
Felix Santiago 

A Wine and Food Pairing Recommendation System 

Introduction: 

Everyone has been to a fancy restaurant at one point in their life or another. 
After ordering one’s food, it is always intimidating to scan the page-long list of wines 
and their respective years, trying to decide which wine would best suit the meal. 
Chances are that most people would not call themselves expert wine connoisseurs. 
Thus, a knowledge based system can be utilized to aid the average person in 
determining proper food and wine combinations. 

The system discussed in this paper outputs appropriate wine recommendations 
based upon user inputs regarding the type of meal and the ethnicity of the recipe. The 
system’s knowledge includes seven types of wine: Cabernet, Chardonnay, Merlot, 
Pinot Noir, Riesling, Sauvignon Blanc, and Zinfandel. Using these seven wines, the 
system can make appropriate wine recommendations for foods from the following 
ethnicities: American, Caribbean, Chinese, French, Italian, Mexican, and Middle 
Eastern. 

The system’s task and knowledge base will be illustrated in further depth 
throughout the paper. Additional issues that will be addressed in this paper include an 
explicit example of the system’s input and output, a discussion of the system’s 
limitations, and an analysis of the successes and failures that were encountered during 
the project. The ending commentary will state what lessons were learned from this 
assignment. 

System Task: 

Our system’s task is to recommend its user a wine that pairs up appropriately 
to the meal that will be consumed. In order to make a fitting wine recommendation, 
the user must input the answer to the questions that the system displays on the screen. 
Generally, the questions are as follows: 

•	 What is the ethnicity of the restaurant? 
•	 What is the meal type? (lunch, dinner, dessert) 
•	 What month is it? (in order to infer the season and foods typical of that 

season) 
•	 Does the user have any dietary concerns? (vegetarian, lactose 

intolerant, health conscious, etc) 
•	 What type of flavors does the user prefer? (spicy, sweet, etc) 

The questions that the system asks will not be the same in all cases. The 
questions may vary depending on the ethnicity of the food and meal type that the user 
inputs. It is important to note that our system does not simply match ingredients and 
preferences to a wine. The user is not asked to input the type of meat, sauce, or spices 
in the meal. Instead, the system utilizes the answers from these and other questions to 



infer the meal’s ingredients and make a wine recommendation. Figure 1 provides an 
example of the system’s general input interface. 

Figure 1:  An example of the input interface 

Knowledge Base/Problem Solving Paradigm Overview: 

Our system utilizes JOSHUA, a rule based inference engine that we previously 
used during problem set 2.  The system’s task lends itself to a rule based system due 
to the ease in which a rule-based system infers knowledge (such as a wine 
recommendation) from given facts (such as the meat type and ingredients of a meal). 
Additionally the ease to transcribe knowledge and the familiarity with the software 
tools made us choose this particular knowledge representation 

Originally the application was supposed to utilize a frame-based system along 
with rules as its knowledge representation system. After the rule portion of the 
application infers the ingredients of the meal, based on the user input, the 
characteristics of the meal are matched to preexisting frames that will then output a 
wine recommendation. Each wine would have its own frame or set of frames with 
different slot values representing features unique to that wine.  We believed frames 
were ideal for our intended task, for they are faster and more efficient in the matching 
process than utilizing rules for the same purpose. 

2 



Based on the ethnicity inputted by the user, there are four main categories of 
rules involved in the system’s operation: 

• Rules inferring the type of meat 
• Rules inferring the type of sauce 
• Rules inferring the type of herbs and spices 
• Rules inferring user preferences 

Example problem walkthrough: 

In order to infer the type of meat, sauce, herbs, and spices based on a certain 
ethnicity, certain generalizations had to be made concerning the typical dishes that 
each ethnicity produces. For instance, if the user inputs Italian as the ethnicity, the 
rules will indicate beef or poultry/seafood as the meat, since Italian dishes primarily 
include ground beef or seafood. In contrast, if the user inputs Indian as the ethnicity, 
the rules will infer that the meat is not beef because it is against Hindu religion to 
consume beef. Following the inference on the type of meat used in the meal, the 
system prompts the user to answer more questions in order to narrow down the 
possible wine choices. 

