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1 Abstract 

The goal of the project was to design and implement a knowledge-based 

application system capable of being proficient in its domain.  The Inverse Laplace 

Transformer (ILT) meets these specifications as an expert system in the field of symbolic 

inverse Laplace Transforms. The ILT performs this task by employing a customized rule-

based system involving weight-based forward-propagation.  While the ILT has many 

limitations, it contains the knowledge to perform elementary inverse Laplace transforms 

and the framework to easily expand into a more powerful system. 

2 Introduction 

The ILT was designed to act as an aid in performing inverse Laplace transforms.  

In addition to finding the inverse Laplace transform, the program provides 

meaningful steps describing the set of transformations it took throughout the process 

of ascertaining the inverse Laplace transform.   

2.1 Design Parameters 

As most real-life transfer functions are real and can be approximated as a 

rational function, the class of elementary, real, rational transfer functions has been 

chosen as the target input space, as this space is frequently used and does not require 

complex mathematics to reason about most inverse Laplace transforms in this space.  

Furthermore, the ILT’s knowledge base is restricted to elementary operations that a 

college freshman could perform without the aid of calculus.  However, while the 

knowledge base is confined, the general framework including expression storage and 

inference mechanisms is robust enough to incorporate additional knowledge and 

possibly extending the size of the program’s input space. 

The input to the program should be a well-formed scheme expression 

organized in a format described in Section 3.  The output of the program should be a 

list of steps required to systematically derive the inverse Laplace transform from the 

given input. 
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2.2 Problem and Approach 

F(s) = ∫ ∞ 
f(t)e-st dt f(t) = 

2πi 

1 ∞i∫ F(s)est ds 

0 -∞i 

0Forward Laplace Transform
Integral 

Inverse Laplace Transform
Integral 

Figure 1 – Forward Laplace Transform and Inverse Laplace Transform Integrals 

The Laplace transform is a well-defined formula.  Furthermore, the inverse 

Laplace transform can also be written as a closed form integral expression as shown 

in figure 1. However, despite the ability to reduce all inverse Laplace transforms into 

integral evaluation, most humans rely on table properties to change the expression to 

a form that can be looked up in a table. 

The ILT follows the human approach of using properties to simplify the s-

Space expression into a table lookup. Furthermore, to emphasize the point that the 

system uses mainly properties, the ILT has been given only one table lookup to 

which it must simplify all s-Space expressions in order to transform into t-Space. 

The ILT uses rules as the knowledge representation and a customized 

forward-chaining mechanism to propagate the rules through the rules.  A rule-based 

approach was chosen as the problem-solving paradigm primarily as rules can closely 

mimic the human process of logically transforming one expression into another.  

Furthermore, a rule-based system is simple to both implement and expand upon. 
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3 Program Use 

This section will describe the input and output formatting in section 3.1 and 

the show a demonstration of the program’s output in section 3.2. 

3.1 Program Formatting 

The ILT is capable of receiving various input expressions and output various 

output expressions.  A guide to the symbols used by the ILT is given in figure 2. 

Symbol Meaning 
S The main variable in Laplace space 
T The main variable in time space 
E The mathematical symbol e=2.718... 
+ The addition operator 
- The subtraction operator 
* The multiplication operator 
/ The division operator 
G The gamma function operator (Output Only) 
P The power operator 
A+BI A and B describe the real and imaginary components of a complex number 

Figure 2 – Symbols and their meanings 

The ILT is capable of receiving any expression involving the s, E, +, -, *, /, 

and P symbols and operators as well as any real numbers.  The expressions must be 

well-formed scheme expressions where the operator is adjacent to the opening 

parenthesis to the left of it.  Furthermore, after every number, symbol, operator, or 

close parenthesis, a space must separate the element from the next element. 

The output of the program is similarly formatted.  The final answer will be 

represented as a sum of t-Space expressions rather than a single t-Space expression.  

In addition, the output may also contain the gamma function in addition to the listed 

symbols and operators. 
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3.2 Program Demonstration 

In this section, the ILT will perform an elementary inverse Laplace transform: 

F(s)= (/ 1 (P (+ s 5 ) 3 ) ). The solution will be annotated to describe the output of the 

program. 

The program first prompts the user for the file containing the input 

expression. The content of sampleexp3.txt is given in bold typeface. 

Enter File Name: sampleexp3.txt 
sampleexp3.txt: (/ 1 (P (+ s 5 ) 3 ) ) 

Next, the program performs many rounds of forward propagation before 

reaching a solution.  Only the solution path is displayed.  The format of a solution 

entry is given in figure 3. 

JUSTIFICATION 

- Which Rule was Applied 

- A Description of the Rule 
- Which TransformPair the Rule was Applied on 
- The Local Expression Targeted 

S-SPACE 

- The Sum of a Number of Expressions in s-Space 

-For each expression, a list of pending 
operations needed to undo the 
transforming steps in t-Space 

T-SPACE 

- The Sum of a Number of Transformed 

Expressions in t-Space 


Figure 3 – Format of solution 

The first step converts the user input into a format that the program can use.  

Thus, no rules are applied at this point. 

USER INPUT. 

S-SPACE 


- 7 




- 8 


SUM { 

(/ 1+0I (P (+ s 5+0I ) 3+0I ) ) 


with pending operations: 

} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


The first rule applied on the solution path is an s-Space frequency shifting 

rule. The shift is applied to the previous transform to yield a new transform.  

Information about the target expression and rule description are also displayed. 

