This problem set is due on: May 3, 2005.

Problem 1 - Perfectly Hiding Commitment

Definition:

A two-round perfectly-hiding commitment scheme is a triple of efficient algorithms (GEN, COM, VER) satisfying the following properties.

Correctness: For all security parameters k and inputs α ,

$$Pr[g \leftarrow GEN(1^k); (c, d) \leftarrow COM(g, \alpha) : VER(g, c, d, \alpha) = TRUE] = 1$$

Binding: For all k, and for any probabilistic polynomial-time cheating commiter C^* :

$$Pr[g \leftarrow GEN(1^k); \ (c, d_1, d_2, \alpha_1, \alpha_2) \leftarrow C^*(g):$$
$$VER(g, c, d_1, \alpha_1) = VER(g, c, d_2, \alpha_2) = TRUE \ \land \ \alpha_1 \neq \alpha_2] < negligible(k)$$

Perfect Hiding: For all k, and all inputs α and β the following distributions are identical:

$$\langle g \leftarrow GEN(1^k); (c,d) \leftarrow COM(g,\alpha) : (g,c) \rangle = \langle g \leftarrow GEN(1^k) : (c,d) \leftarrow COM(g,\beta) : (g,c) \rangle$$

Protocol:

Consider the following two-round protocol for committing to a k-bit value, α . The algorithm *GEN* randomly selects (p, g, h) subject only to the following conditions: (1) p is a k + 1-bit prime number and (2) g and h are generators of Z_p^* . The algorithm *COM* on input (p, g, h) and α selects a random $t \in Z_p^*$ and outputs the commitment message $c = g^t h^{\alpha} \mod p$ and the decommitment message t. The algorithm *VER* on input (p, g, h), c, t and α outputs *TRUE* if and only if $c = g^t h^{\alpha} \pmod{p}$.

Prove: the above protocol is, in fact, a perfectly-hiding commitment scheme.

Problem 2 - Zero-Knowledge in Parallel

Let (GEN, COM, VER) be a perfectly hiding commitment scheme. Here we provide a five-round proof system for ISO.¹ with negligible soundness error.

- 1. The prover selects $g \leftarrow GEN(1^k)$ and sends g to the verifier.
- 2. The verifier chooses a k-bit random string r, selects $(c, d) \leftarrow COM(g, r)$ and sends c to the prover.
- 3. The prover randomly selects k graphs C_1, \ldots, C_k such that each C_i is isomorphic to G and sends C_1, \ldots, C_k to the verifier.
- 4. The verifier sends d and r to the prover.
- 5. If r = VER(g, c, d) then for each graph C_i the prover sends the verifier a random isomorphism mapping G to C_i if the *i*th bit of r is 0 and a random isomorphism mapping H to C_i if the *i*th bit of r is 1.

Prove: the above protocol is, in fact, a zero-knowledge proof system for *ISO*.

Problem 3 - Hiding and Binding

Prove or Disprove: There exists a bit commitment scheme which is both perfectly hiding and perfectly binding.

Note: A perfectly hiding commitment scheme is defined in problem 1. A commitment scheme is perfectly binding if the binding condition holds with respect to all cheating committers (as opposed to only those running in probabilistic polynomial-time). Encryption is an example of a perfectly binding commitment scheme.

Problem 4 - Proofs of Knowledge

Let L be a language in NP and for $x \in L$ let W_x be the set of NP-witnesses for x. Informally, (P, V) is a ZK proof of knowledge for L if on common input x, P convinces V that he knows an element of W_x and yet interacting with P provides V provides P with no knowledge other than that $x \in L$. (In particular, V learns nothing about which element of W_x the prover knows!)

Provide a formal definition of a zero-knowledge proof of knowledge and explain why your definition captures informal notion above.

¹The language of all pairs of graphs (G, H) such that G is isomorphic to H.