The next question the program asks the user is the type of meal they will be 
eating. While lunch and dinner provide similar wine choices, an input declaring that 
the meal is dessert will automatically result in Riesling as the wine recommendation. 
Riesling will be recommended no matter what ethnicity is inputted because it is 
currently the only dessert wine in the system. 

After determining the meat type, the system asks the user questions about their 
preferences and dietary restrictions in order to further narrow down the wine 
selections. For example, if the user entered French as the ethnicity and stated that the 
meal type was either lunch or dinner, the user would then be asked questions about 
the user’s preferences. First it will ask whether or not the user is health conscious. If 
the user answers yes, the rules will assume that they chose the healthier 
chicken/seafood option over the pork/game bird option. If the user states that he is not 
health conscious, the system will assume he went with the pork/game bird option. 

3 



Figure 2:  First set of questions for French ethnicity 

If the system has inferred chicken/seafood as the meat type, it will ask the user 
whether or not he lives near or is visiting a restaurant near the coast. If the user says 
the restaurant is by the coast, the system will infer that the user ordered seafood. If the 
user says no, it is not by the coast, the system will infer that the user ordered chicken. 
Although this is a broad generalization, the rule is based on the fact that seafood is 
fresher by the coast and therefore seafood is the restaurant’s specialty if it is located 
on the coast. 

Figure 3:  Costal question 

In contrast, if the user declared that they were not health conscious and the 
system inferred the pork/game bird option, a different question would be asked. In 
this case, the user would then be asked if they enjoyed exotic tastes. If the user 
answered yes, the system would infer the game bird option. If the user answered no, 
the system would infer that they chose pork. 

4 



Figure 4: Exotic  Taste question 

Regardless of the meat type inferred, the user would next be asked if they 
lactose intolerant or not.  If the user can tolerate lactose then the system would 
assume that the type of sauce might be cream-based.  However, if the user is lactose 
intolerant then the system would then ask what month it is in order to determine what 
season it is and if tomatoes are in season so that it can be used as the base for the 
sauce.  These two options in reality should be mutually exclusive since one cannot 
have both a cream-based sauce and a tomato-based sauce in the same meal, but, 
again, since we are generalizing these factors then allow both of these to co-exist in 
order to obtain more wine recommendations. 

Figure 5:  Questions relating sauce 

5 



After this, the user would then be asked if they were on a date. If the user 
answered yes, the system would assume they chose a dish without garlic. If the user 
answered no, the system would infer a dish with garlic. Although this is another broad 
generalization, this rule was written on the assumption that garlic makes your breath 
smell bad, which puts off dates and reduces the chances of a goodnight kiss. 

Figure 6:  Date question 

Next, the user is prompted to answer whether they would prefer to drink fruit 
punch or unsweetened iced tea. If the user specified fruit punch, the system would 
recommend a sweet wine if the previously made inferences haven’t eliminated all the 
sweet wine options based on their frames. If the user chose unsweetened iced tea, the 
system would recommend a dry wine, if any dry wine options were still available. 

Figure 7:  Drink preference question 

6 



Figure 8:  Complete set of questions with respective answers 

As a specific example, if the user specified a Caribbean ethnicity for lunch, 
was health conscious, lived on the coast, tolerates lactose, is in August, and preferred 

7 



iced tea, the system would recommend a Zinfandel with a 0.928 certainty based on 
those characteristics. 

After declaring the ethnicity and meal type, the user is free to answer “I don’t 
know” to any of the preference questions. In the event that the user answers “I don’t 
know,” the system asks a series of questions that attempt to answer the preference 
question for the user. For example, if the system asks the user, “Do you like exotic 
tastes?” and the user does not know, the program will ask the following questions: 

• Do you like to try new dishes? 
• Do you like to try dishes with weird names? 
• Do you like to travel? 
• Do you like to hunt? 

If the user responds “no” to each of these questions, the system comes to the 
conclusion that the user does not like exotic tastes and moves on to the next question 
based on that inference. 

Figure 9:  An example of the “I don’t know” feature. 