Rule 'Frequency Shifting' 

Which performs: F(s-a) ==> F(s) with pending operation (+ a ) 

Was applied on transform pair 0 

On the expression: (/ 1+0I (P (+ s 5+0I ) 3+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 1+0I (P (+ (- s (+ 5+0I ) ) 5+0I ) 3+0I ) ) 

with pending operations: (Shift (+ 5+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


The next rule applied is a number evaluation rule.  A few other rules similar 

in format to these examples are displayed; however, due to space considerations, 

they have been left out in this example. 

Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 0 

On the expression: (+ 5+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 1+0I (P (+ (- s 5+0I ) 5+0I ) 3+0I ) ) 

with pending operations: (Shift (+ 5+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


……… 
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When the s-Space expression is reduced to a form that the ‘Lookup’ rule can 

operate on, the expression is converted from s-Space to t-Space.  Furthermore, all 

pending operations are applied on the t-Space expression. 

Rule 'Lookup' 

Which performs: (/ 1 (P s n)) --> (/ (P t (- n 1)) (G n)) 

Was applied on transform pair 0 

On the expression: (/ 1+0I (P s 3+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 5+0I ) ) ) ) (/ (P t (- 3+0I 1+0I ) 

) (G 3+0I ) ) ) 


} 

Press any key to continue . . . 


Finally, the program simplifies the t-Space expressions into a more compact 

form using rules and outputs the final answer. 

Which simplifies to: 

S-SPACE 

SUM { 


DONE 

} 


T-SPACE 

SUM { 


(/ (* (P E (* t -5+0I ) ) (P t 2+0I ) ) 2+0I ) 

}


A complete output sample highlighting many of the programs strengths can 

be found in appendix B. 

4 Rules 

The ILT uses rules as its primary knowledge representation.  All the 

predicates in the system are transforms that are simplified or converted by the rules 

in order to make more transforms until a solution is reached.  In this section, first the 

advantages and disadvantages of a rule-based system in this domain will be 

discussed. Next, the 3 different rule types will be outlined. 
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4.1 Rules as the Knowledge Representation 

The ILT uses rules as the knowledge representation.  This representation was 

chosen for various reasons. 

Rules capture the human method of logically transforming one expression 

into another.  Many humans understand a mathematical process best when 

expressions are systematically derived in succession from the starting expression to 

the goal expression. This characteristic of human understanding is best exemplified 

by mathematical proofs, which follow a very rigid logical structure.  The transition 

from one expression to another can be well captured by rules, which are triggered by 

characteristics of the original expression and perform a logical operation to produce a 

new expression. Furthermore, the method of using rules enables the ILT to easily 

output its process after solving the inverse Laplace transform. 

Rules are also simple to implement. This rule-based system has modularized 

rules, which can be easily added and subtracted without affecting the stability or 

independence of the inference engine.  As this project was done on a tight schedule, 

the ease of implementing a rule-based system was a major factor in choosing rules as 

the knowledge representation. 

4.2 Rule Types 

The ILT uses three different types of rules.  The three rule types are named 

always rules, lookup rules, and guess rules.  These different types have varying costs 

and functions. Furthermore, these rules have different priorities, which will be 

described in detail in Section 5.  A complete listing of all the rules is located in 

appendix A. 

4.2.1 Always Rules 

Always rules are the most primitive rules in the ILT.  Most always rules 

implement simple arithmetic properties such as number evaluation, associativity, and 

commutability used for simplification.  These rules generally target sub-expressions 
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rather than the entire transform. Always rules are used heavily to tweak expressions 

into forms on which the lookup and guess rules can operate.  Furthermore, 

exclusively always rules are used in simplification.  All always rules are designed to 

be non-conflicting, so the program will never enter an infinite loop by triggering only 

always rules. As their name suggests, always rules are always helpful in taking one 

transform and converting it to another simpler transform.  Furthermore, always rules 

have no branching, as given an input transform, they will only produce at most one 

modified output transform. Since always rules nearly always simplify expressions 

and have low branching, they are assigned a very low cost. 

Some examples of always rules are depicted in figure 4. 
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Number Evaluator: Cost 1.0f 


Reduces a numerical expression into a number 


Numerical expression => number 


Multiplication Identity: Cost 1.0f 


Removes a factor 1 from a multiplication operation 


(* a 1 … b ) => (* a … b) 


Addition Simplifier: Cost 1.0f 


Merges nested addition operations 


(+ a (+ b … c ) d ) => (+ a b … c d) 


Figure 4 – Always Rule Examples 

4.2.2 Lookup Rule 

The lookup rule is the only rule that can convert a transform from s-Space to 

t-Space. As described in section 2, the ILT has only one lookup rule to highlight the 

program’s ability to use properties in finding inverse Laplace transforms.  Since the 

lookup rule is the only one rule capable of bridging the conversion from s-Space to t-

Space, it is used in every inverse Laplace transform.  Furthermore, since the use of 

the lookup rule signals that at least part of the problem has been solved, the lookup 

rule is given no cost. In contrast, the more instances that transforms use the lookup 

rule, the more they are rewarded by subtracting penalties from their total cost.  Thus, 

the application of the lookup rule is highly encouraged by the system. 

The lookup rule is shown in figure 5. 
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Lookup: Cost 0.0f 


Transforms an expression from s-Space to t-Space 


(/ 1 (P s n)) --> (/ (P t (- n 1)) (G n)) 


Figure 5 – The Lookup Rule 

4.2.3 Guess Rules 

Guess rules, as their name suggest, guess that a particular complex operation 

is needed to perform the inverse Laplace transform.  Some guess rules target the 

entire transform, whereas others only target sub-expressions within the transform.  

