
Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 1

6.871 Knowledge-Based Application Systems

Final Project

Constitution Builder

What is Federalism?

Federalism as defined by the Merriam-Webster Dictionary is the

distribution of power in an organization (as a government) between a

central authority and the constituent units. Unlike a unitary state,

sovereignty in a federal state is split between at least two territorial

levels such that the units at each level have final authority and can act

independently of the other in some area. This means that the citizens

of such a country have an obligation to two or more authorities. The

division of such responsibilities usually involves the central

government controls crucial matters such as defense and foreign

policies, while the sub-units might also have international roles. The

advantages of setting up a federal state include is it allows more

opportunities for political participation by allowing each sector of the

population to participate equally in decision making. It also increases

the access to the government, by setting up sub-governments in the

different sectors of a country. It also allows a greater diversity of

opinion in public policies, and decreases the number of decisions and

compromises at the national level.

 Although federalism seems like an ideal political structure, it

does have its limitations. Disadvantages of federalism include:

� It can lead to duplication of government and inefficient,

overlapping or contradictory policies in different parts of

the country

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 2

� It can lead to inequality between the States and lead to

unhealthy competition and rivalry

� It can lead to neglect in important areas of public policy

� It can lead to over-government

Currently, there are around 21 countries that can be categorized

as federal states, and they are:

Argentina, Australia, Austria, Belgium, Bosnia and Herzegovina, Brazil,

Canada, Comoros, Ethiopia, Germany, India, Malaysia, Mexico, FS

Micronesia, Nigeria, Russia, Serbia and Montenegro, Switzerland,

United Arab Emirates, United States, Venezuela.

Project Aim:

Having discussed what federalism is, the purpose of this project was to

design a system which enables a political body to determine whether

federalism would be a good option to adopt for a certain country. The

system incorporates several factors that help determine whether or

not such a political system is applicable given a set scenario. The

different criteria used are:

� Population

� Land Area

� Racial Diversity

� Religious Diversity

� Ethnic Diversity

� Linguistic Diversity

Population:

In general, it is pretty difficult to implement a federal structures

where you have a small population. Since you need to have

several sub-governments, if a country is initially small, the sub-

governments will be much small to be able to be effective.

Nevertheless, small federal states such as the Federal State of

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 3

Micronesia (with a population of 108,1051) do exist, but are not

the norm.

Land Area:

Similar to the rational behind population, dividing up a small

country in terms of physical area will be harder to do compared

to a larger country. If a country is small in size, the population is

able to access the government quite easily compared to a

country that is large.

Racial, Religious, Cultural and Ethnic Diversity:

 Divisions that will be done in a country will be based on a set of

criteria. Each sub-government must encompass a certain group of the

population with similar backgrounds. They can either share the same

race (e.g. Kurds in Iraq), same religion (e.g. Hindus in India), same

cultural background or have the same ethnic origin. This is the most

important factor as each government needs to be united, and federal

states work best when each sub-government is composed of a

predominantly homogenous population.

Moreover, even if you have a country with great diversity, it will be

much harder to establish a federal state if the population itself is

segmented geographically. This is a very important aspect that needs

to be taken into account in whether a country can adopt federalism.

Furthermore, even if a country fits the criteria mentioned above,

whereby it has a decent population count with a decent area and a

diverse population, the diversity ratios of the different groups need to

be in such a way that no one group has a much higher prevalence over

1 CIA Factbook, estimated figures for July 2005.

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 4

another. For example, lets say we have two countries with 3 distinct

racial groups.

Racial

Group

Country A Country B

Group 1 40% 70%

Group 2 35% 20%

Group 3 35% 10%

A federal system would work better in country A because the

percentages are pretty equal. This means that if a federal state were

to be implemented in country A, then the three different sectors will

have equal say in the central government. Contrastingly, in country B,

group A will have a much larger sub-government than the other two

groups meaning that more people are needed to represent them, and

they will control more of the internal and external politics in the central

government which might lead to racism against one race, or not

providing equal rights to the whole population.

Initial Thoughts:

When we started thinking about this project, we were hoping to

achieve several aspects a country should take when writing its

constitution. This turned out to be a project of a larger scale and scope

of our class, and we therefore decided to scale down, and look at one

particular aspect of building a constitution, that is to help countries

decide whether to adopt a federal ideology or not.

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 5

Problem Solving Paradigm:

 After studying several designs of expert-based systems in class,

and through the readings provided, we decided to go ahead with using

a flow-chart model. As mentioned earlier, our system chooses different

criteria in order to fill its knowledge base and be able to provide the

user with an end recommendation. It explicitly asks the user for

information covering the set criteria, and uses that information using a

logical approach in order to decide whether federalism can actually be

implemented. The most straight-forward and efficient architecture we

decided to use was using rules. The reason this was chosen is because

our system is designed in such a way that we have several layers of

queries and buildup, and using rules is the best way to our knowledge

in achieving our goal.

Design Details:

To begin with, this is an expert-based system. In other words, and

expert needs to be involved in order to provide the actual background

and framework that we should follow before deciding on any of the set

rules and design decisions. The diagram below outlines how an expert-

based system is generally presented2:

To begin with, the expert we discussed our ideas with was professor

Cindy Skach, who is currently an assistant professor of Government at

2 Ch 3: Expert Systems Building Tools: Definitions. http://www.wtec.org/loyola/kb/c3_s2.htm

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 6

Harvard University. Professor Skach was pretty busy, but we spent

most of our time with her teaching fellow Rosalind Dixon. As well as

talking to two experts, we used a few texts that were recommended

by our experts (list attached in bibliography section). After gaining

insight on what she thinks were the most important topics that need to

be covered, we took the role of the ‘Knowledge engineer’ and designed

our expert-based system using the knowledge we have gained in our

6.871 class3. By being able to create such a system, we will be able to

build our knowledge base using information from our expert coupled

with queries that will be requested from the user. The knowledge base

will be built using a sequence of IF-THEN rules that will lead to

conclusions about our final goal. The building of the knowledge base

actually occurs in the Knowledge Acquisition system, and will then be

stored in the Knowledge Base subsystem. The Explanation subsystem

basically explains the system’s actions. This is built into Joshua, by

using the ‘trace’ function, where you can see how certain conclusions

have been achieved. The reasoning engine is where the manipulation

takes place of the information in the knowledge base to form a line of

reasoning to solve the problem. The user inputs the queries using a

‘User Interface’ which is the crucial link between the user, and

infrastructure of our system. The most important aspect of any user

interface is that it should be simple enough for a user who knows

nothing about computer programming to be able to work with, and

that’s what we strived to achieve.

Variables:

3 In particular, with the aid of Profesor Davis, Jacob Eisenstein, and JOSHUA

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 7

The variables we have used in this project are summarized in the

diagram on the following page to show how they are connected. I will

also provide a brief written description to the different variables used.

Inputs:

Primary Inputs:

� Population (raw value)
� land-area (square kilometers)

� racial-count: number of different races in the country (raw value)
� religion-count: number of different religions practiced in the country

(raw value)

� ethnic-count: number of different ethnicities prevalent in the country
(raw value)

� linguistic-count: number of different languages spoken in the country
(raw value)

� first-racial-p, first-religion-p, first-ethnic-p, first-linguistic-p:
population percentage of first racial, religious, ethnic and linguistic group

(decimal value between 0 and 1)
� second-racial-p, second-religion-p, second-ethnic-p, second-

linguistic-p: population percentage of second racial, religious, ethnic and

linguistic group (decimal value between 0 and 1)
� third-racial-p, third-religion-p, third-ethnic-p, third-linguistic-p:

population percentage of third racial, religious, ethnic and linguistic group
(decimal value between 0 and 1)

Intermediate Inputs:
� type-of-division: the most dominant type of division

(racial/religious/ethnic/linguistic)
� pos-of-fed: possibility of federalism. This is a decimal value between 0

and 1 representing how well federalism can be implemented given the

scenario.
Output:

� federalism: final decision on whether federalism can be applied.
(not-viable/maybe-viable-in-undivided-society/maybe-viable-but-country-

very-small/possibly-viable-racially/possibly-viable-along-religion/possibly-
viable-ethnically/possibly-viable-along-language/best-option-along-

race/best-option-along-religion/best-option-along-ethnicity/best-option-
along-language)

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 8

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 9

One small note on the diagram is that I have added an extra layer,

just make the diagram clearer. It is the layer containg the three

general options of maybe viable, possible viable, and best option.

In my opinion, the most crucial variable is pos-of-fed. This

variable controls the level of applicablilty of federalism to the given

situation. Everytime a rule is satisfied that a stronger claim for

federalism, the value is increased. This will be discussed in more

detail.