Things it can do and things it could do: 

Currently the system can recommend one or more of the eight wines stored 
based primarily on a meal’s ethnicity and some user defined preferences.  Future 
features to the program could include allowing the user to specify what type of wine 
they wanted, with the program outputting a recipe that would be compatible. 
Currently, the program can’t handle starting with a wine and recommending a recipe. 
Another adjustment that would allow the program to go beyond its current task would 
be to incorporate more specific wines by utilizing production years, production 
origins and location of availability. Thus, instead of simply outputting a type of wine, 
the program could recommend a year if one was particularly better than the others.  
This could easily be accomplished by adding rules for more specific wines. 

8 



Another feature that our system could be modified to include in the future is 
the recommendation of a wine for a group of people that are eating together.  
Currently our system assumes that the recommendation of a wine is for one member 
of the party.  If multiple people in a table share similar meals or tastes then we could 
easily add more rules that would output some common wines that would fit for all 
members of the table. 

Additionally one other modification that could be done to the system is the 
addition of a case-based reasoning paradigm.  With this, the system could remember 
previous recommendations and then recommend it to a new user if he/she has a 
similar meal.  The user might tell the system which wine he finally chose and if he 
enjoyed or disliked the combination.  

What does it know? 

The system utilizes a backward-chaining rule-based system as its knowledge 
representation. Due to the size of the graphic, a copy of the overall view of the tree 
structure of all the rules that contribute to the final goal of “wine-to-drink” in our 
system will not be presented here, but will be available with this file (called rule 
structure.png) 

In order for our system to be more than just a simple database lookup 
application we used several indirect attributes to obtain the necessary information to 
conclude the most appropriate wines for a specific meal.  The biggest and most 
important attribute is the meal ethnicity.  With this information we can obtain a clear 
idea of the possible ingredients a meal might have, ranging from the most common 
herbs and spices that could be used, to the types of meat that a user is most likely to 
eat.  Following this, the system looks for some other attributes that relate more to the 
user’s preference to narrow down the possible wine recommendations.  Most of these 
preferences, if not all can be determined by two different ways: either by answering 
the question directly or, if given the case that the user is not sure or does not know, by 
answering some other more simple questions that conclude these preferences.  

How does it work? 

The system works similarly to the abovementioned worked out example.  The 
program begins by asking the user what type of ethnicity is the meal he/she is 
expected to eat.  The answer to this question provides many details to the possible 
meal.  With the food’s ethnicity we are able to determine, the type herbs, sauces and 
meats that might be available in a meal.  After this, we then proceed to ask what type 
of meal will the user consume, this could be lunch, dinner or dessert.  If it’s a dessert 
then the system will automatically realize that the appropriate wine is Riesling, since 
it’s the only one in our system that corresponds to a dessert meal.  Answering lunch 
or dinner will result in more questions to infer the type of meat in the meal.  Once the 
system knows what meat will be used, it will then ask some questions that correspond 
to that particular ethnicity to further narrow the possible choices of wines.  Finally, 

9 



once it obtains all the necessary information the system then outputs a list of all the 
wines that it could recommend along with a certainty factor that is determined by the 
amount of attributes that match that given wine. 

What went well? 

Overall, our system was successful; it satisfactorily executed the proposed task 
of recommending a wine to a user depending on the type of meal to be consumed.  
Our system had some nice advantages.  For starters, the system is completely 
modular.  If needed be, a person could add or remove ethnicities or second level 
knowledge without much effort.  This makes the system easily extensible and 
modifiable.  Along with this, the use of domain or ethnicity specific questions 
facilitated the narrowing down of the different possible wine recommendations. 

What didn’t go so well? 

Along with some advantages, our system also had some issues that should be 
addressed.  One of our main issues resulted from the use of Joshua and rules as our 
knowledge representation system.  Each wine had a large number of attributes that 
could be used for its recommendation.  In many situations we had to create rules for 
many, if not all, the possible combination of attributes such that all the different meal 
combinations would return at least one wine.  In one case this resulted in 26 rules for 
a specific wine.  The advantage to this was that we could use these permutations as a 
way to determine the certainty that a meal goes well with that wine. You can observe 
by looking at the rules for wines in the appendix. 

