributevalue triple represented by the slot.

joshua:slotcurrentvalue slot	 Generic Function

This function is part of the Joshua object facility. It finds the current value

of a slot.

Note that the meaning of this value may be dependent upon the type of a

slot: for instance in the case of setvalued slots, the value may be a list

representing the set.

joshua:slotmyobject slot	 Generic Function

This function is part of the Joshua object facility. Given a slot, it finds the

object that owns that slot.

232

Joshua Language Dictionary	 March 1999

joshua:slotvaluemixin	 Flavor

This flavormixin is part of the Joshua object facility. It may be used to add

slotvalue behaviour, like that of the default slotvalue predicate

joshua:valueof, to predicate models defined by the user.

joshua:succeed &optional support	 Function

Joshua is a successcontinuationpassing language. In most places, calling

the continuation means "go ahead with the rest of the computation". Based

on context, the form joshua:succeed finds the continuation and calls it ac

cordingly.

You can use joshua:succeed within Lisp code embedded in:

•	 The ifpart of rules (in Lisp code in forward rules, and in multiply

succeeding Lisp forms of backward rules)

• The body of a joshua:defquestion

It makes no sense to call joshua:succeed elsewhere.

The optional support argument allows the Lisp code to specify the deriva

tion information for the query.

Example:

(definepredicate goodtoread (book))

(defparameter *books* ’(decameron	 canterburytales gargantuaandpantagruel

tomjones catch22))

(defrule readinglist (:backward)

if (typecase ?candidatebook

(unboundlogicvariable

(loop for book in *books*

doing (withunification

(unify ?candidatebook book)

(succeed ’Humor101readinglist))))

(otherwise

(when (member ?candidatebook *books*)

(succeed (succeed ’Humor101readinglist)))))

then [goodtoread ?candidatebook])

233

March 1999	 Joshua Language Dictionary

(ask [goodtoread ?x] #’printqueryresults)

[GOODTOREAD DECAMERON] succeeded

It was derived from rule READINGLIST

HUMOR101READINGLIST

[GOODTOREAD CANTERBURYTALES] succeeded

It was derived from rule READINGLIST

HUMOR101READINGLIST

[GOODTOREAD GARGANTUAANDPANTAGRUEL] succeeded

It was derived from rule READINGLIST

HUMOR101READINGLIST

[GOODTOREAD TOMJONES] succeeded

It was derived from rule READINGLIST

HUMOR101READINGLIST

[GOODTOREAD CATCH22] succeeded

It was derived from rule READINGLIST

HUMOR101READINGLIST

Related Functions:

joshua:unify

joshua:withunification

joshua:support databasepredication &optional filter	 Function

Examines the TMS justification structures currently supporting belief in

databasepredication, tracing them back to primitively justified predications

(i.e. to those whose support does not depend on any other predications). Re

turns a list of the primitive support (assumptions and premises). Filter, if

provided, is a predicate to be applied to the support. Only those elements of

the primitive support which satisfy the predicate are collected.

databasepredication	 A predication object that is in the database. Must be

the actual database object, and not a copy of it.

filter	 If filter is not supplied the value default to nil which

means that all the primitive support should be col

lected and returned. Otherwise, filter should be a

function of one argument that returns nonnil on the

support you want. (For example, you might want to

look at just the assumption support of database

predication.) When the databasepredication argument

is based on a TMS, this function is passed a justifica

tion as its argument. It may examine the justification

using joshua:destructurejustification.

Examples:

Prospero, curious about his daughter’s relationship with Caliban, might do:

234

Joshua Language Dictionary March 1999

(ask [isfriendof Miranda ?]

#’(lambda (backwardsupport)

(format t "~&The support for ~S is ~S."

(askdatabasepredication backwardsupport)

(support (askdatabasepredication backwardsupport))))

:dobackwardrules nil)

If he wanted to see just the assumptions underlying it, he would do:

(ask [isfriendof Miranda ?]

#’(lambda (backwardsupport)

(format t "~&The support for ~S is ~S."

(askdatabasepredication backwardsupport)

(support (askdatabasepredication backwardsupport)

#’(lambda (justification)

(multiplevaluebind (ignore mnemonic)

(eq mnemonic :assumption))))))

:dobackwardrules nil)

See the section "The Truth Maintenance Protocol", page 54.

joshua:support &optional filter of joshua:defaultprotocol Method

implementationmodel

This is the default implementation the the joshua:support protocol func

tion. It returns nil. Predications that do provide a TMS should be based on

joshua:basictmsmixin, which defines a joshua:support method that pro

vides real information.

joshua:support &optional filter of joshua:basictmsmixin Method

This is the default implementation of the joshua:support protocol function

for all models that implement a TMS. Any TMS implementation may use

this method simply by mixing in the joshua:basictmsmixin flavor. If the

TMS implementor needs to provide functionality not provided by this

method, that can be done by providing a method for joshua:support with

the model that implements the new TMS. Most users will never need to

know about this.

joshua:tell predication &key :justification Function

Puts a predication into the virtual database.

Note: joshua:tell is a macro, and as such it cannot be used as an argument

to the function funcall.

predication should be thought of as a pattern argument, not as the actual

data in the database. If something already exists in the database that is a

joshua:variant of predication, the returned (canonical) value will not be eq

to predication. Thus joshua:tell serves as an interner for predication, that

is, it gives you the canonical copy in the database, creating it if necessary.

If predication is not already in the database, the returned values are predi

cation and the symbol t.

235

March 1999	 Joshua Language Dictionary

If something already exists in the database that is a joshua:variant of

predication, predication is not put into the database, since that would be

duplication. Instead, the canonical version found in the database is re

turned, along with the symbol nil.

Justification can be one of the following:

•	 nil, in which case a default justification is used. If the joshua:tell occurs

outside a rule, the default justification is :premise. If the joshua:tell is

inside a rule, the default justification includes the rule name and the

current support set.

•	 A symbol. A justification which is a symbol means that the truthvalue

of predication does not depend on that of any other predication; we say

that predication has a primitive justification, in such a case. One primi

tive justification is specially treated by the LTMS provide with Joshua,

namely :premise. :premise justifications will never be removed by the

LTMS without querying the user. Other primitive justifications are treat

ed as assumptions that can be removed by the LTMS if necessary to re

solve a contradiction.

•	 A List of Four fields. These are identical to the arguments to the

Joshua protocol function joshua:justify, namely a mnemonic, truesupport,

falsesupport and unknownsupport. These fields are used (or discarded)

by whatever TMS is present.

The database into which predication is put depends on the data model of its

predicate. The default is the discrimination net.

Examples:

(tell [ismagician Prospero])

(tell [not [ismagician Caliban])

(tell [isdaughterof Miranda Prospero])

(tell [isservantof Caliban Prospero] :justification :premise)

(tell [isfriendof Miranda Caliban] :justification :assumption)

;later retracted!

(tell ‘[isexiledfrom Prospero ,(findexilecountry ’Prospero)])

Note:

Chances are that you seldom want to define a method that takes over the

entire functionality of joshua:tell. It’s more likely that you would want to

define a method for one of the generic functions it calls, such as

joshua:insert, joshua:justify, or joshua:mapoverforwardruletriggers.

Related Functions:

236

Joshua Language Dictionary March 1999

joshua:untell

joshua:clear

joshua:ask

joshua:justify

See the section "Entering and Displaying Predications in the Database" in

User’s Guide to Basic Joshua.

See the section "The Joshua Database Protocol", page 8.

See the section "Customizing the Data Index", page 81.

See the section "Truth Maintenance Facilities", page 53.

joshua:tmsbits predication Generic Function

predication Any predication

Predications contain a word of flag bits for use by internals of the system.

Several of these flags are reserved for use by TMS implementors. This

function retrieves these bits from a predication. The meaning of the field of

bits returned is defined by the specific TMS.

See the section "The Truth Maintenance Protocol", page 54.

joshua:tmscontradiction Flavor

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables. Joshua provides a default handler for this condition which examines

the primitive support underlying the contradiction.

If the primitive support of the contradiction contains nonpremises, then the

default handler offers the user the opportunity to retract one or more of

these. This will continue until the contradiction is resolved. If the primitive

support of the contradiction contains a single nonpremise, then the default

handler automatically retracts that predication without interacting with the

user.