Rules Discussion:

The rules in our system were written using the LISP language, in order

to be able to implement it using the JOSHUA infrastructure. The rules

are written in such a way to be able to achieve a layered-design

architecture using simple modus ponens backward chaining of IF-THEN

rules. The design decision to use backward chaining is because we are

working bottom-up, basically answering the user’s question of whether

his scenario is actually applicable of applying federalism in the given

scenario. The way our rules are designed is the user is queried with

the basic questions concerning land area, population and diversity

details. The system uses the data in order to draws simple sub-

decisions, creating a new level of inputs. These new inputs will then be

combined together in order to move to larger goal, that of deciding

what the state the scenario fits the federal model.

 The rules we have designed are simple IF-THEN statements. The

expression taken in as a condition is evaluated, and if it is evaluated to

true, then the statement is executed. For example, if we look at rule

5:

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 10

if racial_count <= 2

 then type_of_division = null

In plain English, if the number of racial divisions in a country is less

than 2, that means there are very few racial divisions, and it is not

racially diverse, and therefore the type of division is set to null.

 We came up with 69 rules that can be grouped in 5 distinct

groups:

Rules Dealing with Country Size:

 These rules will determine whether the size and population of

the country are good enough for federalism to be implemented. The

larger the country, and the higher the population, the higher the

chances for federalism. The value of pos-of-fed is highest when it is a

large and populous country, while it is lowest when it is a small

country with a low population.

Rules Assigning Type of Division:

 Initially, the rules check if they country can be divided by race. If

so, it compares that to the next division, which is religion. If religion is

a better option for division (i.e, percentages are closer to each other),

then the value of pos-fed is set to the religion. This goes through all

the diversty categories, and chooses the one with the best set of

values. If none exist, the value is stored as null.

Rules dealing with calculating possibility:

These rules check to see the respective percentages of the highest

three divisions within one of our diversity categories. The previous

group or rules have already assigned which type of division will be

used, and therefore we will jump to respective rule that deals with it.

For example, if the rules assigning the type of division concluded that

we should divide the country by ethnicity, then rules 26-29 and 38-40

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 11

will be triggered. The pos-of-fed is then assigned according to how

close the percentages are to each other.

Rules About Geographic Distribution:

These set of rules determine whether a the diversity category is

spread out geographically. The more spread out the divisions are, the

more applicable federalism is. The pos-of-fed is then set according to

these relationships.

Rules Assessing Kind of Federalism or None At All:

These are the final set of rules which determine whether federalism is

applicable, and to what extent, and according to what diversity

category. Certain values have been assigned to the pos-of-fed along

the way in such a manner to create 5 distinct categories.

� If the country has no type of division and the rules of country

size have assigned it a low pos-of-fed, and the possibility of

federalism is less than 0.3, then federalism is not viable (rule

59)

� If the country has no divisions, but has a pos-of-fed value

larger than 0.3, then federalism maybe viable but there are

no divisions (rule 60).

� If the country has divisions, but has a pos-of-fed lower than

0.3, then the federalism is possible, but the country is just

too small (rule 61)

� If the country has a pos-fed that is between 0.3 and 0.6, then

federalism is possibly viable, according to the type-of-division

chosen (rules 62-65).

� If the country has a pos-fed that is larger than 0.6, then

federalism is the best option, according to the type of division

chosen (rules 66-69).

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 12

Program Logic:

The logic of our design follows very smoothly from the order the rules

were written. The initial step of the process is when the user queries

the system whether federalism can be applied, using the ask feature in

JOSHUA. Our program then checks the step right below the final result

of giving a recommendation, and sees which inputs it needs to get the

values for. The values required at this point are those of the type of

division (type-of-division) and the possibility of federalism (pos-of-

fed). In order to be able to return a value for those variables, the

program needs to dig in deeper to figure out what values it needs from

the user in order to give a recommendation. It queries the user for

more information on population statistics, land area, cultural, racial

ethnical and linguistic diversities. After retrieving the required data, it

incorporates that in calculating a numerical value for the pos-of-fed.

After that, it checks to see according to what diversity category, if any,

the country can be divided into, and that value will be stored as the

value for the type-of-division. Each time the program steps through,

the value of both variables change dynamically as the new data is

incorporated into the analysis.

Working Example:

While working on this project, the main case study we were thinking of

along the way was the case of Iraq. Therefore, I will use that example

in order to show how our system successfully gives a recommendation.

Iraq has a population of around 25,000,000 and an area of 435,000.

The three main ethnic groups are Kurdish, Sunnis and Shiites. The

country has gone through a terrible political roller-coaster over the

past century, where a minority population (Saddam Hussein’s Sunni

background) ruled a majority of the population with a different ethnic

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 13

background (around 60% of the population are Shiites). Moreover, the

Kurds have their own language, with a different culture which supports

the idea of a federal state. If our program is correct, it should suggest

a federal structure giving the three sectors a major role in the

government. This is what our program provides:

(ask [federalism IRAQ ?x] #'print-answer-with-certainty)
What is IRAQ's number of races: 1
What is IRA Q's most prevalent races population percentage
(enter 0.3 for 30%): 1
What is IRAQ's number of religions practiced: 1
What is IRAQ's most followed religions population percentage
(enter 0.3 for 30%): 1
What is IRAQ's number of living ethnicities: 3
What is IRAQ's most populous ethnicity’s population percentage
(enter 0.3 for 30%): 0.6
What is IRAQ's number of spoken languages: 2
What is IRAQ's most spoken languages population percentage
(enter 0.3 for 30%): 1
What is IRAQ's population: 25,000,000
What is IRAQ's land area: 500,000
What is IRAQ's second most populous ethnicity's pop ulation
percentage (enter 0.3 for 30%): 0.25
What is IRAQ's geographical grouping along the line s of
community (none/ethnic/religion/race/linguistic): e thnic
[FEDERALISM IRAQ BEST-OPTION-ALONG-ETHNICITY] 0.554 74997
[FEDERALISM IRAQ POSSIBLY-VIABLE-ETHNICALLY] 0.45
[FEDERALISM IRAQ MAYBE-VIABLE-IN-UNDIVIDED-SOCIETY] 1.0e-5

Discussion of the Constitution-Builder:

As mentioned earlier, we initially wanted to provide a system where it

takes all different aspects into account to aid in writing a constitution,

but that was too large of a topic to cover in the scope of our class.

After deciding to focus on the application of federalism, and having

that new aim in mind, we have designed a system that can give a

confident decision on whether a country should adopt federalism based

on population, geography, languages spoken, different religions,

ethnicities and races. If our system was inputted with a country with a

large area and a large population with three different religions

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 14

practiced in different segments of the country, the system will suggest

adopting federalism as a best option. Moreover, if you have a small

country with a homogenous population, the system will advise against

it. Even if we had scenarios of different diversity criteria intermingled

between each other, our program will still provide the best possible

scenario. The idea behind providing several options is to show the user

that there are actually several plausible scenarios that can be

implemented. Nevertheless, the system provides a certainty factor

with each option for the user to take into account when choosing which

option to use.

Constitution-Builder Limitation:

As much as I love our system, and thought it provided pretty decent

results, there are several cases where our system fails. For simplicity

we chose to discard countries that have small areas with small

population because we assumed it will be much harder to implement.

This is not always the case. Countries such as the FS of Micronesia

with a small population and area, but still practice federalism. Another

situation where our system might provide the correct result but with a

lower certainty is when you have a country divided geographically by a

certain diversity category, while the percentages are better due to

another category. For example, a country might have three different

languages, and the languages are spoken by the population pretty

homogenously, but the population is segmented in two areas by

religion where one religion is practiced much higher than the other.

Our program will return federalism based on language, while an expert

might suggest a division by religion.

One idea to solve such problems will be to incorporate other

countries as examples for reference in our knowledge base. For

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 15

example, the situation in Singapore is composed of three ethnic

groups (Chinese 75%, Malay 15%, Indian 10%). This case is very

similar to Iraq, and therefore we can use this to provide a suggestion

for Iraq.

System Limitation:

By system limitation, I am discussing the problems faced by using

Joshua. Joshua is a pretty simple language, with simple syntax which

is good when we need to write small rule-based systems which are not

that complicated. When programs become too big, Joshua becomes

either too redundant, or too limited to be able to use. For example we

could have written a smaller number of rules had Joshua been able to

implement a more general form of a certain value. For example, we

could have only needed three values that represent the three

percentages of a certain diversity category, and those values change

dynamically as we run through the program. Instead, we had to

initialize 12 variables instead of 3.