Another issue that I consider as a disadvantage to our system is that we had to 
do some broad generalizations and assumptions in order simplify the task.  I believe 
that some of these overgeneralizations cause some a loss in the accuracy of the 
results.  This tradeoffs should be further studied analyzed to see where we could 
improve the accuracy of the results without overcomplicating the task. 

Finally, I would have liked if the final output of the system would result in a 
more general, natural language style explanation of the recommendations along the 
reasoning used behind it.  As it stands right now, the explanation only returns a list of 
all the rules used in obtaining the result in Joshua format.  I would have also liked if 
along each of the recommendations, the user might obtain a short blurb with more 
information on the particular wine in order to make a more informed decision 

What did you learn from this? 

During the course of this project I learned various things.  For instance, I 
learned that a recommendation is only as good and effective as the amount of 
information that is given to you by a user.  If the user does not offer you with the 
necessary information then the quality and accuracy of your recommendation will not 
be as high as expected.  More of the recommendations would be more like educated 
guesses than recommendations based on valid facts.  This also goes along with 

10 



assumptions and generalizations.  These, while good for simplifying a task, can 
eventually lower the accuracy and truthfulness of the final result to the point that it 
might not be entirely useful.  On the other hand, its quite interesting on the type of 
information that a person might obtain or consider as commons sense without asking 
the user directly. 

In conclusion we believed that the use of rules might not have been the best 
choice, for this task.  Frames could have been better suited for this.  If we had worked 
with frames, some issued such as the multiple rules due to different permutations 
could have been avoided and the end product could have been more efficient and 
simpler/ 

Finally this task is one that can be difficult and requires time and experience in 
order to fully master.  The system we offered a good start in achieving this, but it still 
has much room for improvement in terms of accuracy and usability.  Overall, this was 
a fun project and challenge to do and demonstrated the difficulty of knowledge 
engineering. 

11 



APPENDIX


12 



The following are some example rules for an ethnicity and for a specific wine type: 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; ;;;

;;; Inference Rules (For importance, higher values go first.) ;;;

;;; Domain: American Food Specific  ;;;

;;; ;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


;;; Meal Type


(defrule full-meal-american (:backward :certainty 1.0 :importance 91)

if [and [food-ethnicity ?user american]


[or [meal ?user lunch]

 [meal ?user dinner]]]


then [full-meal-american ?user yes])


(defrule dessert-meal-american (:backward :certainty 1.0 :importance 91)

if [and [food-ethnicity ?user american]


[meal ?user dessert]]

then [dessert-meal-american ?user yes])


(defrule full-meal-american-exclusion (:forward :certainty 1.0 :importance 90)

if [full-meal-american ?user yes]


then [and [dessert-meal-american ?user no]

 [having-dessert ?user no]]) 


(defrule dessert-meal-american-exclusion (:backward :certainty 1.0 :importance 91)

 if [and [food-ethnicity ?user american]


[meal ?user dessert]]

then [full-meal-american ?user no]) 


;;; Figure out meat


;;; General selection


(defrule meat-type-healthy-american (:backward :certainty 1.0 :importance 96)

 if [and 	 [food-ethnicity ?user american]


[full-meal-american ?user yes]

[health-conscious ?user yes]]


 then [meat-american-round1 ?user poultry/seafood])


(defrule meat-type-not-healthy-american (:backward :certainty 1.0 :importance 95)

 if [and 	 [food-ethnicity ?user american]


[full-meal-american ?user yes]

[health-conscious ?user no]]


 then [meat-american-round1 ?user pork/beef])


;;; final selection


 (defrule bbq-american (:backward :certainty 1.0 :importance 94)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user pork/beef]

[is-south ?user yes]

[is-summer ?user yes]

[use-bbq-sauce ?user yes]]


then [final-meat ?user BBQ])


 (defrule beef-american (:backward :certainty 1.0 :importance 93)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user pork/beef]

[is-midwest ?user yes]]


 then [beef ?user yes]) 


(defrule beef-american-no (:backward :certainty 1.0 :importance 93)

 if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user pork/beef] 

[is-midwest ?user no]]


then [beef ?user no]) 