Furthermore, some guess rules permanently change the value of the s-Space 

expression by adding pending operations to the transform.  Rules in this class include 

complex rules like generalized partial fractions, quadratic factoring, and applying 

linearity. Most transforms generated by guess rules are not used; however, a small 

subset of these applications create simplified transforms on which the system can 

then successfully operate. Since guess rules create many branches, are generally 

more complex than the other rules, and are not extensively used on the solution path, 

guess rules incur high costs. 

Some examples of guess rules are listed in figure 6. 
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Scaling: Cost 200.0f 


Performs frequency scaling and adds a 


corresponding pending operation 


F(as) => F(s) with pending operation (SCALE a) 


Quadratic Factorization: Cost 200.0f 


Performs quadratic factorization on an unfactored 


second degree polynomial 


(as^2 + bs + c) => (s + r1)(s + r2) 


Subtraction Addition Conversion: 350.0f 


Converts a subtraction operation into an addition 


operation 


(- a b ) => (+ a (* -1 b ) ) 


Figure 6 – Guess Rule Examples 

5 Architecture 

This section will describe the architecture of the ILT system.  The architecture 

of ILT was inspired by SAINT, and many elements of the architectures have 

similarities. The first section will describe the costs associated with transforms for 

forward-propagation. The second section will describe the simplification 

architecture. Finally, the third section will describe the entire system including the 

forward-propagation mechanism. 

5.1 Costs 

Every transform in the ILT system has a cost associated with it.  Costs can be 

decomposed into complexity costs and rule costs.  The lower the cost, the more 
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appealing the transform is to the system.  The total cost for a transform is a weighted 

sum of the complexity cost and the rule cost. 

5.1.1 Complexity Cost 

The complexity cost is a rough measure of how difficult an expression is to 

transform. The complexity cost is calculated in a similar manner as SAINT’s 

complexity function.  The complexity is simply calculated as the summed nesting of 

all sub-expressions within the larger expression.   

(+ (/ 1 s ) 2 ) 


Figure 7 – A Sample Expression for Complexity Cost Analysis 

So, for example, if the given expression is of the form given in figure 7, the 

total complexity cost would be 6 as the 1 and s elements are contained within 2 levels 

of nesting and the / and 2 elements are contained within 1 level of nesting. 

This way of measuring complexity is very inaccurate and could be a possible 

source of causing unnecessary computation.  However, this crude approximation is 

sufficient to assign prohibitively high costs to extremely complex expressions that do 

not have high chances of yielding a simple transform. 

5.1.2 Rule Cost

The rule cost is a measure of high much work has been performed on a given 

transform. If significant work has gone into a transform, yet the transform has not 

simplified; then, the rule costs will discourage the system from pursuing this 

transform as there probably are other transforms that can simplify more easily.  The 

rule cost for a transform is calculated as the sum of the costs of all the rules applied to 

the input transform to reach the current transform. 

There are exceptions to the calculation of rule costs.  Performing quadratic 

factoring and especially partial fractions can easily lead to very large and complex 

expressions that have prohibitively high complexity costs, even though the transform 
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might be useful.  To get around this problem the result of the quadratic factoring and 

partial fractions rules are simplified using the simplifier described in section 5.2.  

Furthermore, as the simplification would incur steep rule costs as a result of many 

elementary rules operating on the expressions, the simplified transforms of these two 

rules do not accrue rule costs while simplifying. 

Rule costs serve to help simplify the complexity and number of steps of the 

final solution. 
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5.2 Simplification Propagation 

Receive Input Transform 

Can apply an Always Rule 

Yes 
No 

Return Transform 

Apply One Always Rule 

Figure 8 – Simplification Architecture 

The ILT performs pure simplification steps when performing quadratic 

factoring, partial fractions, and t-Space simplification at the very end.  The ILT 

performs this step by successively applying a single always rule to derive a simpler 

expression until no more always rules apply as shown in figure 8.  Always rules are 

applied continuously regardless of the cost of the current transform. 
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5.3 Inverse Laplace Transform Propagation 

Parse User Input and Add to Heap 

Pick Cheapest Transform 

Yes 

Yes 

Apply One Always Rule 

Apply Lookup Rule 

Yes Apply All Guess Rules 
and simpli

No 

No 

No 

Throw Away Transform 

Is Transform Done? 
Undo Pending Operations, 
Simplify and Return 

Yes 
No 

Add Transforms to Heap 

Can apply an Always Rule? 

Can apply Lookup Rule? 

Can apply Guess Rule? 

fy if applicable 

Figure 9 – Inverse Laplace Transform Propagation Architecture 

The ILT uses a custom weight-based forward-chaining propagation 

mechanism as its inference engine as shown in figure 9. The program starts by 
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parsing the user input and adding the input transform to a heap.  The rule cost of the 

initial transform is set to 0 as no rules have yet been applied. 

Then the program enters a cycle of generating new transform predicates by 

applying rules to promising transforms. The most promising transform is the one 

with the lowest total score as described in section 5.1. 

Next, the chosen transform is checked to see if it is done.  If all s-Space 

expressions have been transformed, then the pending operations are performed on 

the t-Space expressions. Finally, those expressions are simplified using the 

simplification steps described in section 5.2, and the resulting transform is returned 

as the solution.  If the transform is not finished, then the rules attempt to operate on 

it. 

First, the transform is given exclusively to the always rules.  If any always rule 

is triggered by the transform, only that rule is applied once.  Then the original 

transform is removed from the heap and the new transform is inserted.  The process 

is then restarted. 

If no always rules are applicable, the lookup rule checks if any parts of the 

transform can be transformed to t-Space. If the lookup rule is triggered, a similar 

sequence of steps is taken as the original expression is discarded and the new 

expression is added. 