The default handler can be overridden by using conditionbind to bind the

joshua:tmscontradiction condition.

If the primitive support contains only premises then the situation is regard

ed as more serious since premises are not supposed to be retraced by a

TMS automatically. In this case the default handler signals a hard contra

diction condition. See the generic function joshua:tmscontradictionhard

contradictionflavor, page 237. The hard contradiction condition is handled

by a default handler which offers the user the opportunity to retract a

member of the premise support of the contradiction.

237

March 1999	 Joshua Language Dictionary

This default handler can be overridden by using conditionbind to bind the

joshua:tmshardcontradiction condition.

Specific TMS’s may provide their own contradiction conditions by defining a

flavor which mixes in the joshua:tmscontradiction flavor.

Users may also develop a more elaborate contradiction signalling mecha

nism by defining conditions of their own which mix in the joshua:tms

contradiction flavor. Specific condition handlers for these conditions may

also be defined, allowing a finegrained control of the backtracking process.

See the section "Signalling Conditions" in Symbolics Common Lisp Program

ming Constructs. See the section "Signalling Contradictions and Managing

Backtracking", page 57.

joshua:tmscontradictioncontradictorypredication tms Generic Function

contradiction

tmscontradiction	 A condition object built on the flavor joshua:tms

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables. This generic function accesses an instance variable which contains

the predication which initiated backtracking. A TMS may choose not to pro

vide any information in this field if it detects the contradiction a part of a

global process which does not allow the contradiction to be isolated to an

individual predication.

See the section "Signalling Contradictions and Managing Backtracking",

page 57.

joshua:tmscontradictionhardcontradictionflavor tms Generic Function

contradiction

tmscontradiction	 A condition object built on the flavor joshua:tms

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables. This generic function returns the name of the hard contradiction fla

vor associated with tmscontradiction. This is the condition which should be

signalled if the current contradiction includes only premises in its primitive

support. See the flavor joshua:tmshardcontradiction, page 239. See the

section "Signalling Contradictions and Managing Backtracking", page 57.

238

Joshua Language Dictionary	 March 1999

joshua:tmscontradictionjustification tmscontradiction Generic Function

tmscontradiction	 A condition object built on the flavor joshua:tms

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables.

This generic function accesses an instance variable which contains the jus

tification that initiated backtracking. If a specific predication initiated

backtracking, then this function returns the justification of that predication.

See the generic function joshua:tmscontradictioncontradictory

predication, page 237. However, a TMS (e.g. Joshua’s LTMS) may detect

the contradiction as part of a global process which localizes the contradic

tion not to a predication but to a justification which cannot be satisfied. In

such a case, this generic function returns the unsatisfiable justification, but

the generic function joshua:tmscontradictioncontradictorypredication

returns nil.

See the section "Signalling Contradictions and Managing Backtracking",

page 57.

joshua:tmscontradictionnonpremises tmscontradiction Generic Function

tmscontradiction	 A condition object built on the flavor joshua:tms

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables. This generic function accesses an instance variable which contains a

subset of the primitivesupport underlying a contradiction. The subset in

cludes all elements of the primitivesupport which the TMS regards as re

tractable, that is, everything except the premises.

See the section "Signalling Contradictions and Managing Backtracking",

page 57.

joshua:tmscontradictionpremises tmscontradiction Generic Function

tmscontradiction	 A condition object built on the flavor joshua:tms

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

239

March 1999	 Joshua Language Dictionary

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables. This generic function accesses an instance variable which contains a

subset of the primitivesupport underlying a contradiction. The subset in

cludes all elements of the primitivesupport which the TMS regards as not

retractable, that is, the premises.

See the section "Signalling Contradictions and Managing Backtracking",

page 57.

joshua:tmscontradictionsupport tmscontradiction	 Generic Function

tmscontradiction	 A condition object built on the flavor joshua:tms

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables. This generic function accesses the instance variable which contains

all the primitive support underlying a contradiction.

See the section "Signalling Contradictions and Managing Backtracking",

page 57.

joshua:tmshardcontradiction	 Flavor

This flavor is the base flavor upon which to build condition objects for

Hard Contradictions. A hard contradiction is signalled when there is a con

tradiction whose primitive support includes only premises (i.e. primitive

support which the TMS is not free to retract automatically).

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tmscontradiction flavor. Instances of this flavor in

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari

ables.

A hard contradiction condition is not normally signalled directly by a TMS

or a user’s program. They should instead signal a condition built upon

joshua:tmscontradiction. The default handler for this condition will, in

turn, signal a hard contradiction if there are only premises in the primitive

support. To do this, the handler needs to know the name of the hard con

tradiction flavor corresponding to the contradiction condition signalled; this

information is provided by the generic function ju::hardcontradiction

flavor which must be implemented by any flavor built upon joshua:tms

contradiction.

240

Joshua Language Dictionary March 1999

See the section "Signalling Contradictions and Managing Backtracking",

page 57.

joshua:*true* Variable

A named constant used by Joshua to denote a truth value of true. You can

compare truth values using eql.

Related Topics:

joshua:*false*

joshua:*unknown*

joshua:*contradictory*

joshua:truthvalue

joshua:predicationtruthvalue

See the section "Truth Values" in User’s Guide to Basic Joshua.

joshua:truthvalue Presentation Type

This type provides a convenient way to accept and present truth values. It

will parse the truthvalue name and return the integer value for that truth

value. When presenting truthvalues it will present the numeric truth value

as one of true, false, unknown, or contradictory.

Examples:

(accept ’truthvalue)

Enter a truth value: true

1

TRUTHVALUE

(present 2 ’truthvalue)false

#<DW::DISPLAYEDPRESENTATION 2 JOSHUA:TRUTHVALUE 513174521>

Related Function:

joshua:predicationtruthvalue

joshua:typeofmixin Flavor

This flavormixin is part of the Joshua object facility. It may be used to add

objecttype behaviour, like that of the default objecttype predicate

joshua:objecttypeof, to predicate models defined by the user.

joshua:typeofmixin inherits from joshua:tellerrormodel and

joshua:askdataonlymixin.

joshua:undefinepredicate name Macro

"Undoes" a predicate definition. Predications built with this definition re

main in the world, but an attempt to do almost anything to them results in

an error.

Example:

(definepredicate fruit (afruit))

(undefinepredicate ’fruit)

241

March 1999	 Joshua Language Dictionary

You can perform the same operation from the Zmacs editor. Place your cur

sor on the predicate definition to be removed and use the command mX

Kill Definition. The system asks for confirmation in the minibuffer; then it

offers you the options of removing the definition from the editor buffer it

self, and of inserting the joshua:undefinepredicate command into the edi

tor buffer.

Example:

1. Interaction During m-X Kill Definition

2. Zmacs Buffer After Completion of m-X Kill Definition

Related Functions:

joshua:definepredicate

"Zmacs Command: Kill Definition"

joshua:undefinepredicatemethod methodspec Function

Removes the method defined for methodspec from the world.

methodspec	 A Joshua protocol method specifier of the form (proto

colfunction flavor &rest options).

The editor command mX Kill Definition is an easy way to remove a predi

cate method for a method defined in an editor buffer.

Related function:

joshua:definepredicatemethod

242

Joshua Language Dictionary March 1999

joshua:undefinepredicatemodel name Function

Removes the predicate named name from the world.

name The name of a predicate model.

The editor command mX Kill Definition is an easy way to remove a predi

cate model for a model defined in an editor buffer.

Related function:

joshua:definepredicatemodel

joshua:undefquestion name Function

Removes a question definition from the system.

name The name of the question

(definepredicate foo (something somethingelse))

(defquestion question1 (:backward) [foo 1 ?x])

(ask [foo 1 2] #’printquery :doquestions t)

Is it true that "[FOO 1 2]"? [default No]: Yes

[FOO 1 2]

(undefquestion ’question1)

QUESTION1

(ask [foo 1 2] #’printquery :doquestions t)

To kill a question definition from a Zmacs buffer, use the command mX

Kill Definition. For a sample interaction with the command: See the macro

joshua:undefinepredicate, page 240.

