
6.871, Spring 2005, Prof. Davis

Transit Advisor
Table of Contents

1. Introduction... 2

2. The Task... 2

2.1. A Concrete Problem Example ... 3

2.2. Using the Transit Advisor program .. 4

2.2.1. User Interface Symbols .. 4

2.2.2. Providing Scenario Input... 4

2.3. User Interface Shortcuts ... 5

3. Problem Solving Paradigm ..6
4. The Agents ... 8

4.1. Walking.. 8

4.2. Biking... 8

4.3. Taxicab .. 9

4.4. Zip Car... 9

4.5. The T ... 9

5. Validation of the Problem Solving Principle (AKA “The Point™”)................................10

6. Limitations of Transit Advisor..11

6.1. Extra Freedom ...11

6.2. Extra Constraints ...11

6.3. Scope of Information ..12

7. Reflections..12

7.1. What Went Well ...12

7.2. What Went Poorly & Lessons Learned ..12

8. Conclusion ...13

9. Appendix – Knowledge Base ..14

9.1. XPortMode interface...14

9.2. Walking..14

9.3. Biking...15

9.4. Taxicab ..16

9.5. ZipCar..17

9.6. T ...19

Table of Figures

Figure 1. Screenshot of a solution. Details are provided in the text ... 3

Figure 2. Screenshot of a solution involving three modes of transportation.............................. 4

Figure 3. Flow diagram of questions asked to user and corresponding inferences made at

beginning of execution. ... 5

Figure 4. Annotated illustration of greenboard/agent interaction.. 7

 1

1. Introduction

The Transit Advisor is a knowledge based system which constructs itineraries for
travel around Boston and Cambridge. The program contains knowledge about many modes
of transportation, organized with the blackboard and agent problem solving paradigm.
Instead of embedding the transportation knowledge into search procedures (i.e. telling the
program what to do), this architecture allows knowledge to be expressed in a very direct way
(i.e. telling the program what to know).

2. The Task

The Transit Advisor helps its user get from point A to point B within the
Cambridge/Boston area. Its input is an origin, destination, and a set of ancillary inputs that
tell the program what to know about available modes of transportation. The output of the
program is an itinerary, with a low overall monetary and time cost (relative to all options),
that will get the user from the origin to the destination.

The program knows about and will consider walking, biking, taking a taxi, taking the
T, or using a ZipCar. Each of these options has differentiating factors that make them
appropriate in different situations. For example, the user cannot take the T or a ZipCar
unless they move to any number of specific locations. Some modes of transportation have
constant costs, like $1.25 to ride the T or a 3 minute wait for a taxicab. Each mode has a
different speed, and can require you to go in a non-direct path (i.e. the T).

Differences in cost, location, and speed make different modes of transportation
appropriate in particular circumstances. The Transit Advisor evaluates all possible itineraries,
and presents the best one to the user.

This goal surfaces the question – what makes an itinerary good? First, the itinerary
should not include any modes of transportation which are not feasible for the user.
For example, if the user is not 21+ years old then they cannot use a ZipCar. If it is raining
outside then a bike is not a viable option. After the possible modes of transportation are
selected, the system minimizes the total cost of the itinerary, expressed in dollars. Travel
time is expressed in dollars using a value-of-time user input expressed as dollars per hour.

2

2.1. A Concrete Problem Example

Image removed for copyright considerations.

Figure 1. Screenshot of a solution. Details are provided in the text

In this section we will go through a single concrete problem, describe the inputs to
the program, and discuss the output of the Transit Advisor. A screenshot of the solution to
the problem is show in Figure 1. The user wants to get from East Campus to a location near
Kenmore Square. The origin and destination of a trip is always shown as open rectangles.
The location of the user’s bike is always shown as a filled rectangle, unless it is raining
outside, in which case the program does not ask where the bike is since the bike’s location is
not relevant. There are not any ZipCars pictured in this screenshot because the user is not
21+ years old, so ZipCars are not an option.

The final input to the program is the value of the user’s time, in dollars per hour. In
the case of the problem shown in Figure 1, the user’s time is worth $15 per hour.