If the lookup rule does not apply, then the guess rules are called.  Multiple 

guess rules are allowed to trigger and fire on one propagation step, since the most 

appropriate guess rule is not known beforehand.  Furthermore, if a single guess rule 

triggers multiple times, then each instance of the rule triggering will lead to a new 

modified transform. The original transform is discarded and all the new transforms 

are added to the heap. If no guess rules apply, then the system simply removes the 

original transform from the heap. 

The propagation process keeps repeating until the problem is solved, the heap 

is empty (at which point the system does not know how to find the inverse Laplace 

transform), or the system runs out of resources.  Due to the cyclic nature of the 

forward-propagation mechanism, some transforms may take a long time to return a 

solution and others may propagate infinitely. 
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6 Program Review 

This section will provide a review of the program as a whole and of its various 

components. Both positive and negative aspects of the program will be discussed.  

Section 6.3 will describe possible future improvements to the program. 

6.1 Positive Aspects 

6.1.1 Successful Knowledge Representation  

Rules as the knowledge representation proved to be a major success as rules 

easily capture the knowledge of logically deriving one transform from another.  The 

rule-based system allows for modularity between the rules and the inference engine.  

Furthermore, the program applies rules in a similar format as human thought; so, 

describing the process of solving an inverse Laplace transform is easily conveyed to 

the user via the rules. Using a rule-based approach was a major factor in the success 

of this program. 

6.1.2 System Generality 

One positive aspect of the ILT system is the generality of input problems and 

the manner in which the program solves them.  The ILT is not limited to a finite set 

of inputs.  Rather, the ILT can attempt to solve any regular s-Space expression.  This 

generality makes the ILT powerful as the system can generate arbitrarily large search 

trees on many classes of equations and can discover transforms that it was not even 

designed to solve. This generality also enables the ILT to never become outdated as 

one can never exhaust the full power of the system as there will always be new 

problems to solve that the ILT can handle. 

- 20 




________________________________________________________________________ 

________________________________________________________________________ 

- 21 -


6.1.3 System Scalability  

Another positive aspect of the ILT is the framework in which it was designed.  

The forward-propagation mechanism is a robust system that can easily handle the 

addition of appropriately constructed rules. 

At this point in time, the ILT cannot successfully transform all rational 

functions as its goal states.  This is due to the lack of rules to handle certain types 

expressions, even within the rational function domain. 

(/ 1 (/ 1 (/ 1 s ) ) ) 

Fails as the program does not know about nested 


division. 


(/ 1 (+ (* (+ s 1 ) (- s 1 ) ) 1 ) ) 

Fails as the program does not know how to expand 


multiplication. 


(/ 1 (/ 1 (+ (/ 1 s ) (/ 1 (+ s 1 ) ) ) ) ) 

Fails as the program does not know how to combine 


fractions. 


Figure 10 – Rational Functions for which ILT cannot find the inverse Laplace 
Transform 

Figure 10 details three expressions that the current system cannot handle. 

However, the robustness of the inference engine allows the addition of rules to 

handle these cases. Already, there are class prototypes for these exceptions named 

‘DoubleDiv,’ ‘Expansion,’ and ‘AddFractions’ respectively; however, these rules 

have not yet been implemented.  Regardless, the addition of these rules poses no 

issues as to the stability or complexity of the entire system due to the scalable 

propagation mechanisms. 

Furthermore, the power of the system can also easily be increased by adding 

more lookup transforms and other rules that enable the system to not have to rely on 

only first principles. In addition, the system can also support non-rational function 

transforms by adding the appropriate lookups and property rules.  One simple 

example of extending the system to handle non-rational functions is the addition of a 

time-shifting rule that corresponds to exponential multiplication in the frequency 
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domain. Such a rule can easily be engineered using pending operations and the 

flexible propagation framework. 

Thus, one of the most appealing elements of the ILT system is its scalability 

and its robust framework. 

6.2 Negative Aspects 

6.2.1 Halting Problems 

One major limitation of the ILT system is its inability to determine if it can 

solve a particular transform or not.  There exist many transforms, which the ILT will 

continuously expand into larger and more complex transforms in the hopes of the 

equation collapsing. However, if the ILT does not have the necessary tools, the 

transforms may continue to grow infinitely or loop. 

One solution to this problem is to let the ILT time out after a set period of 

time when it is very unlikely that the system will find a solution.  However, this 

approach has the obvious drawback that limiting the time given to the ILT system 

limits the range of transforms that the system can successfully operate on. 

This issue may also be a consequence of the problem domain, as 

mathematicians have discovered integrals and consequently inverse Laplace 

transforms that cannot be evaluated in a closed form expression.  It may also be the 

case that this problem is not Turing-decidable.  Thus, there may be no remedy to 

completely solve this issue. 

6.2.2 Resource Problems 

4

Another issue of the ILT is the amount of resources that the program requires 

in order to run successfully.  On difficult inputs, the ILT can consume over 100MB 

of RAM. While the system was not designed with efficiency and optimization in the 

foreground, the resource use of the system is a major limitation.  Memory issues are 

the main reason the problem can handle 3rd degree denominators but cannot handle 
th degree denominators. 
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One possible way to improve memory usage is to reduce the branching factor.  

Currently, the ILT may continue to expand two identical transforms if they have 

different histories.  Furthermore, the program may perform the same operations on 

identical transform pairs across many different transforms.  One way to reduce this 

branching is to propagate transform pairs instead of entire transforms and check for 

redundancy on every propagation. 

