The TA's came up with a simple proof that if a cryptosystem is GM-secure, it is also semantically secure. Below is their original write-up of this proof.
Notation: Note that in this write-up, the cryptosystem in question is denoted as \mathcal{C}, the key-generation algorithm is also denoted as \mathcal{C} and the public key is denoted by E. Furthermore, when E is a public key, the notation $E(m)$ is used to denote the encryption of message m using public key E. (This notation is quite natural if you think of the key-generation procedure as producing the code of the encryption algorithm with the public-key hard-coded in.)

GM Security \Longrightarrow Semantic Security

We show that \neg Semantic Security $\Longrightarrow \neg$ GM-Security. Let $\left\{M_{n}\right\}$ be message spaces, f be a polynomial-time computable function, and $\left\{A_{n}\right\}$ be circuits such that for a fixed $c>0$ and infinitely many n

$$
\begin{equation*}
\operatorname{Pr}\left[A_{n}(E, \alpha)=f(m) \mid m \leftarrow M_{n}, E \leftarrow \mathcal{C}\left(1^{n}\right), \alpha \leftarrow E(m)\right] \geq \tilde{p}+\frac{1}{n^{c}} \tag{1}
\end{equation*}
$$

where $\tilde{p}=\mathbb{E}_{E \leftarrow \mathcal{C}\left(1^{n}\right)}\left[p_{E}\right]$ is the expected prediction probability without the knowledge of α.

Consider the following algorithm $T_{n}:\left(E, m_{0}, m_{1}, \alpha\right) \rightarrow\{0,1\}$.

1. Let $\beta \leftarrow A_{n}(E, \alpha)$.
2. If $\beta=f\left(m_{0}\right)$ but $\beta \neq f\left(m_{1}\right)$, output 0 .
3. If $\beta=f\left(m_{1}\right)$ but $\beta \neq f\left(m_{0}\right)$, output 1 .
4. Otherwise, output a random value from $\{0,1\}$ with probability $\frac{1}{2}$ each.

The test is very intuitive. We simply run A_{n} on the challenge α. Since we expect A_{n} to correctly predict the value of f, we compare its output β with $f\left(m_{0}\right)$ and $f\left(m_{1}\right)$. Note that the test is clearly polynomial time since all the steps (including computations of f) are polynomial time.

If exactly one of the tests succeed, we output the corresponding message. Otherwise, we flip a coin as we did not learn anything. For specific m_{0} and m_{1}, let

$$
q\left(m_{0}, m_{1}\right)=\operatorname{Pr}\left[T_{n}\left(E, m_{0}, m_{1}, \alpha\right)=i \mid i \epsilon_{r}\{0,1\}, E \leftarrow \mathcal{C}\left(1^{n}\right), \alpha \leftarrow E\left(m_{i}\right)\right]
$$

be the probability that T_{n} distinguishes encryptions of m_{0} and m_{1}.
We show that T_{n} violates the GM-security of \mathcal{C} by finding two particular messages m_{0} and m_{1} that are distinguished by T_{n}, i.e. $q\left(m_{0}, m_{1}\right) \geq \frac{1}{2}+\frac{1}{2 n^{c}}$ (same c as in (1)). To show the existence of such m_{0} and m_{1} we use the probabilistic method. We pick both m_{0} and m_{1} independently at random according to the given probability distribution M_{n} (that violates the Semantic Security in (1)). We then argue that T_{n} has non-negligible expected advantage in distinguishing a random encryption of m_{0} or m_{1}, i.e. $q:=\mathbb{E}_{m_{0}, m_{1}}\left[q\left(m_{0}, m_{1}\right)\right] \geq \frac{1}{2}+\frac{1}{2 n^{c}}$. Hence, the required m_{0} and m_{1} exist.
It remains to prove the bound on q. We note that since the algorithm T_{n} is symmetric in m_{0} and m_{1}, q equals to the expected probability that T_{n} outputs 0 if α is an encryption of m_{0}, i.e. without loss of generality we can assume that $i=0$. Now, our experiment can be viewed as the following. Pick $m_{0} \leftarrow M_{n}, E \leftarrow \mathcal{C}\left(1^{n}\right), \alpha \leftarrow E\left(m_{0}\right), \beta \leftarrow A_{n}(E, \alpha)$. Now we pick a brand new message $m_{1} \leftarrow M_{n}$ and run steps $2-4$ of $T_{n} . q$ is the probability that we output 0 . Before computing q, we claim that

$$
\begin{equation*}
\operatorname{Pr}\left[\beta=f\left(m_{0}\right)\right] \geq \tilde{p}+\frac{1}{n^{c}} ; \quad \operatorname{Pr}\left[\beta=f\left(m_{1}\right)\right] \leq \tilde{p} \tag{2}
\end{equation*}
$$

Indeed, the first bound follows directly from (1), as $\beta \leftarrow A_{n}(E, \alpha)$ and $\alpha \leftarrow E\left(m_{0}\right)$. For the second bound, we observe that for any fixed E, the message m_{1} is chosen independent of $m_{0}, \alpha \leftarrow E\left(m_{0}\right)$ and, therefore, $\beta \leftarrow A_{n}(E, \alpha)$. Hence, for any fixed E the probability that $f\left(m_{1}\right)$ equals to β is at most the probability that it equals to any pre-specified element, which is at most p_{E}. Since for a fixed E, our probability is stochastically dominated by p_{E}, we can take the expectation over E to obtain the claimed bound.
Now, using the fact $\operatorname{Pr}[A \wedge B]+\operatorname{Pr}[A \wedge \bar{B}]=\operatorname{Pr}[A]$, we can compute the probability q of outputting 0 in the following way:

$$
\begin{aligned}
q= & \operatorname{Pr}\left[\beta=f\left(m_{0}\right) \wedge \beta \neq f\left(m_{1}\right)\right]+\frac{1}{2}\left(\operatorname{Pr}\left[\beta=f\left(m_{0}\right)=f\left(m_{1}\right)\right]+\operatorname{Pr}\left[\beta \notin\left\{f\left(m_{0}\right), f\left(m_{1}\right)\right\}\right]\right) \\
= & \frac{1}{2}\left(\operatorname{Pr}\left[\beta=f\left(m_{0}\right) \wedge \beta \neq f\left(m_{1}\right)\right]+\operatorname{Pr}\left[\beta=f\left(m_{0}\right) \wedge \beta=f\left(m_{1}\right)\right]\right)+ \\
& \frac{1}{2}\left(\operatorname{Pr}\left[\beta=f\left(m_{0}\right) \wedge \beta \neq f\left(m_{1}\right)\right]+\operatorname{Pr}\left[\beta \neq f\left(m_{0}\right) \wedge \beta \neq f\left(m_{1}\right)\right]\right) \\
= & \frac{1}{2}\left(\operatorname{Pr}\left[\beta=f\left(m_{0}\right)\right]+\operatorname{Pr}\left[\beta \neq f\left(m_{1}\right)\right]\right)=\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}\left[\beta=f\left(m_{0}\right)\right]-\operatorname{Pr}\left[\beta=f\left(m_{1}\right)\right]\right) \\
& \stackrel{(2)}{\geq} \frac{1}{2}+\frac{1}{2}\left(\left(\tilde{p}+\frac{1}{n^{c}}\right)-\tilde{p}\right)=\frac{1}{2}+\frac{1}{2 n^{c}}
\end{aligned}
$$

This concludes the proof.