More concretely, we pretty much repeated the same 2 rules repeated

3 times for each diversity category (2X3X4) = 24 rules. Not only does

it not allow us to write a general method, these rules had to be written

to go around the simplicity of Joshua, because it does not have a built

in increment function. In our design, our ideal thoughts were to

increment the value of the pos-of-fed variable every time we come

across a better input that supports federalism.

Conclusion:

 As a conclusion, I really learnt a lot from working on this project.

I remember when we first wrote our proposal and handed it in,

Professor Davis’ comments were that the project was too broad.

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 16

Usually, professors in other subjects suggest that you do more work,

since the project is not focused enough. I had no idea how much work

it was going to take to work on such a small aspect of a larger project.

It is amazing how complicated and time-consuming a small module of

a large-scale project can be. The other cool aspect of this project was

to actually see that what you learn in class actually works in theory. It

is truly amazing to be able to collect the expert’s knowledge on a

specific subject, and actually be able to you use artificial intelligence to

simulate the expert’s thinking process. Let’s hope that someone takes

this project further, as some governments might truly benefit from it.

As obvious as it may sound, some governments do not see the obvious

solutions, and rather use complicated approaches to solve a simple

situation.

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 17

Constitution Builder Code:

;;; Investment Knowledge Base for Joshua
;;; for use with Rule-Based Systems Exercises
;;; 6.871 Spring 2004

(in-package :ju)

; (ask [federalism iraq response] #'print-answer-wi th-certainty)

(defun print-answer-with-certainty (backward-suppor t &optional (stream *standard-
output*))
 (check-type backward-support cons "backward-suppo rt from a query")
 (let ((predication (ask-database-predication back ward-support)))
 (check-type predication predication "a predicat ion from a query")
 (terpri stream)
 (ji::truth-value-case (predication-truth-value predication)
 (*true*
 (prin1 predication stream))
 (*false*
 (write-string "[not " stream)
 (ji::print-without-truth-value predication s tream)
 (write-string "]" stream)))
 (format stream " ~d" (certainty-factor predicat ion))))

(defgeneric possesive-suffix (predication))
(defgeneric first-prompt (predication))
(defgeneric second-prompt (predication))
(defgeneric third-prompt (predication))
(defgeneric possible-values (predication))
(defgeneric get-an-answer (predication &optional st ream))
(defgeneric appropriate-ptype (predication))
(defgeneric accept-prompt (predication))
(defgeneric question-prefix (predication))
(defgeneric remaining-object-string (predication))

;;; The base mixin
(define-predicate-model question-if-unknown-model () ())

(clim:define-gesture-name :my-rule :keyboard (:r :c ontrol :shift))
(clim:define-gesture-name :my-help :keyboard (:h :c ontrol :shift))
(clim:define-gesture-name :my-why :keyboard (:w :co ntrol :shift))

(defparameter *mycin-help-string*
 "
 ctrl-? - to show the valid answers to this questi on
 meta-r - to show the current rule
 meta-y - to see why this question is asked
 meta-h - to see this list"
)

;;; ;;;
;;;
;;; explaining why we're asking what we're asking
;;;
;;; ;;;

(defun print-why (trigger rule &optional (stream *s tandard-output*))
 (format stream "~%We are trying to determine ")
 (if (predicationp trigger)
 (progn (format stream "~a " (question-prefix tr igger)) (say trigger stream))
 (princ trigger stream))

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 18

 (if (null rule)
 (format stream "~%This is a top level query")
 (let* ((debug-info (ji::rule-debug-info rule))
 (sub-goals (let ((ji::*known-lvs* nil))(eval (ji::rule-debug-info-context
debug-info)))))
 (format stream "~%This is being asked for by the rule ~a in order to determine:~%"
 rule)
 (format stream "~a " (question-prefix ji::*go al*)) (say ji::*goal* stream)
 (typecase sub-goals
 (ji::and-internal
 (let ((remaining-preds (rest (predication- statement sub-goals)))
 (good-answers nil)
 (remaining-stuff nil)
 (first-remaining-object-string nil))
 (labels ((do-good-preds ()
 (when remaining-preds
 (let ((first (pop remaining -preds)))
 (cond
 ((not (predicationp firs t))
 (push (copy-object-if-n ecessary first) good-answers)
 (do-good-preds))
 (t
 (let ((found-it nil))
 (ask first
 #'(lambda (just)
 (push (ask-d atabase-predication just) good-
answers)
 (setq found- it t)
 (do-good-pre ds))
 :do-backward-rul es nil
 :do-questions ni l)
 (unless found-it
 (with-statement-des tructured (who value) first
 (declare (ignore who))
 (with-unification
 (unify trigger first)
 (setq first-rem aining-object-string (remaining-
object-string first))
 (unify value fi rst-remaining-object-string)
 (setq remaining -stuff
 (loop for pred in remaining-preds
 if (predicationp pred)
 col lect (with-statement-destructured (who
value) pred
 (declare (ignore who))
 (unify value (if
(joshua:unbound-logic-variable-p value)
 (remaining-
object-string pred)
 (joshua:joshua-
logic-variable-value value)))
 (copy-object-if-necessary
pred))
 els e collect (copy-object-if-necessary
pred)))))))))))))
 (do-good-preds))
 (loop for pred in (nreverse good-answers)
 for first-time = t then nil
 if first-time
 do (format stream "~%It has alread y been determined whether: ")
 else do (format stream "~%and whet her: ")
 do (say pred stream))
 (format stream "~%It remains to determin e ~a ~a ~a"
 (question-prefix trigger) first- remaining-object-string (remaining-
stuff-suffix trigger))
 (loop for pred in remaining-stuff
 do (format stream "~%and ~a ~a ~a" (question-prefix pred) (remaining-
object-string pred) (remaining-stuff-suffix pred)))))
 (otherwise))
)))

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 19

(defmethod remaining-stuff-suffix ((pred predicatio n)) "is")
(defmethod remaining-stuff-suffix ((expression cons)) "")
(defmethod predication-value-description ((pred pre dication)) (remaining-object-string
pred))

;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; PROTOCOL HACKING
;;;;;;;;;;;;;;;;;;;;;;;;;

(defmethod say ((expression cons) &optional (stream *standard-output*))
 (princ expression stream))

(defmethod remaining-object-string ((expression con s)) (format nil "~a" expression))

(defmethod question-prefix ((expression cons)) "whe ther")

(defmethod get-an-answer ((predication question-if- unknown-model) &optional (stream
standard-output))
 "Print the prompt for this parameter (or make one up) and read the reply."
 (fresh-line)
 (flet ((mycin-help (stream action string-so-far)
 (declare (ignore string-so-far))
 (when (member action '(:help :my-help :m y-rule :my-why))
 (fresh-line stream)
 (case action
 (:my-why
 (print-why predication ji::*running -rule* stream)
)
 (:my-rule
 (format stream "You are running the rule ~a" ji::*running-rule*))
 (:my-help
 (format stream *mycin-help-string*)
))
 (fresh-line stream)
 (write-string "You are being asked to enter " stream)
 (clim:describe-presentation-type (appr opriate-ptype predication) stream)
 (write-char #\. stream)
)))
 (let ((clim:*help-gestures* (list* :my-help :my -why :my-rule clim:*help-gestures*)))
 (clim:with-accept-help ((:top-level-help #'my cin-help))
 (clim:accept (appropriate-ptype predication)
 :stream stream
 :prompt (accept-prompt predica tion))))))

;;; ;;;;;;;;;;;;;
;;;; Our pseudo mycin contains 3 types of predicat ions
;;;; boolean valued, numeric valued, and those tha t take one of
;;;; a set of values
;;;; For each type we provide say methods
;;;; and a bunch of subordinate methods to make d ialog almost English
;;;; and to do CLIM accepts correctly
;;; ;;;;;;;;;;;;;

;;;;; boolean values
(define-predicate-model value-is-boolean-mixin () ())

(define-predicate-method (say value-is-boolean-mixi n) (&optional (stream *standard-
output*))
 (with-statement-destructured (who yesno) self
 (format stream "~A~A ~A ~A"
 who (possesive-suffix self)
 (if (joshua:joshua-logic-variable-value yesno) (first-prompt self) (second-
prompt self))
 (third-prompt self))))

(defmethod remaining-object-string ((predication va lue-is-boolean-mixin))
 (with-statement-destructured (who value) predicat ion

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 20

 (declare (ignore value))
 (format nil "~A ~A ~a"
 (joshua:joshua-logic-variable-value who)
 (first-prompt predication) (third-promp t predication))))

(defmethod appropriate-ptype ((predication value-is -boolean-mixin)) '(clim:member yes
no))

(defmethod accept-prompt ((predication value-is-boo lean-mixin))
 (with-statement-destructured (who value) predicat ion
 (declare (ignore value))
 (format nil "~%Is it the case that ~a~a ~a ~a"
 who (possesive-suffix predication)
 (first-prompt predication)
 (third-prompt predication))))