Related Functions:

joshua:defquestion

"Zmacs Command: Kill Definition"

See the section "Asking the User Questions" in User’s Guide to Basic

Joshua.

joshua:undefrule rulename Function

Removes a rule definition so that the rule cannot execute.

You can also remove a rule from a Zmacs buffer with mX Kill Definition.

For a sample interaction with the command: See the macro

joshua:undefinepredicate, page 240.

rulename The name of the rule to be removed.

Examples:

243

March 1999	 Joshua Language Dictionary

(defrule parched (:forward)

if [conditionof plantsoil dry]

then [needs plantsoil water])

(undefrule ’parched)

Modeling Note:

joshua:undefrule calls one of the generic functions joshua:delete

forwardruletrigger or joshua:deletebackwardruletrigger which re

moves the rule’s trigger from its storage place, so that it is no longer

found by the trigger locating and trigger mapping functions.

See the section "The Contract of the Trigger Deleting Functions", page

38.

Related Functions:

joshua:defrule

joshua:clear

"Clear Joshua Database Command"
"Zmacs Command: Kill Definition"

See the section "Rules and Inference" in User’s Guide to Basic Joshua.

joshua:unify object1 object2 Function

If object1 and object2 unify, does so, while sideeffecting any logic variables

for the duration of the unification.

object1	 A pattern in Joshua, that is, a predication containing

other predications, lists, symbols, numbers, or logic

variables.

object2	 Another pattern.

Pattern matching underlies the inferencing process. In forward chaining,

Joshua matches rule trigger patterns with database predications. In back

ward chaining, it matches goals with database predications and with rule

and question trigger patterns.

Two patterns containing no logic variables match if they are structurally

equivalent (if they "look the same").

Two patterns containing logic variables unify when one can substitute val

ues for the variables so that both patterns become structurally equivalent.

The process of doing so is called unification.

joshua:unify is useful for assigning values to logic variables within Lisp

code in rule bodies. If the expressions are unifiable, the appropriate substi

tutions are made and rule execution continues.

If the expressions are not unifiable, rule execution fails. "Fails" means that

it throws to the nearest (dynamically) containing joshua:withunification

clause.

244

Joshua Language Dictionary	 March 1999

Always wrap the macro joshua:withunification around joshua:unify (or

calls to functions that call joshua:unify) to establish the scope within

which the substitutions remain in effect.

The Joshua unifier does what is called an occur check, that is, prevents the

formation of certain circular structures by refusing to unify a logic variable

with a structure in which it occurs. For example, if you tried to unify ?x

with [f ?x], you would get something whose printed representation would

look (partially) like this:

[f [f [f [f [f [f ...

This is exactly the same thing that happens when you make certain conses

point at themselves ⎯ you get circular lists.

To see how this might happen, consider example 3 below.

Examples:

Example 1:

(definepredicate yearlysalary (employee salary))

(definepredicate balancedue (person balance))

(definepredicate denycredit (person))

(defrule test1 (:forward)

if [and	 [balancedue ?applicant ?balance]

[yearlysalary ?applicant ?salary]

(unify ?cashflow (?salary ?balance))

(≤ ?cashflow ?balance)]

then [and [denycredit ?applicant]

(format t "~% Sorry, ~S, your cashflow of ~S is insufficient."

?applicant ?cashflow)])

(defun testit ()

(clear)

(tell [yearlysalary Fred 20000])

(tell [balancedue Fred 15000])

(tell [yearlysalary George 200000])

(tell [balancedue George 15000])

’donetesting)

TESTIT

(testit)

Sorry, FRED, your cash flow of 5000 is insufficient.

DONETESTING

245

March 1999 Joshua Language Dictionary

Show Joshua Database

True things

[BALANCEDUE FRED 15000]

[YEARLYSALARY FRED 20000]

[YEARLYSALARY GEORGE 200000]

[BALANCEDUE GEORGE 15000]

[DENYCREDIT FRED] ;Inference added to database

False things

None

Example 2:

(withunboundlogicvariables (x)

(let ((p1 ‘[foo ,x])

(p2 [foo 1]))

(withunification

(unify p1 p2)

; If p1 and p2 don’t unify, the next

; expression is not executed

(format t "~&The value of x is ~s." x))))

The value of x is 1.

NIL

Example 3 shows a case where the occurcheck feature makes the unifica

tion fail.

Example 3:

(definepredicate f (arg))

(definepredicate g (arg1 arg2))

(defun testoccur ()

(withunboundlogicvariables (x y)

(withunification

(unify ‘[g ,x ,x] ‘[g ,y [f ,y]])

;; if you get here, print Y and return

(format t "~&You blew it. Y is now circular: ~S" y)

(returnfrom testoccur :loser))

;; if you got here, the unification failed

:occurcheckforbids))

(testoccur)

:OCCURCHECKFORBIDS

This function attempts to unify [g ?x ?x] with [g ?y [f ?y]]. If it unifies,

the function prints an abusive message and returns the symbol :loser. If

the unification fails, it returns the symbol :occurcheckforbids.

Let’s follow the unification and see what happens:

246

Joshua Language Dictionary	 March 1999

•	 The predicates in both places are g, so the unifier goes on to inspect the

arguments.

•	 The first argument on the left is ?x and the first on the right is ?y. The

unifier unifies ?y and ?x, which we can write as the equation ?x = ?y.

•	 The next argument on the left is ?x and the next on the right is [f ?y].

Thus the unifier attempts to enforce the equation ?x = [f ?y].

We thus have the two equations ?x = ?y and ?x = [f ?y]. Combining them,

we have the single equation ?y = [f ?y], whose only solution is to unify ?y

to a structure containing itself, that is, a predication that structurally re

sembles a circular list: [f [f [f [f The unifier forbids this and fails.

When the unifier fails, it throws to the nearest containing joshua:with

unification. Thus the function above returns :occurcheckforbids.

(testoccur) > :occurcheckforbids

Why should Joshua attempt to avoid creating such circular structures,

though? (The check does have a cost in performance, which is why most

versions of Prolog won’t do it.) The answer is that if it were permitted,

certain incorrect inferences could be made. Here’s an example. Suppose we

have a predicate isparentof, which takes two people as arguments:

(definepredicate hasparent (kid parent))

This means that parent is a parent of kid. We can then make the (unsur

prising) statement that every person has a parent:

∀ x ∃ y : hasparent(x, y)

or, in quantifierfree language,

[hasparent ?x (p ?x)]

where p is the Skolem function for the existential variable y. (You can

think of it as a notation for finding the parent of its argument.)

Now try to unify the above statement with [hasparent ?z ?z]. In the ab

sence of the occur check, we get the equations:

?z = ?x

and

?z = (p ?x)

(This would end up with ?x = (p ?x) = (p (p (p (p ...). Now substitute for

the arguments in [p ?z ?z] using those equations, to get:

[hasparent (p ?x) ?x]

which is just the original statement with the arguments reversed. This is

unsound. It is not justifiable to infer that hasparent is a symmetric predi

cate. (Indeed, it is not, since no one is his own parent!) Thus, to be sound,

Joshua must forbid occurchecktype matches.

247

March 1999	 Joshua Language Dictionary

Related Functions:

joshua:withunification

joshua:succeed

See the section "Pattern Matching in Joshua: Unification" in User’s Guide

to Basic Joshua.

joshua:uninsert databasepredication	 Generic Function

joshua:uninsert removes a single databasepredication that joshua:insert

had previously stored in the database. joshua:uninsert is a subroutine of

joshua:untell; other subroutines called by joshua:uninsert handle other as

pects of removing up all vestiges of databasepredication from the Joshua

world.

Note that joshua:uninsert does not "search" for predications that match its

argument as joshua:ask does. joshua:uninsert only removes its "argument"
from the database, usually testing with eq.

See the section "The Joshua Database Protocol", page 8.

joshua:unjustify databasepredication &optional justification Generic Function

Removes a justification from a predication in the database. For example, if

you joshua:tell predication and then later change your mind about it, you

can use joshua:unjustify to remove justification from the possible supports.