With that information in hand, the Transit Advisor computes that the best itinerary
(as defined in section 2) is to walk to the bike and ride it to Kenmore.

 3

A few observations are in order. First, paths are straight lines. Although the
itineraries are on scale with the map, Transit Advisor does not know about roads or rivers
that might force someone to travel in an indirect way. The only indirect transportation is via
the T. Second, the user can see the cost of each segment of the resulting itinerary. Since
walking is much slower than biking, and neither of these have direct monetary costs, walking
to the bike in this example costs more than twice the biking segment of the trip.

2.2.Using the Transit Advisor program

The user interface of the Transit Advisor is not very polished. This section will
describe the basic user interface.

2.2.1. User Interface Symbols

Most of the symbols are used in the solution shown in Figure 2. Namely:

¾	 Black dots represent the location of a Zip Car
¾	 Red dots and red lines between them represent the Red Line of the T
¾	 Green dots and green lines between them represent the Green Line of the T
¾	 Black, unfilled rectangles represent the origin and destination of the itinerary
¾	 A black, filled rectangle represents the starting location of the user’s bike
¾	 Black lines represent segments of an itinerary, which are labeled with the mode and

cost of that segment

Image removed for copyright considerations.

Figure 2. Screenshot of a solution involving three modes of transportation.

2.2.2. Providing Scenario Input

The Transit Advisor asks the user some questions at the beginning of each session.
These questions, outlined in Figure 3, collect information necessary for each mode of
transportation to determine its eligibility (e.g. can I ride a bike?) and cost of ownership.

 4

Figure 3. Flow diagram of questions asked to user and corresponding inferences made at beginning of
execution.

2.3.User Interface Shortcuts

There are several time-saving mechanisms built into the program. Although obscure,
they can help the avid user avoid the hassle of repeated input.

¾	 If you want to recomputed an itinerary without having to restart the program and
enter in the scenario input again, then just click the mouse once after an itinerary has
been computed and displayed.

¾	 If you type “def” (as in “default”) as the answer to the first scenario input question,
the program will load with the following parameters:

 5

o	 Value of time = $15 per hour
o	 21+ years old = yes
o	 Time spent at destination = 3 hours
o	 Raining = no

¾	 If you type “defXX” instead of “def”, where XX is any two digit number, then the
same parameters are loaded, except the value of time becomes XX dollars per hour.
I.e. “def15” is equivalent to “def”

3. Problem Solving Paradigm

The Transit Advisor uses the GPS (General Problem Solver) paradigm proposed by
Newell and Simon (1972). The program has an initial state (the user is at the origin), and a
goal state (the user is at the destination). There are operators (modes of transportation) which
can change the state of the system; these operators can be combined in sequences which can,
hopefully, achieve the goal state.

I original conceived of the paradigm in a different way using a slightly different
vocabulary. Here, I imagine a blackboard which represents the state of the world (as a 2-D
map) and a goal (get from A to B). Agents in the system, one for each mode of
transportation, devise itineraries which leverage their mode of transportation. The system
collects itineraries from all agents and selects the best one.

More specifically, this works in the following way. When the user selects their origin
and destination, the system passes these points to each agent, asking for its best itinerary.
The system selects the best itinerary of those produced by each agent, and then returns that
as the answer. Each agent might need the assistance of another agent, though. For example,
the Zip Car agent needs to find a way for the user to travel from the origin to the closest
ZipCar. To do this, the Zip Car agent recursively calls the system, asking for the best sub-
itinerary in which the origin is the user’s original origin, but the new destination is the closest
Zip Car. To prevent infinite looping, the Zip Car agent will exclude itself from the sub-
itinerary search. Suppose that the only agents in the system are for walking, and taking a Zip
Car. Then the sub-itinerary will involve walking from the origin to the Zip Car. The Zip
Car agent then concatenates its Zip Car travel to the returned sub-itinerary, creating a
complete itinerary. This process is illustrated in
Figure 4.

 6

Figure 4. Annotated illustration of greenboard/agent interaction.