(defmethod question-prefix ((predication value-is-b oolean-mixin)) "whether")

(defmethod possible-values ((predication value-is-b oolean-mixin)) '("yes" "no"))

(defmethod remaining-stuff-suffix ((pred value-is-b oolean-mixin)) "")
(defmethod predication-value-description ((pred val ue-is-boolean-mixin)) "foobar")

;;;; numeric values

(define-predicate-model value-is-numeric-mixin () ())
(define-predicate-method (say value-is-numeric-mixi n) (&optional (stream *standard-
output*))
 (with-statement-destructured (who number) self
 (if (joshua:unbound-logic-variable-p number)
 (format stream "is ~a~a ~a"
 who (possesive-suffix self) (first-pr ompt self))
 (format stream "~A~A ~A is ~A ~A"
 who (possesive-suffix self)
 (first-prompt self)
 (joshua:joshua-logic-variable-value n umber)
 (second-prompt self)))))

(defmethod remaining-object-string ((predication va lue-is-numeric-mixin))
 (with-statement-destructured (who value) predicat ion
 (declare (ignore value))
 (format nil "~A~A ~A"
 (joshua:joshua-logic-variable-value who) (possesive-suffix predication)
 (first-prompt predication))))

(defmethod appropriate-ptype ((predication value-is -numeric-mixin)) 'number)

(defmethod accept-prompt ((predication value-is-num eric-mixin))
 (with-statement-destructured (who value) predicat ion
 (declare (ignore value))
 (format nil "~%What is ~a~a ~a"
 who (possesive-suffix predication) (fir st-prompt predication))))

(defmethod question-prefix ((predication value-is-n umeric-mixin)) "what")

;;; variety of possible values

(define-predicate-model value-is-option-mixin () ())

(define-predicate-method (say value-is-option-mixin) (&optional (stream *standard-
output*))
 (with-statement-destructured (who option) self
 (format stream "~A~A ~A ~A ~A"
 who (possesive-suffix self)
 (first-prompt self)
 (second-prompt self)
 (joshua:joshua-logic-variable-value opt ion))))

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 21

(defmethod remaining-object-string ((predication va lue-is-option-mixin))
 (with-statement-destructured (who value) predicat ion
 (declare (ignore value))
 (format nil "~A~A ~A"
 (joshua:joshua-logic-variable-value who) (possesive-suffix predication)
 (first-prompt predication))))

(defmethod appropriate-ptype ((predication value-is -option-mixin)) `(member ,@(possible-
values predication)))

(defmethod accept-prompt ((predication value-is-opt ion-mixin))
 (with-statement-destructured (who value) predicat ion
 (declare (ignore value))
 (format nil "~%What is ~a~a ~a"
 who (possesive-suffix predication) (fir st-prompt predication))))

(defmethod question-prefix ((predication value-is-o ption-mixin)) "whether")

;;; Predicate defining macro

(defmacro define-predicate-with-ancillary-info ((pr ed-name mixin)
 &ke y
 pos sesive-suffix
 pro mpt1 prompt2 prompt3
 pos sible-values
 mis sing-value-prompt
)
 `(eval-when (:compile-toplevel :execute :load-top level)
 (define-predicate ,pred-name (who value) (,mix in question-if-unknown-model cf-mixin
ltms:ltms-predicate-model))
 (defmethod possesive-suffix ((predication ,pre d-name)) () ,possesive-suffix)
 (defmethod first-prompt ((predication ,pred-na me)) () ',prompt1)
 (defmethod second-prompt ((predication ,pred-n ame)) () ',prompt2)
 ,(when prompt3 `(defmethod third-prompt ((pred ication ,pred-name)) () ',prompt3))
 ,(when possible-values `(defmethod possible-va lues ((predication ,pred-name))
',possible-values))
 ,(when missing-value-prompt `(defmethod missin g-value-prompt ((predication ,pred-
name)) ',missing-value-prompt))
))

;;; predicates that take numeric values
(define-predicate-with-ancillary-info (population v alue-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "population")
(define-predicate-with-ancillary-info (land-area va lue-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "land area" :prom pt2 "sq km")
(define-predicate-with-ancillary-info (pos-of-fed v alue-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "possibility of f ederalism" :prompt2 "on a scale of 0
to 1")
(define-predicate-with-ancillary-info (racial-count value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "number of races" :prompt2 "is")
(define-predicate-with-ancillary-info (religion-cou nt value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "number of religi ons practiced":prompt2 "is")
(define-predicate-with-ancillary-info (ethnic-count value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "number of livi ng ethnicities":prompt2 "is")
(define-predicate-with-ancillary-info (linguistic-c ount value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "number of spoken languages" :prompt2 "is")
(define-predicate-with-ancillary-info (first-racial -p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most prevalent race's population percentage (enter
0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (second-racia l-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "second most pr evalent race's population percentage
(enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (third-racial -p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "third most pre valent race's population percentage
(enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (first-religi on-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most followed religion's population percentage
(enter 0.3 for 30%)":prompt2 "is")

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 22

(define-predicate-with-ancillary-info (second-relig ion-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "second most fo llowed religion's population
percentage (enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (third-religi on-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "third most fol lowed religion's population percentage
(enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (first-ethnic -p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most populous ethnicity's population percentage
(enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (second-ethni c-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "second most po pulous ethnicity's population
percentage (enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (third-ethnic -p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "third most pop ulous ethnicity's population
percentage (enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (first-lingui stic-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most spoken la nguage's population percentage (enter
0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (second-lingu istic-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "second most sp oken language's population percentage
(enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (third-lingui stic-p value-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "third most spo ken language's population percentage
(enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (first-p valu e-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most important diversity's highest population
percentage (enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (second-p val ue-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most important diversity's second highest population
percentage (enter 0.3 for 30%)":prompt2 "is")
(define-predicate-with-ancillary-info (third-p valu e-is-numeric-mixin)
 :possesive-suffix "'s" :prompt1 "most important diversity's third highest population
percentage (enter 0.3 for 30%)":prompt2 "is")

;;; Predicates that take one of a set of values
(define-predicate-with-ancillary-info (type-of-divi sion value-is-option-mixin)
 :possesive-suffix "'s" :prompt1 "most prominent t ype of division
(none/racial/religion/ethnic/linguistic)" :prompt2 "is"
 :possible-values (none racial religion ethnic lin guistic))
(define-predicate-with-ancillary-info (geographic-g rouping value-is-option-mixin)
 :possesive-suffix "'s" :prompt1 "geographical gro uping along lines of community
(none/racial/religion/ethnic/linguistic)" :prompt2 "is"
 :possible-values (none racial religion ethnic lin guistic))
(define-predicate-with-ancillary-info (federalism v alue-is-option-mixin)
 :possesive-suffix "'s" :prompt1 "option on federa lism" :prompt2 "is"
 :possible-values (not-viable maybe-viable-in-undi vided-society maybe-viable-but-
country-very-small possibly-viable-racially possibl y-viable-along-religion possibly-
viable-ethnically possibly-viable-along-language be st-option-along-race best-option-
along-religion best-option-along-ethnicity best-opt ion-along-language))

;; using this model, the system will ask the user a ny time
;; it needs a specific fact to continue backward ch aining.

;;; we should only be asking a question under the f ollowing
;;; circumstances:
;;;
;;; the predication being asked contains no logic v ariables
;;; eg. [has-health-insurance matt yes], not
;;; [has-health-insurance matt ?x]
;;;
;;; AND
;;;
;;; that predication is not already in the database
;;;
;;; AND
;;;
;;; any other predication matching the predicate an d ?who
;;; eg. [has-health-insurance matt no] is not alrea dy in the
;;; database.

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 23

;;;
;;; AND
;;;
;;; there is no rule we can use to find out the ans wer
;;;
;;; this can be told by check [known [has-health-in surance matt ?]]