However, despite these solutions, the nature of the problem itself demands at 

least some amount of exponential branching in order to reach a solution.  Thus, 

while memory issues can be suppressed, they cannot be completely eliminated. 

6.3 Future Improvements 

6.3.1 Caching/Case-Based Reasoning 

One wasteful aspect of the ILT system is its inability to learn from examples. 

A way to improve the performance of the ILT system is to cache all previously 

successfully transformed expressions and always compare if an expression has been 

transformed previously before attempting to find the inverse Laplace transform 

through further forward-propagation. This method will allow the program to reuse 

previous work and avoid redundant computation. 

An even greater improvement over caching is using a case-based reasoning 

mechanism in addition to forward propagation.  Thus, if the system ever detects that 

it has performed a similar transform in the past; it can reweight the rule functions to 

favor the path of the successful transform as similar solution strategies will probably 

be applicable in the case of the new transform.  With this capability, the propagation 

mechanism can receive hints about which rules might be more successful.  Thus, the 

program would have a higher overall successful rule hit rate. 

6.3.2 Cost Variations 

Another change that can dramatically affect the performance of the ILT is the 

cost function calculations. The current complexity cost calculation is quite arbitrary 
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in some cases. A refined heuristic can probably be developed which can evaluate the 

transform complexity more accurately.  Given such a heuristic, the program would 

pick less complex solutions more often, leading to a higher overall successful rate. 

Another possible area for improvement involving costs is weighting of 

different rules.  To arrive at the current weights for the rules, all rules were given 

arbitrary costs and were tweaked by hand until the program responded well enough.  

However, using a machine learning approach such as neural nets or SVMs, the 

system can be given assorted transforms and a more optimal set of weightings can be 

computed. At the present, the efficiency improvement from such an effort is 

unknown; however, variations in rule costs have produced radically different 

responses from the system during testing. 

7 Lessons Learned 

This section will outline some of the lessons learned from designing and 

implementing the ILT system. The major lessons learned were regarding 

completeness of systems and a comparison of pre-existing versus customized control 

structures. 

7.1 Completeness Issues 

In designing the system, I became aware of how difficult it is to create a 

complete transformer capable of handling every transform in a certain class, even for 

elementary classes such as the class of rational transforms.  The major issue I faced 

was the enumeration of every necessary rule needed to enable the program to handle 

any transform. The method I used to generate a set of rules was testing the system 

on assorted types of transforms and noting the response of the system through 

debugging. If the system lacked the tools necessary to perform the given transform, I 

would add a new rule to enable the program to handle that case.  However, this 

method of testing has the drawback that one cannot decisively conclude if the system 

is complete or not. I feel that a more mathematical approach by encoding axioms 
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and proving a suitable degree of completeness is preferable to the approach that I 

took. 

7.2 Control Structure Implementation 

One of the most challenging aspects of this project was the integration of all 

the elements of the control structure.  The control structure turned out to be around 

2000 lines of code. Furthermore, modularizing the various elements of the 

propagation engine proved to be quite difficult; and, thus, some code fragments may 

seem “hacked” in order to get the system to behave properly. 

I also learned that pre-packaged rule-based systems like Joshua perform a lot 

of work for the programmer.  In addition to the control elements, Joshua also 

streamlines the task of encoding rules.  While much of the coding for the rules in the 

ILT system is necessary in order to maintain the generality of the rules, much of the 

contents of the rules are devoted towards overhead to interface with the forward-

propagation mechanism. Thus, much effort was put into reinventing an existing 

system for small changes. 

I chose not to use Joshua as the implementation language in order to build a 

propagation engine that could understand the weight-driven aspects of the ILT 

system. Thus, C++ was chosen due to its speed and my experience in the language.  

However, C++ is not oriented towards rule-based systems, and all the support for 

propagation had to be coded in a quite general implementation.  So, a lot of time 

spent on the control elements could have been used on improving the rule-systems.  

Thus, in retrospect, I feel it may have saved me some work and time by 

experimenting more with Joshua. 

8 Conclusion 

In conclusion, the ILT system is a robust generalized expert system that can 

find the inverse Laplace transform for various classes of inputs and relate a detailed 

report of the process to the user. Furthermore, the scalability of the general 
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architecture allows the system to be expanded as needed to find the transform of 

various expressions. The generality and scalability of the robust inference engine 

ensure that the ILT is a worthwhile knowledge-based system in the field of inverse 

Laplace transforms. 
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Appendix A: Complete Rule Listings 

A.1 Always Rules 

Number Evaluator 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: numerical expression => number 
Added PendingOperations: None 
Information: Evaluates any operations contains only numbers as operands 

Number Addition 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ number1 symbol ... number2) => (+ newNumber symbol ...) 
Added PendingOperations: None 
Information: Adds two numbers located within the same addition statement 

Number Multiplication 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* number1 symbol ... number2) => (* newNumber symbol ...) 
Added PendingOperations: None 
Information: Multiplies two numbers located within the same multiplication 

statement 
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0 Multiplication 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* ... 0 ___) => 0 
Added PendingOperations: None 
Information: Zeroes any product containing a zero as an operand 

Multiplication Identity 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* ... 1 ___) => (* ... ___) 
Added PendingOperations: None 
Information: Removes a number 1 located within a multiplication statement 

Addition Identity 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ ... 0 ___) => (+ ... ___) 
Added PendingOperations: None 
Information: Removes a number 0 located within an addition statement 

Division Identity 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (/ A 1) ==> A 
Added PendingOperations: None 
Information: Simplifies a division-by-1 operation 

Add 0-Terms Identity 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ ) => 0 
Added PendingOperations: None 
Information: Uses the addition identity to simplify the empty sum 