 7

4. The Agents

The following sub-sections each describe one agent of the system, each representing
a single mode of transportation. Each mode’s cost (time and monetary), recursive calls,
knowledge, and general operations will be discussed. The “Knowledge Summary” boxes
summarize the facts known to the agent, and the main body text describes the common
scenarios for that mode’s use.

4.1. Walking

Knowledge Summary

Speed: 5 MPH
Recursive calls: None
Monetary costs: None
Requisite conditions for use: None

Walking is the simplest agent in the system. It also serves as a fallback; since the
mode does not have any requisites for use, it is always a plausible means. Unfortunately, its
slow speed makes it sparsely a good choice for users with a high value of time.

4.2.Biking

Knowledge Summary

Speed: 20 MPH
Recursive calls: (1) To get itinerary to bike
Monetary costs: None
Requisite conditions for use: (1) It’s not raining, (2) Must begin at location of

bike

Biking is walking’s cousin. It is faster, but can only be used when it is not raining
outside, and the user has to get to the location of the bike. Thus, biking always requires
some other means of transportation. Since both modes are free (aside from time), the
walking+biking combo is a popular among users with a low value of time.

 8

4.3.Taxicab

Knowledge Summary

Speed: 45 MPH, after 3 minutes to get a taxicab
Recursive calls: None
Monetary costs: $1.75 + $0.3*(Miles Traveled /8)
Requisite conditions for use: None

The taxicab is the rich man’s walking. There is a constant startup cost (from both a
3 minute wait time and Boston’s $1.75 starting meter price), which makes it most viable for
long-distance transportation. As the cost of time goes to infinity, taxicabs are preferred
more and more over walking for distances that take longer than three minutes to walk.

4.4.Zip Car

Knowledge Summary

Speed: 40 MPH
Recursive calls: (1) To get itinerary to closest Zip Car
Monetary costs: $8.5 * (hours at destination + hours for round trip)
Requisite conditions for use: (1) User is 21+ years old, (2) Must begin at

location of closest Zip Car

When the value of the user’s time is high enough, both Zip Cars and taxicabs
become viable. Here, the Zip Car and the taxicab become arch enemies. Since the cost of a
Zip Car is directly proportional to the time it is gone, any itinerary using a Zip Car is charged
for the time that the user spends at the destination. If that time is short, Zip Cars are usually
preferred over taxicabs; if that time is long, Zip Cars are usually not used.

4.5.The T

Knowledge Summary

Speed: 50 MPH
Recursive calls: (1) To get itinerary to T, (2) To get itinerary from T
Monetary costs: $1.50
Requisite conditions for use: (1) Must begin at location of closest T stop to

origin

 9

The T is cheap transportation that moves pretty quickly. Its biggest downfall is that
the user cannot travel directly from their origin T stop to their destination T stop. For
example, a trip from Kendall on the red line to Kenmore on the green line travels about
three times more distance than the straight-line path distance. If the T’s route is direct
enough, and the price of time is in the right range, using the T becomes a viable mode.

5. Validation of the Problem Solving Principle (AKA “The
Point™”)

There are really two different representations of roughly the same knowledge in each
subsection of section 4. In the “Knowledge Summary” box, the real knowledge stored in
the system is described. In the main body of each subsection, though, a different
representation exists; the appropriate conditions for each mode are described. For example,
the biking description said:

“Since both modes are free (aside from time), the walking+biking combo is a
popular among users with a low value of time.”

This is really a colloquial description of the decision points that come out of the
Transit System. These decision points are what to do, e.g. “if these conditions are present
then pick this mode.” They are a result of the knowledge of the agents, and the ability of the
blackboard to combine solutions.

It is much easier to express knowledge for each mode of transportation than
to describe the cases in which one mode is preferred over the other. (We’ll call the
former “modularized knowledge;” the latter is named “procedure knowledge.”) This is true
for four reasons.

First, modularized knowledge scales well; if there are 10 different modes of
transportation then the system can avoid describing all {10 choose 2} possibilities.

Second, modularized knowledge is a more natural way to express the knowledge. I
usually think “The Zip Car will be cheaper than the taxicab” instead of “I prefer the Zip Car
if I will be at my destination for less than one and a half hours.”