(defrule beef-american-no-2 (:backward :certainty 1.0 :importance 93)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user poultry/seafood]]


then [beef ?user no]) 


13 



 (defrule seafood-american (:backward :certainty 1.0 :importance 92)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user poultry/seafood]

[is-near-coast ?user yes]]


 then [seafood ?user yes])


 (defrule seafood-american-no (:backward :certainty 1.0 :importance 92)

 if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user poultry/seafood]

[is-near-coast ?user no]]


then [seafood ?user no])


 (defrule seafood-american-no2 (:backward :certainty 1.0 :importance 92)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user pork/beef]]


then [seafood ?user no])


 (defrule poultry-american (:backward :certainty 1.0 :importance 91)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user poultry/seafood]

[is-near-coast ?user no]]


then [poultry ?user yes]) 


(defrule poultry-american-no (:backward :certainty 1.0 :importance 91)

if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user poultry/seafood]

[is-near-coast ?user yes]]


 then [poultry ?user no]) 


(defrule poultry-american-no2 (:backward :certainty 1.0 :importance 91)

 if [and [food-ethnicity ?user american]


[full-meal-american ?user yes]

[meat-american-round1 ?user pork/beef]]


 then [poultry ?user no]) 


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; ;;;

;;; Riesling ;;;

;;; ;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


(defrule riesling-desert (:backward :certainty 0.9 :importance 90)

if [meal ?user dessert]

then [wine-to-drink ?user riesling])


(defrule riesling-desert-2 (:backward :certainty 1.0 :importance 91)

if [and [meal ?user dessert]


[prefers-sweet-wines ?user yes]]

then [wine-to-drink ?user riesling])


(defrule riesling-1 (:backward :certainty 1.0 :importance 92)

if [and [or [poultry ?user yes]


[shellfish ?user yes]]

[has-cheese ?user yes]

[use-light-sauce ?user yes]

[or [use-dill ?user yes]


[use-sage ?user yes]

[use-clove ?user yes]

[use-ginger ?user yes]]


[prefers-sweet-wines ?user yes]]

then [wine-to-drink ?user riesling])


(defrule riesling-2 (:backward :certainty 0.8 :importance 83)

if [and [or [poultry ?user yes]


[shellfish ?user yes]]

[use-light-sauce ?user yes]

[or [use-dill ?user yes]


[use-sage ?user yes]

[use-clove ?user yes]

[use-ginger ?user yes]]


[prefers-sweet-wines ?user yes]]

then [wine-to-drink ?user riesling])


14



(defrule riesling-3 (:backward :certainty 0.8 :importance 83)

if [and [or [poultry ?user yes]


[shellfish ?user yes]]

[has-cheese ?user yes]

[or [use-dill ?user yes]


[use-sage ?user yes]

[use-clove ?user yes]

[use-ginger ?user yes]]


[prefers-sweet-wines ?user yes]]

then [wine-to-drink ?user riesling])


(defrule riesling-4 (:backward :certainty 0.5 :importance 83)

if [and [or [poultry ?user yes]


[shellfish ?user yes]]

[has-cheese ?user yes]

[use-light-sauce ?user yes]

[prefers-sweet-wines ?user yes]]


then [wine-to-drink ?user riesling])


(defrule riesling-5 (:backward :certainty 0.5 :importance 83)

if [and [or [poultry ?user yes]


[shellfish ?user yes]]

[or	 [use-dill ?user yes]


[use-sage ?user yes]

[use-clove ?user yes]

[use-ginger ?user yes]]


[prefers-sweet-wines ?user yes]]

then [wine-to-drink ?user riesling])


(defrule riesling-6 (:backward :certainty 0.3 :importance 83)

if [and	 [or [poultry ?user yes]


[shellfish ?user yes]]

[use-light-sauce ?user yes]

[prefers-sweet-wines ?user yes]]


then [wine-to-drink ?user riesling])


(defrule riesling-7 (:backward :certainty 0.3 :importance 83)

if [and	 [or [poultry ?user yes]


[shellfish ?user yes]]

[has-cheese ?user yes]

[prefers-sweet-wines ?user yes]]


then [wine-to-drink ?user riesling])


15 