This does not automatically remove all support for databasepredication, as

there might be other justifications for it as well.

databasepredication	A predication object that is in the database. Must be

the actual database object, and not a copy of it.

justification	 Specifies the justification to be removed. If justification

is not supplied, implementations of joshua:unjustify

should default it to the justification currently being

used to support databasepredication.

In general, joshua:unjustify is useful only if databasepredication is built

on some model that supports the TMS protocol.

In the default (nonTMS) Joshua model, joshua:unjustify just sets the

truthvalue of its argument to joshua:*unknown*.

Examples:

When Prospero is reconciled to his countrymen, he will cast the following

spell:

(mapoverdatabasepredications [isexiledfrom Prospero ?] #’unjustify)

(mapoverdatabasepredications [isexiledfrom Miranda ?] #’unjustify)

(mapoverdatabasepredications [isfriendof Miranda Caliban] #’unjustify)

joshua:unjustify and joshua:untell work in similar fashion, but with very

248

Joshua Language Dictionary	 March 1999

different results. See the generic function joshua:untell, page 248.

joshua:unjustify keeps the unjustified fact in the database. If the fact is

later given again to joshua:tell, it is not considered as a new predication,

but rather as a variant of an existing one, and no forward rules are run.

joshua:untell, on the other hand, actually removes the fact from the

database, freeing up storage, and causing the database to lose previous

knowledge of it; if the fact is later given to joshua:tell again, it is consid

ered as a new fact, and forward rules are rerun.

Related Functions:

joshua:untell

joshua:uninsert

See the section "Revising Program Beliefs" in User’s Guide to Basic Joshua.

See the section "Retracting Predications with joshua:unjustify" in User’s

Guide to Basic Joshua.

joshua:unjustify &optional justification of ltms:ltmsmixin	 Method

The joshua:unjustify method for the LTMS. It removes an LTMS format

justification (i.e. a clause) from predication. Justification defaults to the cur

rent justification. See the theory of the LTMS for details.

joshua:*unknown*	 Variable

A named constant used by Joshua to denote a truth value of

joshua:*unknown*. You can compare truth values using eql.

A predication is joshua:*unknown* when there is no valid reason that sup

ports it. The predication may or may not remain in the database, but is

conceptually "not seen" until its truth value changes to joshua:*true* or

joshua:*false*.

Related Topics:

joshua:*true*

joshua:*false*

joshua:*contradictory*

joshua:truthvalue

joshua:predicationtruthvalue

See the section "Truth Values" in User’s Guide to Basic Joshua.

joshua:untell databasepredication	 Generic Function

Removes a single predication from the database, clearing up storage space.

(This function is a dual of joshua:tell, which adds a predication to the

database.)

databasepredication	A predication. Must be the actual predication object

that is in the database, not a copy of it.

joshua:untell first	 calls joshua:unjustify to make the fact no longer be

249

March 1999	 Joshua Language Dictionary

lieved (joshua:*unknown*), clears some internal caches, then calls

joshua:uninsert to remove the fact from the database. The surgical proper

ties of joshua:untell in actually removing the predication as opposed to on

ly removing its justification have two effects:

1.	 Some storage may become garbagecollectible. This can lower the vir

tualmemory requirements of your program. Of course, you pay for it

by doing the extra work of joshua:uninsert.

2.	 The predication is no longer in the database. This means that if you

rejoshua:tell it, joshua:tell returns a second value of T, denoting it

has never seen this predication before; in consequence, joshua:tell will

also run forward rules. again.

(If, on the other hand, you merely joshua:unjustify the predication, then

joshua:tell it once again, joshua:tell returns a second value of nil, denot

ing the predication already existed in the database; joshua:tell does not run

forward rules when an existing predication is retold.) However, if a TMS is

present, the consequences of running those rules will be brought back in.

Examples:

(definepredicate haseyecolor (creature color))

(tell [and	 [haseyecolor cat green]

[haseyecolor rat black]])

Show	 Joshua Database

True	 things

[HASEYECOLOR CAT GREEN]

[HASEYECOLOR RAT BLACK]

False things

None

;; untell a predication by clicking left on it in the database display

(untell [HASEYECOLOR CAT GREEN])

NIL

Show Joshua Database (matching pattern [default All]) All

True things

[HASEYECOLOR RAT BLACK]

False things

None

250

Joshua Language Dictionary March 1999

;; untell using the predication object returned as the query support

(ask [haseyecolor rat black]

#’(lambda (backwardsupport)

(untell (askdatabasepredication backwardsupport)))

:dobackwardrules nil)

Show Joshua Database (matching pattern [default All]) All

True things

None

False things

None

Note that in the last example above you probably should have used

(mapoverdatabasepredications [haseyecolor rat black] #’untell)

Compare the following examples to see the difference between

joshua:untell and joshua:unjustify.

(definepredicate isuncleof (uncle nieceornephew) (ltms:ltmspredicatemodel))

(definepredicate isnephewof (nephew uncle) (ltms:ltmspredicatemodel))

(defrule noticeuncles (:forward)

if [isuncleof ?uncle ?nephew]

then [and (format t "~&I note that ~A is the uncle of ~A." ?uncle ?nephew)

[isnephewof ?nephew ?uncle]))

First we’ll joshua:tell an avuncular fact, joshua:untell it, and then

rejoshua:tell it. After the first joshua:tell the fact fires the forward rule.

After the second joshua:tell the forward rule fires again, since joshua:tell

sees the predication as T.

(setq canonicalizedunclefact (tell [isuncleof Judah Manasseh]))

I note that JUDAH is the uncle of MANASSEH.

[ISUNCLEOF JUDAH MANASSEH]

T

Show Joshua Database

True things

[ISUNCLEOF JUDAH MANASSEH]

[ISNEPHEWOF MANASSEH JUDAH]

False things

None

(untell canonicalizedunclefact)

251

March 1999 Joshua Language Dictionary

Show Joshua Database

True things

None

False things

None

(tell [isuncleof Judah Manasseh]) ; this fires the rule again!

I note that JUDAH is the uncle of MANASSEH.

[ISUNCLEOF JUDAH MANASSEH]

T

Now we’ll use a variation of this example.

We start with the fact we just entered in the database above and which

fired the forward rule. Now we joshua:unjustify the fact and then

joshua:tell it again.

After the joshua:unjustify, the fact changes its truth value from

joshua:*true* to joshua:*unknown*, but remains in the database. When we

joshua:tell the fact once again, its truth value changes from

joshua:*unknown* to joshua:*true*, but joshua:tell already knows about

the fact, and no forward rules fire. Note, however, that the TMS brings the

isnephewof deduction back in. We can tell it does so without reexecuting

the rule, since the sideeffect (the format message) in the rulebody did not

recur.

Show Joshua Database

True things

[ISUNCLEOF JUDAH MANASSEH]

[ISNEPHEWOF MANASSEH JUDAH]

False things

None

(unjustify [ISUNCLEOF JUDAH MANASSEH])

NIL

Show Joshua Database

True things

None

False things

None

(tell [isuncleof Judah Manasseh])

; tell knows this fact is old, and it doesn’t rerun the forward rule

[ISUNCLEOF JUDAH MANASSEH]

NIL

252

Joshua Language Dictionary	 March 1999

Show Joshua Database

True things

[ISUNCLEOF JUDAH MANASSEH]

[ISNEPHEWOF MANASSEH JUDAH]

False things

None

In sum, joshua:unjustify and joshua:untell do similar things, but with sig

nificant differences. If you want to change your mind about believing a fact

but reserve your right to return to that fact later, you probably want to use

joshua:unjustify. If, on the other hand:

•	 You just did a scratch calculation and want to flush it now that you have

the answer, or

•	 You want the storage back, or

•	 You don’t intend to come back and raise the issue of rerunning rules.

you probably want to use joshua:untell.

Related Functions:

joshua:tell

joshua:unjustify

"Clear Joshua Database Command"

See the section "Removing Predications From the Database" in User’s Guide

to Basic Joshua.

See the section "The Joshua Database Protocol", page 8.

See the section "Customizing the Data Index", page 81.

joshua:valueof slot value	 Joshua Predicate

This predicate is part of the Joshua object facility. It is used to assert and

query the value of attributes of Joshua objects.