Next, modularized knowledge makes the system easy to debug, maintain, and expand.
If, for example, the T is never appearing in itineraries, the system’s administrator can trace
through application of the T module’s knowledge, instead of searching through all of the
other modes of transportation. Alternatively, consider the case in which taxicabs change
their fares. The administrator only needs to modify the taxicab agent, instead of how all of
the other modules interact with the taxicab mode.

Finally, and most importantly, modularized knowledge is an expression of what the
program should know instead of what it should do. The former representation embodies
the facts about each mode of transportation; the latter is a database lookup of what to do in

10

any given scenario. Knowing about each mode of transportation is preferred for the three
reasons given above – it is easier to express, more natural to express, and easier to
manipulate and work with.

6. Limitations of Transit Advisor

Just like most real-world systems, the Transit Advisor’s abilities are limited. There
are principally two kinds of situations that the system cannot handle – extra freedom or extra
constraints. Each of these kinds of situations will be discussed below.

6.1. Extra Freedom

There are things about the real world that make it possible to construct a better
itinerary than the one created by Transit Advisor. These mostly boil down to additional
modes of transportation that the system does not know about. For example:

¾	 The user can get a free car ride to a specific point,
¾	 Buses, or
¾	 Skateboarding.

6.2.Extra Constraints

The system should, ideally, be able to cope with the constraints that are encountered
in the real world. Some of these constraints are acknowledged by the system, such as the
predicate that only allows a bike to be used if it is not raining outside. There are many other
constraints, inversely, that are not handled by the system. Some of these are given, with
example scenarios, below.

¾	 Constraint: Must travel on land, not through buildings, etc.
¾	 Example: Since the system plots straight-line segments, itineraries often include

drives or walks across the Charles river.

¾	 Constraint: No wall clock support
¾	 Example: “I need to be at the Zip Car by 6pm, since that is the time of my

reservation.”

¾	 Constraint: No absolute budget constraints (time or money)
¾	 Example: “I cannot spend more than $5 cash.” or “I must be there in less than

20 minutes.”

¾	 Constraint: Time limits on modes of transportation

 11

¾ Example : “I cannot bike for more than 2 miles.”

¾ Constraint : Cargo space requirements
¾ Example : “I cannot bike because I have 5 bags of groceries.”

6.3.Scope of Information

As obvious as it is, the system only knows about a specific geographic region.
Furthermore, it only knows about taxicab fares in Boston, the main parts of the red and
green lines, and the location of a subset of Zip Cars in the area.

7. R e flections

In this section we will discuss the merits and pitfalls of the system with 20/20
hindsight, and conclude with a list of basic lessons learned.

7.1. What Went Well

First, the problem solving paradigm fits the problem well. Knowledge is abstracted
into agents who know a lot about a specific mode of transportation, and the system
combines these agents so that they can work together while maintaining modularity. More
explanation on this can be found in section 5, but the ultimate validation can be found in the
fact that the system was relatively easy to build. The code of each agent is very
straightforward, yet the system is powerful enough to produce itineraries involving complex
sequences of transportation.

Next, the system seems to give good answers. From a top-down perspective, the
Transit Advisor gives itineraries which look like what I would personally do, as a Boston
cosmopolitan. From a bottom-up perspective, the costs and availability of various modes of
transportation are representative of the real world, as is the combination and search
approach.

7.2.What Went Poorly & Lessons Learned

It has been said that one can learn the most from their mistakes, a maxim that
certainly holds in this case. This section describes the problems that unexpectedly came up,
and what I learned from them.

In short: many things. The Transit Advisor is significantly different from what I
originally envisioned. It is not a rule-based system, and has very limited rule inference
capabilities (see Figure 3). In essence, the knowledge expressible in these transit situations is

 12

not very deep, so I had to re-focus on the itinerary search. This result brings us to the first
lesson, which I have picked up the hard way.

“Spend enough time early on to convince yourself
that the problem is well suited for your goals.”

I did not do this reflection before picking my topic. I got lucky because my topic
had other interesting attributes that I could re-focus on.