Add 0-Terms Identity 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* ) => 1 
Added PendingOperations: None 
Information: Uses the multiplication identity to simplify the empty sum 

Multiply 1-Term 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* exp ) => exp 
Added PendingOperations: None 
Information: Simplifies the product of one number 

Add 1-Term 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ exp ) => exp 
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Added PendingOperations: None 
Information: Simplifies the sum of one number 

Addition Simplifier 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ ... (+ a b ___ c) ...) => (+ ... a b ___ c ...) 
Added PendingOperations: None 
Information: Simplifies a nested addition statement 

Multiplication Simplifier 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* ... (* a b ___ c) ...) => (* ... a b ___ c ...) 
Added PendingOperations: None 
Information: Simplifies a nested multiplication statement 

Exponent Simplifier 1 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* (P a n) ... (P a m)) => (* (P a (+ n m)) ...) 
Added PendingOperations: None 
Information: Simplifies the product of two power operations 

Exponent Simplifier 2 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* (P a n) ... a) => (* (P a (+ n 1)) ...) 
Added PendingOperations: None 
Information: Simplifies the product of a base and a power operation 

Exponent Simplifier 3 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* a ... a) => (* (P a 2) ...) 
Added PendingOperations: None 
Information: Simplifies the product of a two expressions into a power operation 

Power Simplifier 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (P a 1) => a 
Added PendingOperations: None 
Information: Returns the first power of an expression  

Power Simplifier 2 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (P a 0) => 1 
Added PendingOperations: None 
Information: Returns the power identity 

Power Reducer 
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Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (P (P a b ) c ) => (P a (* b c ) ) 
Added PendingOperations: None 
Information: Applies a nested power simplification 

Additive Subtractive Associativity 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ (- A B ) C ) ==> (+ A (* -1 B ) C ) 
Added PendingOperations: None 
Information: Simplifies a subtraction statement nested in an addition statement 

Division Simplifier 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (/ (* exp ... ) (* exp ___ ) ) => (/ (* ... ) (* ___ ) ) 
Added PendingOperations: None 
Information: Cancels out expressions in both the numerator and denominator 

Addition Commutability 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: ex. (+ 3 s ) => (+ s 3 ) 
Added PendingOperations: None 
Information: Swaps the location of elements in a addition statement to make the 

expressions look more consistent 

Addition Canceller 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (+ (* a X ) (* b X ) ) => (+ (* (+ a b ) X ) ) 
Added PendingOperations: None 
Information: Factors multiplication statements nested in addition statements 

Multiplication Division Reducer 
Type: Always Rule Cost: 1.0f Target: Sub-Expressions 
Description: (* ... (/ b c ) ) => (/ (* ... b ) c ) 
Added PendingOperations: None 
Information: Simplifies a division statement nested in a multiplication statement 

A.2 Lookup Rules 

Lookup 
Type: Lookup Rule Cost: 0.0f Target: Entire Expression 
Description: (/ 1 (P s n)) --> (/ (P t (- n 1)) (G n)) 
Added PendingOperations: Lookup 
Information: Converts an s-Space expression into a t-Space expression 
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A.3 Guess Rules 

Subtraction Flipper 
Type: Guess Rule Cost: 100.0f Target: Sub-Expressions 
Description: (- a b ) => (* -1 (- b a ) ) 
Added PendingOperations: None 
Information: Reverses the direction of a subtraction statement 

Addition Breaker 
Type: Guess Rule Cost: 10.0f Target: Entire Expression 
Description: (+ A B ... C) => SUM(A B ... C) 
Added PendingOperations: None 
Information: Uses linearity to break up an addition into a sum of individual 

transforms 

Division Breaker 
Type: Guess Rule Cost: 20.0f Target: Entire Expression 
Description: (/ (+ A B ... C) D) => SUM((/ A D) (/ B D) ... (/ C D)) 
Added PendingOperations: None 
Information: Uses linearity to break up the addition of fractions into a sum of 

individual transforms 

Quadratic Factorization 
Type: Guess Rule Cost: 200.0f Target: Sub-Expressions 
Description: (as^2 + bs + c) => factored 
Added PendingOperations: None 
Information: Applies the quadratic formula on a second degree polynomial and 

simplifies the result 

Division Factorer

Type: Guess Rule Cost: 20.0f Target: Entire Expression 

Description: (/ a B) => (/ 1 B) with pending operation (* a ) 

Added PendingOperations: (Times a) 

Information: Uses linearity to simplify a constant divided by an expression 


Linearity Factorer

Type: Guess Rule Cost: 10.0f Target: Entire Expression 

Description: (* a B ...) ==> (* B ... ) with pending operation (* a ) 

Added PendingOperations: (Times a) 

Information: Uses linearity to simplify a constant times an expression 


Frequency Shifter

Type: Guess Rule Cost: 100.0f Target: Entire Expression 

Description: F(s-a) ==> F(s) with pending operation (Shift (+ a ) ) 

Added PendingOperations: (Shift (+ a) ) 

Information: Uses Laplace frequency shifting property 
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Subtraction Addition Conversion 
Type: Guess Rule Cost: 350.0f Target: Sub-Expressions 
Description: (- a b ) => (+ a (* -1 b ) ) 
Added PendingOperations: None 
Information: Converts a subtraction into an addition and a multiplication 

Scaling 
Type: Guess Rule Cost: 200.0f Target: Entire Expression 
Description: F(as) => F(s) with pending operation (SCALE a) 
Added PendingOperations: None 
Information: Uses Laplace frequency scaling property 

Partial Fractions 
Type: Guess Rule Cost: 200.0f Target: Entire Expression 
Description: (/ A (* (P (- s b ) c ) ... ) ) => (+ (/ d (- s b ) ) (/ d (P
(- s b ) 2 ) ) ... )
Added PendingOperations: None 
Information: Applies partial fractions method on a rational function with a factored 

denominator and simplifies the result 

Appendix B: Complete Program Output 

This appendix contains a full program output for a rather difficult transform.  