(define-predicate already-known (predicate object))

;;; if after doing the normal processing nothing is found
;;; then finally ask the guy a question if appropri ate
(define-predicate-method (ask question-if-unknown-m odel) (intended-truth-value
continuation do-backward-rules do-questions)
 (let ((answers nil)
 (predicate (predication-predicate self)))
 (flet ((my-continuation (bs)
 (let* ((answer (ask-query bs))
 (database-answer (insert (copy- object-if-necessary answer))))
 (pushnew database-answer answers))))
 (with-statement-destructured (who value) self
 (declare (ignore value))
 (with-unbound-logic-variables (value)
 (let ((predication `[,predicate ,who ,val ue]))
 ;; first see if there's an answer alrea dy in the database
 ;; may want to change this to asserting already-know predication, but I'm
trying to avoid that
 (ask-data predication intended-truth-va lue #'my-continuation)
 (unless answers
 ;; Now go get stuff from rules.
 (when do-backward-rules
 (ask-rules predication intended-tru th-value #'my-continuation do-
questions))
 ;; now go hack questions
 (unless answers
 (when do-questions
 (ask-questions predication intend ed-truth-value #'my-continuation))))))
 ;; if he's doing a raws database fetch, don 't ask
 (when (and (null answers) (or do-backward-r ules do-questions))
 (unless (joshua:unbound-logic-variable-p who)
 (let* ((answer (get-an-answer self))
 (database-answer (tell `[,predicate ,who ,answer]
 :justification '((user- input 1.0)))))
 (pushnew database-answer answers))))))
 (loop for answer in answers
 when (eql (predication-truth-value answer) intended-truth-value)
 do (with-stack-list (just self intended-t ruth-value answer)
 (with-unification
 (unify self answer)
 (funcall continuation just)))))
 ;; make it clear that there is no interesting ret urn value
 (values))

;;; ;;;;;;;;;;;;;;;;
;;; ;;;
;;; Inference Rules (For importance, higher values go first.) ;;;
;;; ;;;
;;; ;;;
;;; ;;;;;;;;;;;;;;;;

;;;;RULES ABOUT: population and land-area minimum r equirements

(defrule population-low-cutoff (:backward :certaint y 0.5 :importance 90)
 if [and [population ?who ?x]
 [land-area ?who ?y]
 (and(< ?x 10000000)(< ?y 100000))]
 then [pos-of-fed ?who 0.2])

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 24

(defrule population-medium-cutoff (:backward :certa inty 0.5 :importance 89)
 if [and [population ?who ?x]
 [land-area ?who ?y]
 (and (< ?x 10000000)(>= ?y 100000))]
 then [pos-of-fed ?who 0.35])

(defrule population-medium-cutoff2 (:backward :cert ainty 0.5 :importance 88)
 if [and [population ?who ?x]
 [land-area ?who ?y]
 (and (>= ?x 10000000)(< ?y 100000))]
 then [pos-of-fed ?who 0.35])

(defrule population-high-cutoff (:backward :certain ty 0.5 :importance 87)
 if [and [population ?who ?x]
 [land-area ?who ?y]
 (and(>= ?x 10000000)(>= ?y 100000))]
 then [pos-of-fed ?who 0.5])

;;;;RULES ABOUT: Diversity typecasting

(defrule race-diversity (:backward :certainty 0.8 : importance 85)
 if [and [racial-count ?who ?x]
 [first-racial-p ?who ?y]
 (and (> ?x 2)(< ?y 0.9))]
 then [type-of-division ?who racial])

(defrule none-check-1 (:backward :certainty 0.00001 :importance 84)
 if [and [racial-count ?who ?x]
 (<= ?x 2)]
 then [type-of-division ?who none])

(defrule religion-none (:backward :certainty 0.8 :i mportance 83)
 if [and [religion-count ?who ?x]
 [first-religion-p ?who ?y]
 (and(> ?x 2)(< ?y 0.9))]
 then [type-of-division ?who religion])

(defrule religion-racial (:backward :certainty 0.9 :importance 82)
 if [and [religion-count ?who ?x]
 [first-religion-p ?who ?y]
 [type-of-division ?who racial]
 [first-racial-p ?who ?w]
 (and(> ?x 2)(< ?y 0.9)(< ?y ?w))]
 then [type-of-division ?who religion])

(defrule ethnic-none (:backward :certainty 0.8 :imp ortance 81)
 if [and
 [ethnic-count ?who ?x]
 [first-ethnic-p ?who ?y]
 (and(> ?x 2)
 (< ?y 0.9))]
 then [type-of-division ?who ethnic])

(defrule ethnic-racial (:backward :certainty 0.9 :i mportance 80)
 if [and [ethnic-count ?who ?x]
 [first-ethnic-p ?who ?y]
 [type-of-division ?who racial]
 [first-racial-p ?who ?w]
 (and(> ?x 2)
 (< ?y 0.9)
 (< ?y ?w))]
 then [type-of-division ?who ethnic])

(defrule ethnic-religion (:backward :certainty 0.9 :importance 79)

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 25

 if [and [ethnic-count ?who ?x]
 [first-ethnic-p ?who ?y]
 [type-of-division ?who religion]
 [first-religion-p ?who ?w]
 (and (> ?x 2)
 (< ?y 0.9)
 (< ?y ?w))]
 then [type-of-division ?who ethnic])

(defrule linguistic-none (:backward :certainty 0.8 :importance 78)
 if [and [linguistic-count ?who ?x]
 [first-linguistic-p ?who ?y]
 (and(> ?x 2)
 (< ?y 0.9))]
 then [type-of-division ?who linguistic])

(defrule linguistic-racial (:backward :certainty 0. 9 :importance 77)
 if [and [linguistic-count ?who ?x]
 [first-linguistic-p ?who ?y]
 [type-of-division ?who racial]
 [first-racial-p ?who ?w]
 (and(> ?x 2)
 (< ?y 0.9)
 (< ?y ?w))]
 then [type-of-division ?who linguistic])

(defrule linguistic-religion (:backward :certainty 0.9 :importance 76)
 if [and [linguistic-count ?who ?x]
 [first-linguistic-p ?who ?y]
 [type-of-division ?who religion]
 [first-religion-p ?who ?w]
 (and (> ?x 2)
 (< ?y 0.9)
 (< ?y ?w))]
 then [type-of-division ?who linguistic])

(defrule linguistic-ethnic (:backward :certainty 0. 9 :importance 75)
 if [and [linguistic-count ?who ?x]
 [first-linguistic-p ?who ?y]
 [type-of-division ?who ethnic]
 [first-ethnic-p ?who ?w]
 (and(> ?x 2)
 (< ?y 0.9)

 (< ?y ?w))]
 then [type-of-division ?who linguistic])

(defrule none-final (:backward :certainty 0.7 :impo rtance 74)
 if [or [and [linguistic-count ?who ?w]
 [religion-count ?who ?y]
 [racial-count ?who ?x]
 [ethnic-count ?who ?z]
 (and (< ?x 2)
 (< ?y 2)
 (< ?z 2)
 (< ?w 2))]
 [and [first-linguistic-p ?who ?d]
 [first-racial-p ?who ?a]
 [first-religion-p ?who ?b]
 [first-ethnic-p ?who ?c]
 (and (> ?a .9) (> ?b .9)(> ?c .9)(> ?d .9))]]
 then [type-of-division ?who none])

;;;; Rules about percentages

(defrule none-p-1 (:backward :certainty 1.0 :import ance 73)
 if [type-of-division ?who none]
 then [first-p ?who 1])

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 26

(defrule none-p-2 (:backward :certainty 1.0 :import ance 73)
 if [type-of-division ?who none]
 then [second-p ?who 0])

(defrule none-p-3 (:backward :certainty 1.0 :import ance 73)
 if [type-of-division ?who none]
 then [third-p ?who 0]])

(defrule racial-p-h (:backward :certainty 0.7 :impo rtance 73)
 if [and[type-of-division ?who racial]
 [first-racial-p ?who ?x]
 [second-racial-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.8])

(defrule racial-p-m (:backward :certainty 0.7 :impo rtance 73)
 if [and[type-of-division ?who racial]
 [first-racial-p ?who ?x]
 [second-racial-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.65])

(defrule racial-p-l (:backward :certainty 0.7 :impo rtance 73)
 if [and[type-of-division ?who racial]
 [first-racial-p ?who ?x]
 [second-racial-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.5])

(defrule religion-p-h (:backward :certainty 0.7 :im portance 72)
 if [and[type-of-division ?who religion]
 [first-religion-p ?who ?x]
 [second-religion-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.8])

(defrule religion-p-m (:backward :certainty 0.7 :im portance 72)
 if [and[type-of-division ?who religion]
 [first-religion-p ?who ?x]
 [second-religion-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.65])

(defrule religion-p-l (:backward :certainty 0.7 :im portance 72)
 if [and[type-of-division ?who religion]
 [first-religion-p ?who ?x]
 [second-religion-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 27

 (= ?z 0.2))]
 then [pos-of-fed ?who 0.5])

(defrule ethnic-p-h (:backward :certainty 0.7 :impo rtance 71)
 if [and[type-of-division ?who ethnic]
 [first-ethnic-p ?who ?x]
 [second-ethnic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.8])

(defrule ethnic-p-m (:backward :certainty 0.7 :impo rtance 71)
 if [and[type-of-division ?who ethnic]
 [first-ethnic-p ?who ?x]
 [second-ethnic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.65])