There are things that I did right which have paid off in hindsight. Despite the fact
that my topic did not have sufficient relevance for a rule-based system, I spent enough time
up front on reflecting on the problem solving paradigm to determine that a rule-based
approach would not work. This allowed me to re-focus without wasting too much energy
on the rule-based approach before trying something else.

“Spend time choosing the correct problem solving
paradigm. Choose the best one for the job, not your favorite.”

8. Conclusion

In conclusion, the Transit Advisor is a system that builds itineraries for travel around
Boston and Cambridge using various modes of transportation. It uses the blackboard and
agent problem solving paradigm, also known as GPS, to modularize knowledge about each
mode of transportation into single agents. This representation, in which each agent is told
what it should know about one mode of transportation, enables complex itineraries to be
built using collaboration between agents.

13

9. Appendi x – Kno w ledge Base

Java code is given for each agent, in the same order as section 4. First, though, the interface
for a transportation mode is given.

I will also give an English description of the dynamics of the Walking class. The real action
happens inside the findRoute() routine. The routine is only three lines long because the
mode of transportation is so simple. First, the travel distance is found, then the cost is
computed given the walking speed and the value of time. The procedure then returns with a
new itinerary which contains the calculated cost and a pointer back to the Walking class (so
that the system knows which mode submitted that calculation).

9.1. XPortMode interface

public interface XportMode {

public Itenerary findRoute(Point origin, Point destination, List availableXportModes,
Gui context);

public String description();

}

9.2.Walking

public class Walking implements XportMode {

private final static double walkingSpeedInMPH = 5;
private static Walking instance = null;

private Walking() { }

public static Walking getInstance() {
if(instance == null) {

 instance = new Walking();
}

 return instance;

}

public Itenerary findRoute(Point origin, Point destination,

 List availableXportModes,

 Gui context) {

double distanceInMiles = Gui.milesPerPixel * origin.distance(destination);

 14

double totalCost = (distanceInMiles / walkingSpeedInMPH) *
Gui.dollarsPerHour;

return new Itenerary(origin, destination, this, totalCost);
}

public String description() {
 return "on foot";

}
}

9.3.Biking

public class Biking implements XportMode {

private final static double bikeSpeedInMPH = 20;
private static Biking instance = null;

private Biking() { }

public static Biking getInstance() {
if(instance == null) {

 instance = new Biking();
}

 return instance;

}

public Itenerary findRoute(Point origin, Point destination,

 List availableXportModes,

 Gui context) {

availableXportModes.remove(this);
Gui yo = new Gui(availableXportModes, origin, destination,

context.bikePosition);

 Itenerary toGetToBike = yo.findRoute(origin, context.bikePosition);

double distanceFromBikeInMiles = Gui.milesPerPixel *
context.bikePosition.distance(destination);

double costFromBike = (distanceFromBikeInMiles / bikeSpeedInMPH) *
Gui.dollarsPerHour;

yo.closeMe();
toGetToBike.addToEnd(new Segment(context.bikePosition, destination, this,

costFromBike));
 return toGetToBike;

 15

 }

public String description() {
return "riding a bike";

}
}

9.4.Taxicab

public class Taxicab implements XportMode {

private final static double taxiSpeedInMPH = 45;

private final static double averageHoursWaitingForTaxi = 3/60;

private final static double startingMeter = 1.75;

private final static double additionalEighthMile = .3;

private static Taxicab instance = null;

private Taxicab() { }

public static Taxicab getInstance() {

if(instance == null) {

 instance = new Taxicab();

}

 return instance;

}

public Itenerary findRoute(Point origin, Point destination,

 List availableXportModes,

 Gui context) {

double distanceInMiles = Gui.milesPerPixel * origin.distance(destination);
 double timeWaitingForCabCost = averageHoursWaitingForTaxi *
Gui.dollarsPerHour;

double timeRidingCost = (distanceInMiles / taxiSpeedInMPH) *
Gui.dollarsPerHour;

double costOfCabRide = startingMeter +
distanceInMiles*8*additionalEighthMile;

double totalCost = timeWaitingForCabCost + timeRidingCost +
costOfCabRide;

return new Itenerary(origin, destination, this, totalCost);

}

public String description() {

return "taking a taxi";

}

16

}

9.5.ZipCar

public class ZipCar implements XportMode {
private static ZipCar instance = null;

private final static double carSpeedInMPH = 40;

private final static double dollarsPerHour = 8.5;

private static double hoursAtDestination = -1;

 public static List zipcars = new ArrayList();

private static boolean eligible = true;

private ZipCar() {
String in = JOptionPane.showInputDialog(null, "Are you 21+ years old?