This section highlights the strengths of ILT including the ability to deal with 3rd 

degree denominators, quadratic factoring, partial fractions with repeated roots, 

frequency shifting, linearity, lookups, numeric evaluation and many arithmetic 

properties. The bold typeface indicates the contents of the file sampleexp2.txt. 

Enter File Name: sampleexp2.txt 

sampleexp2.txt: (/ 1 (* (+ s 1 ) (+ (P s 2 ) (* 6 s ) 9 ) ) ) 


USER INPUT. 

S-SPACE 

SUM { 


(/ 1+0I (* (+ s 1+0I ) (+ (P s 2+0I ) (* 6+0I s ) 9+0I ) ) ) 

with pending operations: 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 
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Rule 'Addition Commutability' 

Which performs: ex. (+ 3 s ) => (+ s 3 ) 

Was applied on transform pair 0 

On the expression: (+ (P s 2+0I ) (* 6+0I s ) 9+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 1+0I (* (+ s 1+0I ) (+ (* 6+0I s ) 9+0I (P s 2+0I ) ) ) ) 

with pending operations: 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Addition Commutability' 

Which performs: ex. (+ 3 s ) => (+ s 3 ) 

Was applied on transform pair 0 

On the expression: (+ (* 6+0I s ) 9+0I (P s 2+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 1+0I (* (+ s 1+0I ) (+ 9+0I (* 6+0I s ) (P s 2+0I ) ) ) ) 

with pending operations: 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Quadratic Factorization' 

Which performs: (as^2 + bs + c) => factored 

Was applied on transform pair 0 

On the expression: (+ 9+0I (* 6+0I s ) (P s 2+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 1+0I (* (+ s 1+0I ) (P (+ s 3+0I ) 2+0I ) ) ) 

with pending operations: 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'PARTIALFRACTIONS' 

Which performs: (/ A (* (P (- s b ) c ) ... ) ) => (+ (/ d (- s b ) ) (/ 

d (P (- s b ) 2 ) ) ... ) 

Was applied on transform pair 0 

On the expression: (/ 1+0I (* (+ s 1+0I ) (P (+ s 3+0I ) 2+0I ) ) ) 

To yield the new transform: 


S-SPACE 

SUM { 
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(+ (/ 0.25+0I (+ s 1+0I ) ) (/ -0.25+0I (+ s 3+0I ) ) (/ -0.5+0I 

(P (+ s 3+0I ) 2+0I ) ) ) 


with pending operations: 

} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Addition Breaker' 

Which performs: (+ A B ... C) => SUM(A B ... C) 

Was applied on transform pair 0 

On the expression: (+ (/ 0.25+0I (+ s 1+0I ) ) (/ -0.25+0I (+ s 3+0I ) ) 

(/ -0.5+0I (P (+ s 3+0I ) 2+0I ) ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ s 3+0I ) 2+0I ) ) 

with pending operations: 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Frequency Shifting' 

Which performs: F(s-a) ==> F(s) with pending operation (+ a ) 

Was applied on transform pair 2 

On the expression: (/ -0.5+0I (P (+ s 3+0I ) 2+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ (- s (+ 3+0I ) ) 3+0I ) 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 2 

On the expression: (+ 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 
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(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ (- s 3+0I ) 3+0I ) 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Additive Subtractive Associativity' 

Which performs: (+ (- A B ) C ) ==> (+ A (* -1 B ) C ) 

Was applied on transform pair 2 

On the expression: (+ (- s 3+0I ) 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ s (* -1+0I 3+0I ) 3+0I ) 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 2 

On the expression: (* -1+0I 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ s -3+0I 3+0I ) 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Number Addition' 

Which performs: (+ number1 symbol ... number2) => (+ newNumber symbol 

...) 

Was applied on transform pair 2 

On the expression: (+ s -3+0I 3+0I ) 

To yield the new transform: 
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S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ s 0+0I ) 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Addition Identity' 

Which performs: (+ ... 0 ___) => (+ ... ___) 

Was applied on transform pair 2 

On the expression: (+ s 0+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P (+ s ) 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Add 1-Term' 

Which performs: (+ exp ) => exp 

Was applied on transform pair 2 

On the expression: (+ s ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ -0.5+0I (P s 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Division Factorer' 

Which performs: (/ a B) => (/ 1 B) with pending operation (* a ) 

Was applied on transform pair 2 
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On the expression: (/ -0.5+0I (P s 2+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


(/ 1+0I (P s 2+0I ) ) 

with pending operations: (Shift (+ 3+0I ) ) (Times -0.5+0I 


) 

} 


T-SPACE 

SUM { 

} 

Press any key to continue . . . 