Values of the attributes of Joshua objects are maintained in datastructures

called slots. The first argument to this predication must be either a slot or

a pathname describing a slot.See the section "Using Paths to Refer to the

Structure of an Object", page 109.

ltms:valueof slot value	 Joshua Predicate

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:valueof, except it refers to slots whose values are truth

maintained. Slots are declared as truthmaintained at the time the class of

objects is defined by joshua:defineobjecttype.

joshua:variant object1 object2	 Function

253

March 1999 Joshua Language Dictionary

Two predications that differ only in the names of the logic variables they

contain are equivalent, and are said to be variants of each other.

The function joshua:variant checks whether two objects are variants of

each other. If they are, it returns t, otherwise nil.

When joshua:tell has to add a predication to the database it uses

joshua:variant to determine if the predication is already there.

object1 A predication

object2 Another predication

"Variant" means there is a renaming of variables that makes one variable

look like the other. For example:

(definepredicate foo (object))

(variant [foo 1 ?x] [foo 1 ?y])

T ; you can rename ?x → ?y.

(variant [father ?x ?y] [father ?a ?b])

T

joshua:variant should not be confused with joshua:unify. The latter tries

to see if two objects can be made to be the same. joshua:variant checks if

they are the same. It doesn’t ever set logic variables, but merely looks for a

renaming. joshua:variant is based on the notion that it should not matter

what the names of logic variables are, so long as the structures are the

same. This is a much stronger condition than joshua:unify. Thus, every

pair that satisfies joshua:variant also satisfies joshua:unify, but not vice

versa.

(variant [foo 1 ?x] [foo 1 bar])

NIL ; these unify, but are not variants

; variables cannot be renamed

(variant [father ?x ?x] [father ?a ?b])

NIL

joshua:variant also works on other structures such as lists.

Examples:

(variant ’a ’a)

T

(variant ’([foo baz] [foo bar]) ’([foo baz] [foo bar]))

T

See the section "Variables and Scoping in Joshua" in User’s Guide to Basic

Joshua.

254

Joshua Language Dictionary March 1999

joshua:withatomicaction &body body Macro

Sometimes it is useful to be able to suspend forward rule triggering until

the execution of a block of code has completed. The code might contain a

number of joshua:tell’s and joshua:untell’s intermixed in such a way that

the changes to the database are not coherent until the entire block of code

has finished executing.

If the code is contained inside a joshua:withatomicaction form, then no

forward rule will be triggered until all of the code has executed. Further

more, the rules that will be triggered are those whose trigger patterns are

satisfied at the time that the code completes. Even if there was an interme

diate point in the execution when a rule’s trigger pattern was satisfied the

rule will only run if there is a valid set of matching assertions at the time

body has finished executing.

For example:

(defrule TestAtomicity (:forward)

If [and [P ?x ?y]

[Q ?y]]

Then (Print ’Foobar))

(tell [P 1 2])

(withatomicaction

(tell [Q 2])

(Untell [P 1 2]))

In this case the rule TestAtomicity will never trigger, even though in the

middle of executing the withatomicaction form it had a valid triggering

set consisting of

[P 1 2]

[Q 2]

In this specific case the code is simple enough that one could simply have

placed the joshua:untell before the joshua:tell. However, often the situa

tions which require this form of control over rule invocation are also the

ones that are complex enough that reordering the code to gain the right ef

fect is too complicated.

WithAtomicAction provides a simple means for treating the entire dynamic

extent of a block of code as a single transaction to which the rule trigger

ing mechanims react.

joshua:withpredicationmakerdestructured arglist predication Macro

maker &body body

arglist An arglist suitable for destructuringbind

predicationmaker A predicationmaker sexpression

255

March 1999 Joshua Language Dictionary

body A body of code to execute.

This Macro is analogous to joshua:withstatementdestructured, but oper

ates on predicationmakers, rather than predications. It destructures the

"statement" part of the predicationmaker into the variables in the arglist

and then executes the body in this environment. For example,

(read) [Foobar 1 ?x]

yields

(JI::PREDICATIONMAKER

’(FOOBAR 1 (JI::LOGICVARIABLEMAKER |?X|)))

and

(withpredicationmakerdestructured (a b)

(JI::PREDICATIONMAKER

’(FOOBAR 1 (JI::LOGICVARIABLEMAKER |?X|)))

(print a)

(print b))

would print:

1

and

(JI::LOGICVARIABLEMAKER |?X|)

joshua:withstatementdestructured arglist predication &body Macro

body

Provides access to the arglist of predication. Wrap this macro around a body

of code within methods in which you want to refer to the arguments of a

predication that are not already in instance variables. (This macro works

outside of methods, too.)

arglist The argument list of the specified predication. This can

be anything suitable for destructuringbind.

predication A Joshua predication.

For example, inside a joshua:say method for the predication foo:

(definepredicate enoughalready (numberof servings food))

(definepredicatemethod (say enoughalready)

(&optional (stream *standardoutput*))

(withstatementdestructured (howmany servings food) self

(format stream "~% You’ve just had ~A ~A of ~A. Hadn’t you better quit?"

howmany servings food)))

256

Joshua Language Dictionary March 1999

(say [enoughalready 5 platters pickledpigsfeet])

You’ve just had 5 PLATTERS of PICKLEDPIGSFEET. Hadn’t you better quit?

NIL

Related Functions:

joshua:definepredicate

joshua:withunboundlogicvariables variablelist &body body Macro

This macro provides a way to generate a set of logic variables for use in

code. Each (Lisp) variable within the variablelist is bound within the scope

of the macro to a distinct, nonunified logic variable within the body of the

macro. In essence a Lisp variable in variablelist has as its Lisp value a log

ic variable, for the duration of body.

variablelist

Is a list of variables

body Is any lisp form

Example:

The predicate presidentialcandidate is defined in the following example.

The macro is used to temporarily set anybody to be a logic variable. Then

two predications are compared to see if they unify with one another. Unifi

cation occurs in this case so the format statement prints the value of any

body.

(definepredicate presidentialcandidate (somone))

(withunboundlogicvariables (anybody)

(withunification

(unify ‘[presidentialcandidate ,anybody] [presidentialcandidate Abe])

(format t "~&The value of anybody is ~s." anybody))))

The value of anybody is ABE.

NIL

joshua:withunification &body body Macro

Establishes the scope within which substitutions specified by the

joshua:unify function take effect. This temporary unifying mechanism is

useful within Lisp code in the body of Joshua rules, since it lets the pro

grammer try out a variety of different matching options.

Whenever unification fails, joshua:unify goes to the end of the dynamically

innermost joshua:withunification and undoes all the bindings established

so far.

Thus, joshua:withunification establishes both of the following:

257

March 1999	 Joshua Language Dictionary

• The scope of unifications done in its body

• A place to be thrown to if a unification in its body fails

Examples:

(definepredicate candidateword (aword))

(definepredicate iscomputerjargon (someword))

(defvar *computerjargon* ’(foo bar baz quux))

(defrule jargonfinder (:backward)

IF (typecase ?candidateword

(unboundlogicvariable

(loop for word in *computerjargon*

doing (withunification

(unify ?candidateword word)

(succeed))))

(otherwise

(member ?candidateword *computerjargon*)))

THEN [iscomputerjargon ?candidateword])

(ask [iscomputerjargon ?x] #’printquery)

[ISCOMPUTERJARGON FOO]

[ISCOMPUTERJARGON BAR]

[ISCOMPUTERJARGON BAZ]

[ISCOMPUTERJARGON QUUX]

Related Function:

joshua:unify

See the section "Pattern Matching in Joshua: Unification" in User’s Guide

to Basic Joshua.

joshua:writebackwardrulematcher ruletrigger variablesin Generic Function

trigger environment nameofpredtomatch

ruletrigger	 The source representation of a backward rule trigger.

See the section "The Source Representaton of Predica

tions and Logicvariables".

variablesintrigger	 The names of the logic variables which occur in this

pattern.

environment	 The compiler environment. This is needed in case this

generic function needs to use a codewalker or other

wise expand macros in a specific compiler environment.

nameofpredtomatch

The name of the variable by which the matcher code

should refer to the predication it is matching.