(yes/no)");
 if(in.equals("no")) {
 eligible = false;

// HACKING FOR USER INTERFACE SHORTCUTS
} else if (in.substring(0,3).equals("def")) {

 hoursAtDestination = 3;
 if(in.equals("def")) {
 Gui.def = 15;
 } else {
 Gui.def = Integer.valueOf(in.substring(3,5)).intValue();

}
 // END HACKING FOR USER INTERFACE SHORTCUTS

 } else {
 hoursAtDestination =
 Double.valueOf(JOptionPane.showInputDialog(null, "How
long will you spend at your destination? (hrs) (needed to calculate cost of
ZipCar)")).doubleValue();

}

 if(eligible) {

 zipcars.add(new Point(132, 569));

 zipcars.add(new Point(171, 625));

 zipcars.add(new Point(203, 648));

 zipcars.add(new Point(200, 563));

 zipcars.add(new Point(88, 509));

 zipcars.add(new Point(278, 532));

 zipcars.add(new Point(352, 592));

 zipcars.add(new Point(366, 591));

 17

 zipcars.add(new Point(71, 471));
 zipcars.add(new Point(21, 413));
 zipcars.add(new Point(17, 235));
 zipcars.add(new Point(73, 145));
 zipcars.add(new Point(41, 92));
 zipcars.add(new Point(45, 76));
 zipcars.add(new Point(27, 70));
 zipcars.add(new Point(304, 55));
 zipcars.add(new Point(253, 141));
 zipcars.add(new Point(186, 180));
 zipcars.add(new Point(181, 267));
 zipcars.add(new Point(476, 216));
 zipcars.add(new Point(354, 351));
 zipcars.add(new Point(355, 355));
 zipcars.add(new Point(510, 304));
 zipcars.add(new Point(702, 321));
 zipcars.add(new Point(716, 352));
 zipcars.add(new Point(625, 438));
 zipcars.add(new Point(539, 474));
 zipcars.add(new Point(450, 462));
 zipcars.add(new Point(604, 584));
 zipcars.add(new Point(728, 631));
 zipcars.add(new Point(596, 671));
 zipcars.add(new Point(530, 188));
 zipcars.add(new Point(337, 245));
 zipcars.add(new Point(289, 317));
 zipcars.add(new Point(180, 368));
 zipcars.add(new Point(188, 145));

}
 }

public static ZipCar getInstance() {
if(instance == null) {

 instance = new ZipCar();
 }

 return instance;
}

public Itenerary findRoute(Point origin, Point destination,
 List availableXportModes,
 Gui context) {

 if(!eligible) {
return new Itenerary(origin, destination, this, Double.MAX_VALUE);

}

 availableXportModes.remove(this);

 18

Gui yo = new Gui(availableXportModes, origin, destination,
context.bikePosition);

// find closest ZipCar

double closestDist = Double.MAX_VALUE;

Point closestCar = null;

for(Iterator i = zipcars.iterator(); i.hasNext();) {

Point tmpCar = (Point) i.next();
if (closestDist > tmpCar.distance(origin)) {

 closestDist = tmpCar.distance(origin);
 closestCar = tmpCar;

}

 }

Itenerary toGetToZipCar = yo.findRoute(origin, closestCar);

double distanceFromCarInMiles = Gui.milesPerPixel *
closestCar.distance(destination);

double timeCostFromCar = (distanceFromCarInMiles / carSpeedInMPH) *
Gui.dollarsPerHour;

double moneyCostFromCar = (2*(distanceFromCarInMiles /
carSpeedInMPH) + hoursAtDestination) * ZipCar.dollarsPerHour;

double totalCostFromCar = timeCostFromCar + moneyCostFromCar;
double totalItinCost = totalCostFromCar + toGetToZipCar.getCost();

yo.closeMe();
toGetToZipCar.addToEnd(new Segment(closestCar, destination, this,

totalCostFromCar));
 return toGetToZipCar;