(defrule ethnic-p-l (:backward :certainty 0.7 :impo rtance 71)
 if [and[type-of-division ?who ethnic]
 [first-ethnic-p ?who ?x]
 [second-ethnic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.5])

(defrule linguistic-p-h (:backward :certainty 0.7 : importance 70)
 if [and[type-of-division ?who linguistic]
 [first-linguistic-p ?who ?x]
 [second-linguistic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.8])

(defrule linguistic-p-m (:backward :certainty 0.7 : importance 70)
 if [and[type-of-division ?who linguistic]
 [first-linguistic-p ?who ?x]
 [second-linguistic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.65])

(defrule linguistic-p-l (:backward :certainty 0.7 : importance 70)
 if [and[type-of-division ?who linguistic]
 [first-linguistic-p ?who ?x]
 [second-linguistic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (<= ?x 0.5)
 (>= ?y 0.3)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.5])

(defrule racial-p-2-h (:backward :certainty 0.7 :im portance 73)
 if [and[type-of-division ?who racial]
 [first-racial-p ?who ?x]
 [second-racial-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 28

 (= ?z 0.5))]
 then [pos-of-fed ?who 0.7])

(defrule racial-p-2-m (:backward :certainty 0.7 :im portance 73)
 if [and[type-of-division ?who racial]
 [first-racial-p ?who ?x]
 [second-racial-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.55])

(defrule racial-p-2-l (:backward :certainty 0.7 :im portance 73)
 if [and[type-of-division ?who racial]
 [first-racial-p ?who ?x]
 [second-racial-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.4])

(defrule religion-p-2-h (:backward :certainty 0.7 : importance 72)
 if [and[type-of-division ?who religion]
 [first-religion-p ?who ?x]
 [second-religion-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.7])

(defrule religion-p-2-m (:backward :certainty 0.7 : importance 72)
 if [and[type-of-division ?who religion]
 [first-religion-p ?who ?x]
 [second-religion-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.55])

(defrule religion-p-2-l (:backward :certainty 0.7 : importance 72)
 if [and[type-of-division ?who religion]
 [first-religion-p ?who ?x]
 [second-religion-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.4])

(defrule ethnic-p-2-h (:backward :certainty 0.7 :im portance 71)
 if [and[type-of-division ?who ethnic]
 [first-ethnic-p ?who ?x]
 [second-ethnic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.7])

(defrule ethnic-p-2-m (:backward :certainty 0.7 :im portance 71)
 if [and[type-of-division ?who ethnic]
 [first-ethnic-p ?who ?x]

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 29

 [second-ethnic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.55])

(defrule ethnic-p-2-l (:backward :certainty 0.7 :im portance 71)
 if [and[type-of-division ?who ethnic]
 [first-ethnic-p ?who ?x]
 [second-ethnic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.4])

(defrule linguistic-p-2-h (:backward :certainty 0.7 :importance 70)
 if [and[type-of-division ?who linguistic]
 [first-linguistic-p ?who ?x]
 [second-linguistic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.5))]
 then [pos-of-fed ?who 0.7])

(defrule linguistic-p-2-m (:backward :certainty 0.7 :importance 70)
 if [and[type-of-division ?who linguistic]
 [first-linguistic-p ?who ?x]
 [second-linguistic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.35))]
 then [pos-of-fed ?who 0.55])

(defrule linguistic-p-2-l (:backward :certainty 0.7 :importance 70)
 if [and[type-of-division ?who linguistic]
 [first-linguistic-p ?who ?x]
 [second-linguistic-p ?who ?y]
 [pos-of-fed ?who ?z]
 (and (>= ?x 0.6)
 (>= ?y 0.2)
 (= ?z 0.2))]
 then [pos-of-fed ?who 0.4])

;;;;; Rules about geographic grouping

(defrule geo-grouping-check-l (:backward :certainty 0.8 :importance 67)
 if [and (not [geographic-grouping ?who none])
 [pos-of-fed ?who ?z]
 (<= ?z 0.2)]
 then [pos-of-fed ?who 0.25])

(defrule geo-grouping-check-m (:backward :certainty 0.8 :importance 66)
 if [and (not [geographic-grouping ?who none])
 [pos-of-fed ?who ?z]
 (and (<= ?z 0.5)(> ?z 0.2))]
 then [pos-of-fed ?who 0.55])

(defrule geo-grouping-check-h (:backward :certainty 0.8 :importance 66)
 if [and (not [geographic-grouping ?who none])
 [pos-of-fed ?who ?z]
 (> ?z 0.5)]
 then [pos-of-fed ?who 0.85])

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 30

(defrule racial-grouping-l (:backward :certainty 0. 9 :importance 66)
 if [and [geographic-grouping ?who racial]
 [type-of-division ?who racial]
 [pos-of-fed ?who ?z]
 (<= ?z 0.2)]]
 then [pos-of-fed ?who 0.3])

(defrule racial-grouping-m (:backward :certainty 0. 9 :importance 66)
 if [and [geographic-grouping ?who racial]
 [type-of-division ?who racial]
 [pos-of-fed ?who ?z]
 (and (<= ?z 0.5)(> ?z 0.2))]
 then [pos-of-fed ?who 0.6])

(defrule racial-grouping-h (:backward :certainty 0. 9 :importance 66)
 if [and [geographic-grouping ?who racial]
 [type-of-division ?who racial]
 [pos-of-fed ?who ?z]
 (> ?z 0.5)]
 then [pos-of-fed ?who 0.9])

(defrule religion-grouping-l (:backward :certainty 0.9 :importance 65)
 if [and [geographic-grouping ?who religion]
 [type-of-division ?who religion]
 [pos-of-fed ?who ?z]
 (<= ?z 0.2)]
 then [pos-of-fed ?who 0.3])

(defrule religion-grouping-m (:backward :certainty 0.9 :importance 65)
 if [and [geographic-grouping ?who religion]
 [type-of-division ?who religion]
 [pos-of-fed ?who ?z]
 (and (<= ?z 0.5)(> ?z 0.2))]
then [pos-of-fed ?who 0.6])

(defrule religion-grouping-h (:backward :certainty 0.9 :importance 65)
 if [and [geographic-grouping ?who religion]
 [type-of-division ?who religion]
 [pos-of-fed ?who ?z]
 (> ?z 0.5)]
 then [pos-of-fed ?who 0.9])

(defrule ethnic-grouping-l (:backward :certainty 0. 9 :importance 64)
 if [and [geographic-grouping ?who ethnic]
 [type-of-division ?who ethnic]
 [pos-of-fed ?who ?z]
 (<= ?z 0.2)]
 then [pos-of-fed ?who 0.3])

(defrule ethnic-grouping-m (:backward :certainty 0. 9 :importance 64)
 if [and [geographic-grouping ?who ethnic]
 [type-of-division ?who ethnic]
 [pos-of-fed ?who ?z]
 (and
 (<= ?z 0.5)
 (> ?z 0.2))]
 then [pos-of-fed ?who 0.6])

(defrule ethnic-grouping-h (:backward :certainty 0. 9 :importance 64)
 if [and [geographic-grouping ?who ethnic]
 [type-of-division ?who ethnic]
 [pos-of-fed ?who ?z]
 (> ?z 0.5)]
 then [pos-of-fed ?who 0.9])

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 31

(defrule linguistic-grouping-l (:backward :certaint y 0.9 :importance 63)
 if [and [geographic-grouping ?who linguistic]
 [type-of-division ?who linguistic]
 [pos-of-fed ?who ?z]
 (<= ?z 0.2)]
 then [pos-of-fed ?who 0.3])

(defrule linguistic-grouping-m (:backward :certaint y 0.9 :importance 63)
 if [and [geographic-grouping ?who linguistic]
 [type-of-division ?who linguistic]
 [pos-of-fed ?who ?z]
 (and (<= ?z 0.5)(> ?z 0.2))]
 then [pos-of-fed ?who 0.6])

(defrule linguistic-grouping-h (:backward :certaint y 0.9 :importance 63)
 if [and [geographic-grouping ?who linguistic]
 [type-of-division ?who linguistic]
 [pos-of-fed ?who ?z]
 (> ?z 0.5)]
 then [pos-of-fed ?who 0.9])

;;;; Rules about final decision based on pre-calcul ated factors

(defrule not-viable (:backward :certainty 1.0 :impo rtance 62)
 if [and [type-of-division ?who none]
 [pos-of-fed ?who ?y]
 (< ?y 0.3)]
 then [federalism ?who not-viable])

