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6.875/18.875 Cryptography and Cryptanalysis February 23, 2005 

Handout 6: Equivalence of GM and Semantic Security 

The TA's came up with a simple proof that if a cryptosystem is GMsecure, it is also 
semantically secure. Below is their original writeup of this proof.


Notation: Note that in this writeup, the cryptosystem in question is denoted as C,

the keygeneration algorithm is also denoted as C and the public key is denoted by E.

Furthermore, when E is a public key, the notation E(m) is used to denote the encryption

of message m using public key E. (This notation is quite natural if you think of the

keygeneration procedure as producing the code of the encryption algorithm with the

publickey hardcoded in.)


GM Security = ⇒ Semantic Security 

We show that ¬ Semantic Security = ⇒ ¬ GMSecurity. Let {Mn} be message spaces, 
f be a polynomialtime computable function, and {An} be circuits such that for a fixed 
c > 0 and infinitely many n 

1 
Pr[An(E, α) = f(m) | m ←Mn, E ← C(1n), α ← E(m)] ≥ p̃ + (1) 

nc 

where ˜ = EE←C(1n)[pE ] is the expected prediction probability without the knowledge of p 
α. 

Consider the following algorithm Tn : (E, m0, m1, α) → {0, 1}. 

1. Let β ← An(E, α). 

2. If β = f(m0) but β = f(m1), output 0. 

3. If β = f(m1) but β = f(m0), output 1. 

4. Otherwise, output a random value from {0, 1} with probability 1 each. 
2 

The test is very intuitive. We simply run An on the challenge α. Since we expect An to 
correctly predict the value of f , we compare its output β with f(m0) and f(m1). Note 
that the test is clearly polynomial time since all the steps (including computations of f) 
are polynomial time. 
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If exactly one of the tests succeed, we output the corresponding message. Otherwise, we 
flip a coin as we did not learn anything. For specific m0 and m1, let 

q(m0, m1) = Pr[Tn(E, m0, m1, α) = i | i ∈r {0, 1}, E ← C(1n), α ← E(mi)] 

be the probability that Tn distinguishes encryptions of m0 and m1. 

We show that Tn violates the GMsecurity of C by finding two particular messages m0 and 
1 m1 that are distinguished by Tn, i.e. q(m0, m1) ≥ 1 + (same c as in (1)). To show the 

2 2nc 

existence of such m0 and m1 we use the probabilistic method. We pick both m0 and m1 in
dependently at random according to the given probability distribution Mn (that violates the 
Semantic Security in (1)). We then argue that Tn has nonnegligible expected advantage 

1 1in distinguishing a random encryption of m0 or m1, i.e. q := Em0 ,m1 [q(m0, m1)] ≥ + .
2 2nc 

Hence, the required m0 and m1 exist. 

It remains to prove the bound on q. We note that since the algorithm Tn is symmetric in 
m0 and m1, q equals to the expected probability that Tn outputs 0 if α is an encryption 
of m0, i.e. without loss of generality we can assume that i = 0. Now, our experiment 
can be viewed as the following. Pick m0 ←Mn, E ← C(1n), α ← E(m0), β ← An(E, α). 
Now we pick a brand new message m1 ←Mn and run steps 2–4 of Tn. q is the probability 
that we output 0. Before computing q, we claim that 

1 
Pr[β = f(m0)] ≥ p̃ + ; Pr[β = f(m1)] ≤ p̃ (2) 
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Indeed, the first bound follows directly from (1), as β ← An(E, α) and α ← E(m0). For 
the second bound, we observe that for any fixed E, the message m1 is chosen independent 
of m0, α ← E(m0) and, therefore, β ← An(E, α). Hence, for any fixed E the probability 
that f(m1) equals to β is at most the probability that it equals to any prespecified 
element, which is at most pE . Since for a fixed E, our probability is stochastically 
dominated by pE , we can take the expectation over E to obtain the claimed bound. 

¯Now, using the fact Pr[A∧B] + Pr[A∧B] = Pr[A], we can compute the probability q of 
outputting 0 in the following way: 

1 
q = Pr[β = f(m0) ∧ β = f(m1)] + (Pr[β = f(m0) = f(m1)] + Pr[β �∈ {f(m0), f(m1)}])�

2

1


= (Pr[β = f(m0) ∧ β = f(m1)] + Pr[β = f(m0) ∧ β = f(m1)]) + 
2 

�
1 

(Pr[β = f(m0) ∧ β = f(m1)] + Pr[β = f(m0) ∧ β = f(m1)])
2 
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= (Pr[β = f(m0)] + Pr[β = f(m1)]) = + (Pr[β = f(m0)] − Pr[β = f(m1)])
2 

�
2 2 

(2) 1 1 1 1 1 
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) − p̃ = +≥ 

2 2 2 2n

This concludes the proof. � 
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