}

public String description() {
return "using a ZipCar";

}
}

9.6.T

public class T implements XportMode {
public static List stopsInOrder;
private static T instance = null;
public static int indexColorChange = 4;

private final static double tSpeedInMPH = 50; // they probably don't go this fast,
but

19

// cars don't really go (for example) 40 MPH if you're thinking about a straight line
// (i.e. no stop lights, turns), so we scale up the T's speed since it doesn't have this

 // assumption
private final static double dollarsPerRide = 1.5;

private T() {
stopsInOrder = new ArrayList();

 stopsInOrder.add(new Point(63, 30));
 stopsInOrder.add(new Point(263, 205));
 stopsInOrder.add(new Point(467, 244));
 stopsInOrder.add(new Point(693, 271));
 stopsInOrder.add(new Point(762, 330));
 stopsInOrder.add(new Point(733, 405));
 stopsInOrder.add(new Point(679, 416));
 stopsInOrder.add(new Point(598, 446));
 stopsInOrder.add(new Point(467, 483));
 stopsInOrder.add(new Point(372, 465));

}

public static T getInstance() {
if(instance == null) {

 instance = new T();
}

 return instance;
}

// [63, 30]
// [263, 205]
// [467, 244]
// [693, 271]
// [762, 330]
// [733, 405]
// [679, 416]
// [598, 446]
// [467, 483]
// [372, 465]
//
// harvard
// central
// kendall
// carles/mgh
// park st
// boylston
// arlington
// copley
// hynes/ica

 20

// kenmore

public Itenerary findRoute(Point origin, Point destination,

 List availableXportModes,

 Gui context) {

availableXportModes.remove(this);
Gui toTOrigin = new Gui(availableXportModes, origin, destination,

context.bikePosition);
Gui toTDest = new Gui(availableXportModes, origin, destination,

context.bikePosition);

// find closest T to origin

double closestDist = Double.MAX_VALUE;

Point closestTOrigin = null;

for(Iterator i = stopsInOrder.iterator(); i.hasNext();) {

Point tmpCar = (Point) i.next();
if (closestDist > tmpCar.distance(origin)) {

 closestDist = tmpCar.distance(origin);
 closestTOrigin = tmpCar;

}

 }

// find closest T to destination

 closestDist = Double.MAX_VALUE;

Point closestTDest = null;

for(Iterator i = stopsInOrder.iterator(); i.hasNext();) {

Point tmpCar = (Point) i.next();
if (closestDist > tmpCar.distance(destination)) {

 closestDist = tmpCar.distance(destination);
 closestTDest = tmpCar;

}

 }

Itenerary toGetToT = toTOrigin.findRoute(origin, closestTOrigin);
Itenerary toGetFromT = toTDest.findRoute(closestTDest, destination);

double distanceOnT = 0;
for(int i = stopsInOrder.indexOf(closestTOrigin); i <

stopsInOrder.indexOf(closestTDest); i++) {
 distanceOnT += ((Point) stopsInOrder.get(i)).distance((Point)
stopsInOrder.get(i+1));

}
 distanceOnT *= Gui.milesPerPixel;

double timeCostFromT = (distanceOnT / tSpeedInMPH) *
Gui.dollarsPerHour;

 21

double moneyCostFromT = dollarsPerRide;
double totalCostFromT = timeCostFromT + moneyCostFromT;
double totalItinCost = totalCostFromT + toGetToT.getCost() +

toGetFromT.getCost();

toTOrigin.closeMe();

 toTDest.closeMe();

toGetToT.addToEnd(new Segment(closestTOrigin, closestTDest, this,

totalCostFromT));
 toGetToT.addToEnd(toGetFromT);
 return toGetToT;

}

public String description() {
return "riding the T";

}
}

 22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