(defrule maybe-viable-1 (:backward :certainty 1.0 : importance 61)
 if [and [type-of-division ?who none]
 [pos-of-fed ?who ?y]
 (and (> ?y 0.3)(< ?y 0.6))]
 then [federalism ?who maybe-viable-in-undivided-s ociety])

(defrule maybe-viable-2 (:backward :certainty 1.0 : importance 59)
 if [and (not[type-of-division ?who none])
 [pos-of-fed ?who ?y]
 (> ?y 0.3)]
 then [federalism ?who maybe-viable-but-country-ve ry-small])

(defrule possibly-viable-racially (:backward :certa inty 0.9 :importance 58)
 if [and [type-of-division ?who racial]
 [pos-of-fed ?who ?y]
 (and (> ?y 0.3)(< ?y 0.6))]
 then [federalism ?who possibly-viable-racially])

(defrule possibly-viable-along-religion (:backward :certainty 0.9 :importance 57)
 if [and [type-of-division ?who religion]
 [pos-of-fed ?who ?y]
 (and (> ?y 0.3)(< ?y 0.6))]
 then [federalism ?who possibly-viable-along-relig ion])

(defrule possibly-viable-ethnically (:backward :cer tainty 0.9 :importance 56)
 if [and [type-of-division ?who ethnic]
 [pos-of-fed ?who ?y]
 (and (> ?y 0.3)(< ?y 0.6))]
 then [federalism ?who possibly-viable-ethnically])

(defrule possibly-viable-along-language (:backward :certainty 0.9 :importance 55)

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 32

 if [and [type-of-division ?who linguistic]
 [pos-of-fed ?who ?y]
 (and (> ?y 0.3)(< ?y 0.6))]
 then [federalism ?who possibly-viable-along-langu age])

(defrule best-option-along-race (:backward :certain ty 1.0 :importance 54)
 if [and [type-of-division ?who racial]
 [pos-of-fed ?who ?y]
 (> ?y 0.6)]
 then [federalism ?who best-option-along-race])

(defrule best-option-along-religion (:backward :cer tainty 1.0 :importance 53)
 if [and [type-of-division ?who religion]
 [pos-of-fed ?who ?y]
 (> ?y 0.6)]
 then [federalism ?who best-option-along-religion])

(defrule best-option-along-ethnicity (:backward :ce rtainty 1.0 :importance 52)
 if [and [type-of-division ?who ethnic]
 [pos-of-fed ?who ?y]
 (> ?y 0.6)]
 then [federalism ?who best-option-along-ethnicity])

(defrule best-option-along-language (:backward :cer tainty 1.0 :importance 51)
 if [and [type-of-division ?who linguistic]
 [pos-of-fed ?who ?y]
 (> ?y 0.6)]
 then [federalism ?who best-option-along-language])

;;;;;;;;;;;;;;;;;--------------------------

(defun rules-concluding-predicate (pred)
 (let ((answers nil))
 (map-over-backward-rule-triggers `[,pred ? ?]
 #'(lambda (tri gger) (pushnew (ji::backward-trigger-
rule trigger) answers)))
 answers))

(defun predicates-rule-relies-on (rule)
 (let ((answers nil))
 (labels ((do-one-level (stuff)
 (let ((connective (when (predicati on-maker-p stuff) (predication-maker-
predicate stuff))))
 (case connective
 ((and or)
 (with-predication-maker-destr uctured (&rest more-stuff) stuff
 (loop for thing in more-stu ff
 do (do-one-level thin g))))
 ((nil))
 (otherwise
 (pushnew connective answers))
))))
 (do-one-level (ji::rule-debug-info-context (ji::rule-debug-info rule))))
 answers))

(defun graph-rule-tree (predicates &key (orientatio n :vertical) (size :small) (stream
standard-output))
 (terpri stream)
 (clim:with-text-size (stream size)
 (clim:format-graph-from-roots
 (loop for pred in predicates
 collect (list 'predicate pred))
 #'(lambda (thing stream)
 (destructuring-bind (type name) thing
 (case type
 (predicate

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 33

 (clim:surrounding-output-with-border (stream)
 (princ name stream)))
 (rule
 (clim:surrounding-output-with-border (stream :shape :oval)
 (princ name stream))))))
 #'(lambda (thing)
 (destructuring-bind (type name) thing
 (case type
 (predicate (loop for r in (rules-concl uding-predicate name)
 collect (list 'rule r)))
 (rule (loop for p in (predicates-rule- relies-on name)
 collect (list 'predicate p))))))
 :stream stream
 :orientation orientation
 :merge-duplicates t
 :duplicate-test #'equal)))

(clim-env::define-lisp-listener-command (com-graph- rules :name t)
 ((predicate s `(clim:sequence (member ,@(loop for
pred being the hash-keys of ji::*all-predicates* co llect pred)))
 :prompt "A sequence of predicates")
 &key
 (orientati on `(clim:member :vertical
:horizontal) :default :vertical)
 (size `(cl im:member :tiny :very-small :small
:normal :large :very-large :huge)
 :def ault :small)
 (to-file ' clim:pathname :default nil)
 (page-orie ntation '(clim:member :portrait
:landscape)
 :default :portrait
 :prompt "If to file, print in
portrait or landscape format")
 (multi-pag e 'clim:boolean :default nil :prompt
"If to file, segment into multiple pages")
 (scale-to- fit 'clim:boolean :default nil :prompt
"If to file, scale to fit one page"))
 (if to-file
 (with-open-file (file to-file :direction :outp ut :if-exists :supersede :if-does-not-
exist :create)
 (clim:with-output-to-postscript-stream (stre am file
 :multi-page multi-page
 :scale-to-fit scale-to-fit
 :orientation page-orientation)
 (graph-rule-tree predicates :orientation o rientation :size size :stream
stream)))
 (graph-rule-tree predicates :orientation orien tation :size size)))

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 34

Rules:

1] if population < 10,000,000

 land_area < 100,000

 then possibility_of_federalism = 0.2

2] if population < 10,000,000

 land_area >= 100,000

 then possibility_of_federalism = 0.35

3] if population >= 10,000,000

 land_area < 100,000

 then possibility_of_federalism = 0.35

4] if population >= 10,000,000

 land_area >= 100,000

 then possibility_of_federalism = 0.5

5] if racial_count > 2 and

 First_racial_percentage < 0.9

 then type_of_division = racial

6] if racial_count <= 2 and

 then type_of_division = none

7] if religion_count > 2 and

 first_religion_percentage < 0.9

 then type_of_division = religion

8] if religion_count > 2 and

 first_religion_percentage < 0.9 and

 type_of_religion = racial

 first_religion_division < first_racial_division

 then type_of_division = religion

9] if ethnic_count > 2 and

 first_ethnic_percentage < 0.9 and

 then type_of_division = ethnic

10] if ethnic_count > 2 and

 first_ethnic_percentage < 0.9 and

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 35

 type_of_division = racial and

 first_ethnic_division < first_racial_division

 then type_of_division = ethnic

11] if ethnic_count > 2 and

 first_ethnic_percentage < 0.9 and

 type_of_division = religion and

 first_ethnic_division < first_religion_division

 then type_of_division = ethnic

12] if ling_count > 2 and

 first_ling_percentage < 0.9 and

 then type_of_division = linguistic

13] if ling_count > 2 and

 first_ling_percentage < 0.9 and

 type_of_division = racial and

 first_ling_division < first_racial_division

 then type_of_division = linguistic

14] if ling_count > 2 and

 first_ling_percentage < 0.9 and

 type_of_division = religion and

 first_ling_division < first_religion_division

 then type_of_division = linguistic

15] if ling_count > 2 and

 first_ling_percentage < 0.9 and

 type_of_division = ethnic and

 first_ling_division < first_ethnic_division

 then type_of_division = linguistic

16] if (ling_count < 2 and

 Religion_count < 2 and

 Racial_count < 2 and

 Ethnic_count < 2) or

 (first_ling_percentage > 0.9 and

 First_religion_percentage > 0.9 and

 First_racial_percentage > 0.9 and

 First_ethnic_percentage > 0.9)