258

Joshua Language Dictionary March 1999

Return Values:

form A code fragment to perform the match. bindings

A set of bindings that the rule compiler should wrap

around the matching code. useddatastackp

Whether this code uses the data stack.

This protocol function is used to generate the matcher code corresponding

to the trigger pattern of a backward rule. For example in the rule:

(defrule foobar (:backward)

If [bar ?y ?z]

Then [foo ?x ?y])

This method will be called, with the following arguments:

(JI::PREDICATIONMAKER

’(FOO (JI::LOGICVARIABLEMAKER |?X|)

(JI::LOGICVARIABLEMAKER |?Y|)))

(|?X| |?Z| |?Y|)

<the environment>

JI::.GOAL.

Notice that the first argument is not a predication [foo ?x ?y] but its source

representation, see the section "The Source Representaton of Predications

and Logicvariables".

The backward rule compiler turns the trigger pattern of the rule (i.e. its

ThenPart) into a code fragment which tests whether the query being posed

unifies with the rule’s trigger pattern. The Ifpart of the rule is trans

formed into a nested series of joshua:ask’s which attempt to find matches

to the patterns in the Ifpart that are consistent with the bindings produced

by matching the trigger (and which are mutually consistent). The transfor

mation of the Ifpart is controlled by the joshua:expandbackwardrule

action protocol function. This protocol function controls the generation of

the matching code corresponding to the trigger.

The rule compiler combines the results of these two protocol functions into

a single function which performs the trigger unification and the

joshua:ask’s. Primarily it adds code to create bindings for the logic vari

ables and to build the queries corresponding to each pattern in the Ifpart.

The rule compiler attempts to make this function as efficient as possible by

using the system stacks to hold most of the data.

The joshua:writebackwardrulematcher function returns three values:

The first is a code fragment (which must be a single form) which performs

the unifications necessary.

For example, the default method for this protocol function returns the fol

lowing code fragment:

259

March 1999	 Joshua Language Dictionary

(JI::UNIFYPREDICATION JI::.GOAL. PRED1382)

Which checks that the query (i.e. JI::.GOAL.) matches the trigger pattern

PRED1382. You might wonder what PRED1382 is; that information is con

tained in the second return value:

However, the second value specifies a set of bindings that the rule compiler

should wrap around the generate code:

((FORM1383 ‘(FOO ,|?X| ,|?Y|))

(PRED1382 (makepredication FORM1383 :STACK)))

Which builds PRED1382 on the stack. The third return value is joshua::t

indicating that this code will need to use the data stack.

In most cases, you will not use this method if it forces you to resort to

such arcane devices.

For the above pattern, a different set of return values could have been:

(let ((statement (predicationstatement .goal.)))

(unify (pop statement) ’foo)

(unify (pop statement) |?X|)

(unify (pop statement) |?Y|))

NIL

NIL

Which takes advantage of the fact that FOO predications have a fixed num

ber of arguments. Thus if the query’s predicate is FOO (the first thing

checked), there will be exactly two other arguments and we need not check

for the goal being either too long or too short.

Notice that in the code generated the logic variables in the pattern are re

ferred to by their name (i.e. as LISP variables).

joshua:writeforwardrulefullmatcher ruletrigger predicate Generic Function

variablename environment

ruletrigger	 The source representation of a forward rule trigger. See

the section "The Source Representaton of Predications

and Logicvariables".

predicatevariablename

The name of the variable by which the matcher code

should refer to the predication it is matching.

environment	 The compiler environment. This is needed in case this

generic function needs to use a codewalker or other

wise expand macros in a specific compiler environment.

260

Joshua Language Dictionary March 1999

This protocol function is used to generate the unification code correspond

ing to a specific forwardrule trigger pattern. For example in the rule:

(defrule foobar (:forward)

If [and [foo ?x ?y]

[bar ?y ?z]]

Then <body>)

This method will be called twice, with the following arguments for the first

call:

(JI::PREDICATIONMAKER ’(FOO (JI::LOGICVARIABLEMAKER |?X|)

(JI::LOGICVARIABLEMAKER |?Y|)))

JI::PREDICATIONTOMATCH

<the environment>

Notice that the first argument is not a predication [foo ?x ?y] but its source

representation, see the section "The Source Representaton of Predications

and Logicvariables".

The rule compiler produces two matchers corresponding to each trigger

pattern: The first performs unification and is invoked when the data being

asserted contains logic variables; the second is invoked when the data con

tains no logic variables. This second matcher can be considerably more effi

cient than the first. Most predications asserted in the Joshua data base do

not contain logicvariables, so it is useful to check for this case and use the

more efficient matcher when possible.

The return value of this generic function is a code fragment (in particular

a single form) which performs the unifications necessary to check that the

rule’s trigger pattern matches the data. The default method for this proto

col function returns the following value:

(JI::UNIFYPREDICATION (JI::PREDICATIONMAKER

’(FOO

(JI::LOGICVARIABLEMAKER

|?X|)

(JI::LOGICVARIABLEMAKER

|?Y|)))

JI::PREDICATIONTOMATCH)

The rule compiler assembles this code into the complete matcher function

by adding code that correctly interfaces this unification code with the rest

of the rete network code.

261

March 1999 Joshua Language Dictionary

joshua:writeforwardrulesemimatcher ruletrigger predicate Generic Function

variablename environment

ruletrigger The source representation of a forward rule trigger. See

the section "The Source Representaton of Predications

and Logicvariables".

predicatevariablename

The name of the variable by which the matcher code

should refer to the predication it is matching.

environment The compiler environment. This is needed in case this

generic function needs to use a codewalker or other

wise expand macros in a specific compiler environment.

This protocol function is used to generate the matcher code corresponding

to a specific forwardrule trigger pattern. For example in the rule:

(defrule foobar (:forward)

If [and [foo ?x ?y]

[bar ?y ?z]]

Then <body>)

This method will be called twice, with the following arguments for the first

call:

(JI::PREDICATIONMAKER ’(FOO (JI::LOGICVARIABLEMAKER |?X|)

(JI::LOGICVARIABLEMAKER |?Y|)))

JI::PREDICATIONTOMATCH

<the environment>

Notice that the first argument is not a predication [foo ?x ?y] but its source

representation, see the section "The Source Representaton of Predications

and Logicvariables".

The rule compiler produces two matchers corresponding to each trigger

pattern: The first performs unification and is invoked when the data being

asserted contains logic variables; the second is invoked when the data con

tains no logic variables. This second matcher can be considerably more effi

cient than the first. Most predications asserted in the Joshua data base do

not contain logicvariables, so it is useful to check for this case and use the

more efficient matcher when possible.

This protocol function is used to generate the more efficient matcher.

The return value of this generic function is a code fragment (in particular

a single form) which performs the semimatch.

This generated code fragment must check that the rule’s trigger pattern

matches the data. It also is responsible for producing variable bindings. Se

mi matchers do not need to use logic variables and unification (this is one

reason they can be more efficient). Instead, the rule matcher creates a Lisp

262

Joshua Language Dictionary March 1999

variable corresonding to each logicvariable in the pattern. The semi

matcher is responsible for assigning a value to each of these variables and

for checking that the assignments are consistent.

For example, the default method for this protocol function returns the fol

lowing code fragment:

(LET ((THING1306 (CDR (PREDICATIONSTATEMENT JI::PREDICATIONTOMATCH))))

(AND (CONSP THING1306)

(PROGN (SETQ |?X| (CAR THING1306)) T)

(LET ((THING1307 (CDR THING1306)))

(AND (CONSP THING1307)

(PROGN (SETQ |?Y| (CAR THING1307)) T)

(NULL (CDR THING1307))))))

Notice that this code fragment returns joshua::t if the mactch succeeds

and joshua::nil otherwise.

Also notice that this code fragment never checked whether the predicate of

the predication being matched is the same as the predicate of the rule

trigger. This is because the default data indexer has already guaranteed

this and therefore the match generator knows that it need not emit code to

perform this check; see the generic function joshua:positionsforwardrule

matchercanskip, page 214.

The rule compiler assembles this code into a complete matcher function by

adding code that correctly interfaces to the rest of the rete network code.

It is possible to write protocol methods for this function which extend the

matcher’s syntax (e.g. by performing inline procedural checks as part of the

match) and lead to increased efficiency. A good starting place for this is

the default method provided with Joshua.