Rule 'Lookup' 

Which performs: (/ 1 (P s n)) --> (/ (P t (- n 1)) (G n)) 

Was applied on transform pair 2 

On the expression: (/ 1+0I (P s 2+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 1+0I ) ) 

with pending operations: 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Frequency Shifting' 

Which performs: F(s-a) ==> F(s) with pending operation (+ a ) 

Was applied on transform pair 0 

On the expression: (/ 0.25+0I (+ s 1+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ (- s (+ 1+0I ) ) 1+0I ) ) 

with pending operations: (Shift (+ 1+0I ) ) 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 
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Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 0 

On the expression: (+ 1+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ (- s 1+0I ) 1+0I ) ) 

with pending operations: (Shift (+ 1+0I ) ) 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Additive Subtractive Associativity' 

Which performs: (+ (- A B ) C ) ==> (+ A (* -1 B ) C ) 

Was applied on transform pair 0 

On the expression: (+ (- s 1+0I ) 1+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s (* -1+0I 1+0I ) 1+0I ) ) 

with pending operations: (Shift (+ 1+0I ) ) 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 0 

On the expression: (* -1+0I 1+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s -1+0I 1+0I ) ) 

with pending operations: (Shift (+ 1+0I ) ) 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 
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SUM { 

(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 


1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Number Addition' 

Which performs: (+ number1 symbol ... number2) => (+ newNumber symbol 

...) 

Was applied on transform pair 0 

On the expression: (+ s -1+0I 1+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s 0+0I ) ) 

with pending operations: (Shift (+ 1+0I ) ) 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Addition Identity' 

Which performs: (+ ... 0 ___) => (+ ... ___) 

Was applied on transform pair 0 

On the expression: (+ s 0+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I (+ s ) ) 

with pending operations: (Shift (+ 1+0I ) ) 


(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Add 1-Term' 

Which performs: (+ exp ) => exp 

Was applied on transform pair 0 

On the expression: (+ s ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 0.25+0I s ) 

with pending operations: (Shift (+ 1+0I ) ) 
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(/ -0.25+0I (+ s 3+0I ) ) 

with pending operations: 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Division Factorer' 

Which performs: (/ a B) => (/ 1 B) with pending operation (* a ) 

Was applied on transform pair 0 

On the expression: (/ 0.25+0I s ) 

To yield the new transform: 


S-SPACE 

SUM { 


(/ 1+0I s ) 

with pending operations: (Shift (+ 1+0I ) ) (Times 0.25+0I 


) 

(/ -0.25+0I (+ s 3+0I ) ) 


with pending operations: 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Lookup' 

Which performs: (/ 1 (P s n)) --> (/ (P t (- n 1)) (G n)) 

Was applied on transform pair 0 

On the expression: (/ 1+0I s ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I (+ s 3+0I ) ) 


with pending operations: 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Frequency Shifting' 

Which performs: F(s-a) ==> F(s) with pending operation (+ a ) 

Was applied on transform pair 1 
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On the expression: (/ -0.25+0I (+ s 3+0I ) ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I (+ (- s (+ 3+0I ) ) 3+0I ) ) 


with pending operations: (Shift (+ 3+0I ) ) 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 1 

On the expression: (+ 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I (+ (- s 3+0I ) 3+0I ) ) 


with pending operations: (Shift (+ 3+0I ) ) 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Additive Subtractive Associativity' 

Which performs: (+ (- A B ) C ) ==> (+ A (* -1 B ) C ) 

Was applied on transform pair 1 

On the expression: (+ (- s 3+0I ) 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I (+ s (* -1+0I 3+0I ) 3+0I ) ) 


with pending operations: (Shift (+ 3+0I ) ) 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 
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(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Number Evaluator' 

Which performs: numerical expression => number 

Was applied on transform pair 1 

On the expression: (* -1+0I 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I (+ s -3+0I 3+0I ) ) 


with pending operations: (Shift (+ 3+0I ) ) 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Number Addition' 

Which performs: (+ number1 symbol ... number2) => (+ newNumber symbol 

...) 

Was applied on transform pair 1 

On the expression: (+ s -3+0I 3+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I (+ s 0+0I ) ) 


with pending operations: (Shift (+ 3+0I ) ) 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Addition Identity' 

Which performs: (+ ... 0 ___) => (+ ... ___) 

Was applied on transform pair 1 

On the expression: (+ s 0+0I ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 
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(/ -0.25+0I (+ s ) ) 

with pending operations: (Shift (+ 3+0I ) ) 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Add 1-Term' 

Which performs: (+ exp ) => exp 

Was applied on transform pair 1 

On the expression: (+ s ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ -0.25+0I s ) 


with pending operations: (Shift (+ 3+0I ) ) 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Rule 'Division Factorer' 

Which performs: (/ a B) => (/ 1 B) with pending operation (* a ) 

Was applied on transform pair 1 

On the expression: (/ -0.25+0I s ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

(/ 1+0I s ) 


with pending operations: (Shift (+ 3+0I ) ) (Times -0.25+0I 

) 


DONE 

} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 
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Rule 'Lookup' 

Which performs: (/ 1 (P s n)) --> (/ (P t (- n 1)) (G n)) 

Was applied on transform pair 1 

On the expression: (/ 1+0I s ) 

To yield the new transform: 


S-SPACE 

SUM { 


DONE 

DONE 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t (* -1+0I (+ 1+0I ) ) ) ) (* 0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.25+0I (/ (P t (- 1+0I 

1+0I ) ) (G 1+0I ) ) ) ) 


(* (P E (* t (* -1+0I (+ 3+0I ) ) ) ) (* -0.5+0I (/ (P t (- 2+0I 

1+0I ) ) (G 2+0I ) ) ) ) 

} 

Press any key to continue . . . 


Which simplifies to: 

S-SPACE 

SUM { 


DONE 

DONE 

DONE 


} 


T-SPACE 

SUM { 


(* (P E (* t -1+0I ) ) 0.25+0I ) 

(* (P E (* t -3+0I ) ) -0.25+0I ) 

(* (P E (* t -3+0I ) ) -0.5+0I t ) 


} 
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