 Then type_of_division = none

 17] if type-of-division = none

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 36

then first-p = 1

18] if type-of-division = none

then second-p = 0

19] if type-of-division = none

then third-p = 0

20] if type-of-division = racial and

first-racial-p <= 0.5 and

 second-racial-p >= 0.3 and

 pos-of-fed = 0.5

then pos-of-fed = 0.8

21] if type-of-division = racial and

first-racial-p <= 0.5 and

 second-racial-p >= 0.3 and

 pos-of-fed = 0.35

then pos-of-fed = 0.65

22] if type-of-division = racial and

first-racial-p <= 0.5 and

 second-racial-p >= 0.3 and

 pos-of-fed = 0.2

then pos-of-fed = 0.5

23] if type-of-division = religion and

first-religion-p <= 0.5 and

 second-religion-p >= 0.3 and

 pos-of-fed = 0.5

then pos-of-fed = 0.8

24] if type-of-division = religion and

first-religion-p <= 0.5 and

 second-religion-p >= 0.3 and

 pos-of-fed = 0.35

then pos-of-fed = 0.65

25] if type-of-division = religion and

first-religion-p <= 0.5 and

 second-religion-p >= 0.3 and

 pos-of-fed = 0.2

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 37

then pos-of-fed = 0.5

26] if type-of-division = ethnic and

first-ethnic-p <= 0.5 and

 second-ethnic-p >= 0.3 and

 pos-of-fed = 0.5

then pos-of-fed = 0.8

27] if type-of-division = ethnic and

first-ethnic-p <= 0.5 and

 second-ethnic-p >= 0.3 and

 pos-of-fed = 0.35

then pos-of-fed = 0.65

28] if type-of-division = ethnic and

first-ethnic-p <= 0.5 and

 second-ethnic-p >= 0.3 and

 pos-of-fed = 0.2

then pos-of-fed = 0.5

29] if type-of-division = linguistic and

first-linguistic-p <= 0.5 and

 second-linguistic-p >= 0.3 and

 pos-of-fed = 0.5

then pos-of-fed = 0.8

30] if type-of-division = linguistic and

first-linguistic-p <= 0.5 and

 second-linguistic-p >= 0.3 and

 pos-of-fed = 0.35

then pos-of-fed = 0.65

31] if type-of-division = linguistic and

first-linguistic-p <= 0.5 and

 second-linguistic-p >= 0.3 and

 pos-of-fed = 0.2

then pos-of-fed = 0.5

32] if type-of-division = racial and

first-racial-p >= 0.6 and

 second-racial-p >= 0.2 and

 pos-of-fed = 0.5

then pos-of-fed = 0.7

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 38

33] if type-of-division = racial and

first-racial-p >= 0.6 and

 second-racial-p >= 0.2 and

 pos-of-fed = 0.35

then pos-of-fed = 0.55

34] if type-of-division = racial and

first-racial-p >= 0.6 and

 second-racial-p >= 0.2 and

 pos-of-fed = 0.2

then pos-of-fed = 0.4

35] if type-of-division = religion and

first-religion-p >= 0.6 and

 second-religion-p >= 0.2 and

 pos-of-fed = 0.5

then pos-of-fed = 0.7

36] if type-of-division = religion and

first-religion-p >= 0.6 and

 second-religion-p >= 0.2 and

 pos-of-fed = 0.35

then pos-of-fed = 0.55

37] if type-of-division = religion and

first-religion-p >= 0.6 and

 second-religion-p >= 0.2 and

 pos-of-fed = 0.2

then pos-of-fed = 0.4

38] if type-of-division = ethnic and

first-ethnic-p >= 0.6 and

 second-ethnic-p >= 0.2 and

 pos-of-fed = 0.5

then pos-of-fed = 0.7

39] if type-of-division = ethnic and

first-ethnic-p >= 0.6 and

 second-ethnic-p >= 0.2 and

 pos-of-fed = 0.35

then pos-of-fed = 0.55

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 39

40] if type-of-division = ethnic and

first-ethnic-p >= 0.6 and

 second-ethnic-p >= 0.2 and

 pos-of-fed = 0.2

then pos-of-fed = 0.4

41] if type-of-division = linguistic and

first-linguistic-p >= 0.6 and

 second-linguistic-p >= 0.2 and

 pos-of-fed = 0.5

then pos-of-fed = 0.7

42] if type-of-division = linguistic and

first-linguistic-p >= 0.6 and

 second-linguistic-p >= 0.2 and

 pos-of-fed = 0.35

then pos-of-fed = 0.55

43] if type-of-division = linguistic and

first-linguistic-p >= 0.6 and

 second-linguistic-p >= 0.2 and

 pos-of-fed = 0.2

then pos-of-fed = 0.4

44] if geographic-grouping <> none and

 pos-of-fed < 0.2

then pos-of-fed = 0.25

45] if geographic-grouping <> none and

 pos-of-fed > 0.2

 pos-of-fed <= 0.5

then pos-of-fed = 0.55

46] if geographic-grouping <> none and

 pos-of-fed > 0.5

then pos-of-fed = 0.85

47] if geographic-grouping = racial and

 type_of_division = racial and

pos-of-fed < 0.2

 then pos-of-fed = 0.3

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 40

48] if geographic-grouping = racial and

 type_of_division = racial and

pos-of-fed > 0.2

pos-of-fed <= 0.5

then pos-of-fed = 0.6

49] if geographic-grouping = racial and

 type_of_division = racial and

 pos-of-fed > 0.5

then pos-of-fed = 0.9

50] if geographic-grouping = religion and

 type_of_division = religion and

pos-of-fed < 0.2

then pos-of-fed = 0.3

51] if geographic-grouping = religion and

 type_of_division = religion and

pos-of-fed > 0.2

pos-of-fed <= 0.5

then pos-of-fed = 0.6

52] if geographic-grouping = religion and

 type_of_division = religion and

 pos-of-fed > 0.5

then pos-of-fed = 0.9

53] if geographic-grouping = ethnic and

 type_of_division = ethnic and

pos-of-fed < 0.2

then pos-of-fed = 0.3

54] if geographic-grouping = ethnic and

 type_of_division = ethnic and

pos-of-fed > 0.2

pos-of-fed <= 0.5

then pos-of-fed = 0.6

55] if geographic-grouping = ethnic and

 type_of_division = ethnic and

 pos-of-fed > 0.5

then pos-of-fed = 0.9

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 41

56] if geographic-grouping = linguistic and

 type_of_division = linguistic and

pos-of-fed < 0.2

then pos-of-fed = 0.3

57] if geographic-grouping = linguistic and

 type_of_division = linguistic and

pos-of-fed > 0.2

pos-of-fed <= 0.5

then pos-of-fed = 0.6

58] if geographic-grouping = linguistic and

 type_of_division = linguistic and

 pos-of-fed > 0.5

then pos-of-fed = 0.9

59] if type_of_division = null and

 possibility_of_federalism < 0.3

 then federalism = FEDERALISM NOT VIABLE

60] if type_of_division = null and

 possibility_of_federalism > 0.3

then federalism = FEDERALISM MAYBE VIABLE BUT NO

SIGNIFICANT DIVISIONS IN SOCIETY TO SUSTAIN A DIVIDED

STATE

61] if type_of_division <> null and

 possibility_of_federalism < 0.3

then federalism = Federalism MAYBE VIABLE but country is too

small to bear costs of federalism

62] if type_of_division = racial and

 possibility_of_federalism > 0.3 and

 possibility_of_federalism < 0.6

then federalism = Federalism POSSIBLY VIABLE along RACIAL

seperations

63] if type_of_division = religion and

 possibility_of_federalism > 0.3 and

 possibility_of_federalism < 0.6

then federalism = Federalism POSSIBLY VIABLE along

RELIGION seperations

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 42

64] if type_of_division = ethnic and

 possibility_of_federalism > 0.3 and

 possibility_of_federalism < 0.6

then federalism = Federalism POSSIBLY VIABLE along ETHNIC

seperations

65] if type_of_division = linguistic and

 possibility_of_federalism > 0.3 and

 possibility_of_federalism < 0.6

then federalism = Federalism POSSIBLY VIABLE along

LINGUISTIC seperations

66] if type_of_division = racial and

 possibility_of_federalism > 0.6

then federalism = Federalism BEST OPTION along RACIAL

seperations

67] if type_of_division = religion and

 possibility_of_federalism > 0.6

then federalism = Federalism BEST OPTION along RELIGION

seperations

68] if type_of_division = ethnic and

 possibility_of_federalism > 0.6

then federalism = Federalism BEST OPTION along ETHNIC

seperations

69] if type_of_division = linguistic and

 possibility_of_federalism > 0.6

then federalism = Federalism BEST OPTION along LINGUISTIC

seperations

Ibrahim Tadros

6.871: Knowledge Based Application Systems

Final Project

 43

Bibliography:

1) Patterns of Democracy : Government Forms and Performance in

Thirty-Six Countries by Arend Lijphart

2) Comparative constitutional Engineering by Giovanni Sartori

3) Comparative Politics Today: A World View, Eighth Edition by

Gabriel A. Almond, et al

4) The value patterns of democracy: A case study in comparative

analysis (Reprint / Institute of Industrial Relations and Institute

of International Studies) by Seymour Martin Lipset

5) Politics in Western European democracies: patterns and

problems by Gary C Byrne