263

March 1999 Index

Index

Advanced Features of Joshua Rules, 24

A More Advanced Version of Mixed-chaining in

joshua:expand-forward-rule-trigger

96

Basic Capabilities of the Joshua Object Facility,

107

Choosing Joshua Metering Types, 77

Clause Justification Structures, 65

Clear Joshua Database Command, 145

Compiling the Action Part of a Forward Rule, 27

conflict-resolution, 35, 254

Continuation Argument, 125

Controlling Choices in the LTMS, 67

Controlling Data and Rule Indexing, 79

Controlling Question Invocation, 47

Controlling Rule Invocation, 35

Customizing the Data Index, 81

Customizing the Data Index Without Storing

Predications, 85

Customizing the Expansion of a Backward Rule, 99

Customizing the Expansion of a Forward Rule, 93

Customizing the Joshua Protocol, 5

Customizing the Matchers Generated by the Rule

Compiler, 102

Customizing the Rule Compiler, 92

Customizing the Rule Index, 88

Dictionary Entries, 121

Difference between joshua:untell and

joshua:unjustify, 248

Disable Joshua Tracing Command, 167

Displaying the database contents, 228

Enable Joshua Tracing Command, 169

Equalities Between Slot Values, 116

Examples of Using joshua:ask, 128

Explain Predication Command, 181

Extracting Parts of the Continuation with Accessor

Functions, 126

Finding Backward Question Triggers, 50

Finding Backward Rule Triggers, 43

Finding Forward Rule Triggers, 41

Forward Rule Triggers: the Rete Network, 27

264

Index March 1999

Graph Forward Rule Triggers Command, 184

Invoking Methods Associated with the Object

joshua:ask-data-and-questions-only-mixin

Initial Values of Slots, 113

Introduction to the Joshua Object Facility, 105

Associated with a Slot, 115

ji:model-cant-handle-query flavor, 210

ji:model-only-handles-positive-queries flavor,

211

joshua:*contradictory* variable, 145

joshua:*false* variable, 183

joshua:*true* variable, 240

joshua:*unknown* variable, 248

joshua:act-on-truth-value-change generic

function, 121

joshua:add-action generic function, 121

joshua:add-backward-question-trigger generic

function, 122

joshua:add-backward-rule-trigger generic

function, 122

joshua:add-forward-rule-trigger generic function,

123

joshua:ask function, 123

joshua:ask-data generic function, 133

joshua:ask-data method of joshua:default-ask-

model, 136

flavor, 134

joshua:ask-data-and-rules-only-mixin flavor, 134

joshua:ask-database-predication function, 135

joshua:ask-data-only-mixin flavor, 136

joshua:ask-derivation function, 137

Joshua Ask Metering, 75

joshua:ask-query function, 139

joshua:ask-query-truth-value function, 139

joshua:ask-questions generic function, 140

joshua:ask-questions-only-mixin flavor, 141

joshua:ask-rules generic function, 142

joshua:ask-rules-and-questions-only-mixin

flavor, 143

joshua:ask-rules-only-mixin flavor, 143

joshua:basic-tms-mixin flavor, 144

joshua:clear function, 144

joshua:copy-object-if-necessary function, 146

joshua:database-predication presentation type,

148

joshua:default-ask-model flavor, 148

joshua:default-predicate-model flavor, 149

265

March 1999 Index

joshua:default-protocol-implementation-model

flavor, 149

joshua:default-rule-compilation-model flavor,

149

joshua:default-tell-model flavor, 149

joshua:define-object-type macro, 149

joshua:define-predicate macro, 151

joshua:define-predicate-method macro, 152

joshua:define-predicate-model macro, 153

joshua:defquestion macro, 153

joshua:defrule function, 158

joshua:delete-backward-question-trigger

generic function, 164

joshua:delete-backward-rule-trigger generic

function, 165

joshua:delete-forward-rule-trigger generic

function, 165

joshua:different-objects function, 166

joshua:discrimination-net-clear function, 167

joshua:discrimination-net-data-mixin flavor, 167

joshua:discrimination-net-fetch function, 167

joshua:discrimination-net-insert function, 168

joshua:discrimination-net-uninsert function, 169

joshua:equated joshua predicate, 170

joshua:equated-mixin flavor, 171

joshua:expand-backward-rule-action joshua

protocol method, 178

joshua:expand-forward-rule-trigger generic

function, 171

joshua:explain function, 181

joshua:fetch function, 184

joshua:graph-discrimination-net function, 184

joshua:graph-query-results function, 185

joshua:graph-tms-support function, 187

joshua:insert function, 189

joshua:justify function, 190

joshua:known joshua predicate, 191

Joshua Language Dictionary, 121

joshua:locate-backward-question-trigger

generic function, 194

joshua:locate-backward-rule-trigger generic

function, 196

joshua:locate-forward-rule-trigger generic

function, 199

joshua:logic-variable-maker-name function, 203

joshua:logic-variable-maker-p function, 203

joshua:logic-variable-name function, 202

joshua:make-object function, 204

266

Index March 1999

joshua:make-predication function, 204

joshua:map-over-backward-question-triggers

generic function, 207

joshua:map-over-backward-rule-triggers generic

function, 208

joshua:map-over-database-predications macro,

204

joshua:map-over-forward-rule-triggers generic

function, 208

joshua:map-over-object-hierarchy function, 209

joshua:map-over-slots-in-object-hierarchy

function, 209

joshua:map-over-slots-of-object function, 209

Joshua Merge Metering, 76

Joshua Metering, 73

Joshua Metering Types, 73

joshua:negate-truth-value function, 212

joshua:nontrivial-tms-p generic function, 213

joshua:notice-truth-value-change function, 213

joshua:no-variables-in-data-mixin flavor, 212

joshua:object-type-of joshua predicate, 213

joshua:part-of joshua predicate, 214

joshua:part-of-mixin flavor, 214

joshua:positions-forward-rule-matcher-can-skip

generic function, 214

Joshua’s Default Database: the Discrimination Net,

16

joshua:predication flavor, 216

joshua:predication presentation type, 216

joshua:predication-maker-p function, 216

joshua:predication-maker-predicate function,

217

joshua:predication-maker-statement function,

217

joshua:predicationp function, 218

joshua:predication-predicate function, 219

joshua:predication-statement function, 219

joshua:predication-truth-value function, 219

joshua:prefetch-forward-rule-matches function,

220

joshua:print-query function, 220

joshua:print-query-results function, 221

joshua:provable joshua predicate, 223

joshua:remove-action generic function, 225

joshua:say function, 226

joshua:say method of joshua:predication, 227

joshua:say-query function, 227

267

March 1999 Index

joshua:slot-current-predication generic function,

joshua:tms-contradiction-contradictory-

joshua:tms-contradiction-hard-contradiction-

joshua:with-predication-maker-destructured

231

joshua:slot-current-value generic function, 231

joshua:slot-my-object generic function, 231

joshua:slot-value-mixin flavor, 232

joshua:succeed function, 232

joshua:support function, 233

joshua:support method of joshua:basic-tms-

mixin, 234

joshua:support method of joshua:default-

protocol-implementation-model,

234

joshua:tell function, 234

Joshua Tell Metering, 73

joshua:tms-bits generic function, 236

joshua:tms-contradiction flavor, 236

predication generic function, 237

flavor generic function, 237

joshua:tms-contradiction-justification generic

function, 238

joshua:tms-contradiction-non-premises generic

function, 238

joshua:tms-contradiction-premises generic

function, 238

joshua:tms-contradiction-support generic

function, 239

joshua:tms-hard-contradiction flavor, 239

joshua:truth-value presentation type, 240

joshua:type-of-mixin flavor, 240

joshua:undefine-predicate macro, 240

joshua:undefine-predicate-method function, 241

joshua:undefine-predicate-model function, 242

joshua:undefquestion function, 242

joshua:undefrule function, 242

joshua:unify function, 243

joshua:uninsert generic function, 247

joshua:unjustify generic function, 247

joshua:unjustify method of ltms:ltms-mixin, 248

joshua:untell generic function, 248

joshua:value-of joshua predicate, 252

joshua:variant function, 252

joshua:with-atomic-action, 35

joshua:with-atomic-action macro, 254

macro, 254

joshua:with-statement-destructured macro, 255

268

Index March 1999

joshua:with-unbound-logic-variables macro, 256

Part-Whole Hierarchy in the Joshua Object Facility,

Signalling a Condition When joshua:ask-data or

Signalling Contradictions and Managing

Storing and Retrieving Knowledge in Joshua: the

Streamlining Typical Continuation Requests with

The Contract of joshua:add-backward-question-

joshua:with-unification macro, 256

joshua:write-backward-rule-matcher generic

function, 257

joshua:write-forward-rule-full-matcher generic

function, 259

joshua:write-forward-rule-semi-matcher generic

function, 261

ltms:equated joshua predicate, 171

ltms:ltms-mixin flavor, 203

ltms:ltms-predicate-model flavor, 204

ltms:object-type-of joshua predicate, 213

ltms:part-of joshua predicate, 214

ltms:value-of joshua predicate, 252

Nogoods in the LTMS, 66

Notifying the LTMS of Contradictions, 70

occur-check done by unifier, 243

Ordering Rule Execution, 35

Organization of the Default Discrimination Net, 17

Other Capabilities of Slots, 113

Other Options in Define-Object-Type, 117

Overview of Advanced Joshua Concepts, 1

112

Predications as Instances, 7

Reset Joshua Tracing Command, 225

Set Valued and Single Valued Slots, 113

Show Joshua Database Command, 228

Show Joshua Predicates Command, 228

Show Joshua Rules Command, 229

Show Joshua Tracing Command, 230

Show Rule Definition Command, 231

joshua:fetch Can’t Handle a Query,

12

Backtracking, 57

Signalling Truth Value Changes, 63

Slots and Attached Actions, 114

Slots and Truth Maintenance, 114

Virtual Database, 7

Convenience Functions, 127

The Backward Rule Compiler, 33

The Contract of a Joshua TMS Justification, 55

trigger, 48

269

March 1999 Index

The Contract of joshua:delete-backward-

question-trigger, 48

The Contract of joshua:locate-backward-

question-trigger, 49

The Contract of joshua:map-over-backward-

question-triggers, 50

The Contract of the Generic Function

joshua:clear, 14

The Contract of the Generic Function

joshua:expand-backward-rule-

action, 100, 179

The Contract of the Generic Function

joshua:expand-forward-rule-trigger

93

The Contract of the Generic Function

joshua:insert, 9

The Contract of the Generic Function

joshua:uninsert, 14

The Contract of the Generic Functions joshua:ask-

data and joshua:fetch, 10

The Contract of the Joshua TMS Protocol

Functions, 54

The Contract of the Trigger Adding Functions, 38

The Contract of the Trigger Deleting Functions, 38

The Contract of the Trigger Locating Functions, 39

The Contract of the Trigger Mapping Functions, 41

The Default Implementation of the Protocol, 2

The Forward Rule Compiler, 27

The Funtions of a Truth Maintenance System, 53

The Joshua Database Protocol, 8

The Joshua LTMS, 65

The Joshua Object Facility, 105

The Joshua Protocol of Inference, 2

The Joshua Question Facilities, 47

The Joshua Question Indexing Protocol, 48

The Joshua Rule Compiler, 26

The Joshua Rule Facilities

, 23

The Joshua Rule Indexing Protocol, 36

The Predicates Used in the Joshua Object Facility,

118

The Truth Maintenance Protocol, 54

TMS Utility Routines, 56

Truth Maintenance Facilities, 53

Type Hierarchy in the Joshua Object Facility, 110

Types of Truth Maintenance Systems, 54

Using :ignore in joshua:expand-forward-rule-

trigger, 98

270

Index March 1999

Using joshua:expand-forward-rule-trigger, 95

Using Paths to Refer to the Structure of an Object,

Using TMS Conditions: a Balance Beam Example,

109

58

weeding out self-referential behavior, 166

What is a Virtual Database?, 7

What the Backward Rule-compiler Does to the

Actions of a Rule, 99, 178

	Table of Contents
	List of Figures
	1. Overview of Advanced Joshua Concepts
	1.1. The Joshua Protocol of Inference
	1.2. The Default Implementation of the Protocol
	1.3. Customizing the Joshua Protocol
	Index

	2. Storing and Retrieving Knowledge in Joshua: theVirtual Database
	2.1. What is a Virtual Database?
	2.2. Predications as Instances
	2.3. The Joshua Database Protocol
	2.3.1. The Contract of the Generic Function joshua:insert
	2.3.2. The Contract of the Generic Functions joshua:ask-data and joshua:fetch
	2.3.2.1. Signalling a Condition When joshua:ask-data or joshua:fetch Can’t Handle aQuery

	2.3.3. The Contract of the Generic Function joshua:uninsert
	2.3.4. The Contract of the Generic Function joshua:clear

	2.4. Joshua’s Default Database: the Discrimination Net
	2.4.1. Organization of the Default Discrimination Net

	3. The Joshua Rule Facilities
	3.1. Advanced Features of Joshua Rules
	3.2. The Joshua Rule Compiler
	3.2.1. The Forward Rule Compiler
	3.2.1.1. Compiling the Action Part of a Forward Rule
	3.2.1.2. Forward Rule Triggers: the Rete Network

	3.2.2. The Backward Rule Compiler

	3.3. Ordering Rule Execution
	3.4. Controlling Rule Invocation
	3.5. The Joshua Rule Indexing Protocol
	3.5.1. The Contract of the Trigger Adding Functions
	3.5.2. The Contract of the Trigger Deleting Functions
	3.5.3. The Contract of the Trigger Locating Functions
	3.5.4. The Contract of the Trigger Mapping Functions
	3.5.4.1. Finding Forward Rule Triggers
	3.5.4.2. Finding Backward Rule Triggers

	4. The Joshua Question Facilities
	4.1. Controlling Question Invocation
	4.2. The Joshua Question Indexing Protocol
	4.2.1. The Contract of joshua:add-backward-question-trigger
	4.2.2. The Contract of joshua:delete-backward-question-trigger
	4.2.3. The Contract of joshua:locate-backward-question-trigger
	4.2.4. The Contract of joshua:map-over-backward-question-triggers
	4.2.4.1. Finding Backward Question Triggers

	5. Truth Maintenance Facilities
	5.1. The Truth Maintenance Protocol
	5.1.1. The Contract of the Joshua TMS Protocol Functions
	5.1.2. The Contract of a Joshua TMS Justification
	5.1.3. TMS Utility Routines
	5.1.4. Signalling Contradictions and Managing Backtracking
	5.1.5. Signalling Truth Value Changes

	5.2. The Joshua LTMS
	5.2.1. Clause Justification Structures

	6. Joshua Metering
	6.1. Joshua Metering Types
	6.1.1. Joshua Tell Metering
	6.1.2. Joshua Ask Metering
	6.1.3. Joshua Merge Metering

	6.2. Choosing Joshua Metering Types

	7. Controlling Data and Rule Indexing
	7.1. Customizing the Data Index
	7.1.1. Customizing the Data Index Without Storing Predications

	7.2. Customizing the Rule Index
	7.3. Customizing the Rule Compiler
	7.3.1. Customizing the Matchers Generated by the Rule Compiler

	8. The Joshua Object Facility
	8.1. Introduction to the Joshua Object Facility
	8.2. Basic Capabilities of the Joshua Object Facility
	8.3. Using Paths to Refer to the Structure of an Object
	8.4. Type Hierarchy in the Joshua Object Facility
	8.5. Part-Whole Hierarchy in the Joshua Object Facility
	8.6. Other Capabilities of Slots
	8.6.1. Initial Values of Slots
	8.6.2. Set Valued and Single Valued Slots
	8.6.3. Slots and Truth Maintenance
	8.6.4. Slots and Attached Actions
	8.6.5. Invoking Methods Associated with the Object Associated with a Slot
	8.6.6. Equalities Between Slot Values

	8.7. Other Options in Define-Object-Type
	8.8. The Predicates Used in the Joshua Object Facility

	9. Joshua Language Dictionary
	9.1. Dictionary Entries

	Index

