Handout 8: Problem Set \#1 Solutions

Problem 1

Suppose p is a prime and g and h are both generators of Z_{p}^{*}. Prove or disprove the following statements:

$$
\begin{array}{lll}
\text { A: } & \left\{x \leftarrow Z_{p}^{*}: g^{x}\right. & \bmod p\}=\left\{x \leftarrow Z_{p}^{*} ; y \leftarrow Z_{p}^{*}: g^{x y} \quad \bmod p\right\} \\
\text { B: } & \left\{x \leftarrow Z_{p}^{*}: g^{x}\right. & \bmod p\}=\left\{x \leftarrow Z_{p}^{*}: h^{x} \quad \bmod p\right\} \\
\text { C: } & \left\{x \leftarrow Z_{p}^{*}: g^{x}\right. & \bmod p\}=\left\{x \leftarrow Z_{p}^{*}: x^{g} \quad \bmod p\right\} \\
\text { D: } & \left\{x \leftarrow Z_{p}^{*}: x^{g}\right. & \bmod p\}=\left\{x \leftarrow Z_{p}^{*}: x^{g h} \quad \bmod p\right\}
\end{array}
$$

(Recall from Handout $\# 3$ that $\left\{x \leftarrow Z_{p}^{*}: g^{x} \bmod p\right\}$ is a probability distribution. You are being asked to prove or disprove the statement that two probability distributions are identically distributed.)

Solution:

A: Not equal. The left distribution is uniform over Z_{p}^{*} (See Part B). Therefore, on the left, g^{x} is a quadratic residue with probability $1 / 2$. In the right distribution, with probability $3 / 4$, either x or y is even. Therefore, $g^{x y}$ is a quadratic residue with probability $3 / 4$. Thus the two distributions cannot be equal.

B: Equal. Because g and h are generators, the maps $x \mapsto g^{x}$ and $x \mapsto h^{x}$ are bijective from Z_{p}^{*} to Z_{p}^{*}. Therefore both distributions are uniform over Z_{p}^{*}.
C: Not equal. Let $p=3, g=2$. Then the left distribution is uniform over Z_{p}^{*}, while the right distribution has probability 1 on element 1.
D: Not equal. Let $p=5, g=2, h=2$ (note that g and h need not be distinct). Then the left distribution is uniform over $\{1,-1\}$, while the right distribution has probability 1 on element 1.

Problem 2

Suppose that the Prime Discrete Logarithm Problem is easy. That is, suppose that there exists a probabilistic, polynomial time algorithm A that, on inputs p, g and $g^{x} \bmod p$, outputs x if p is a prime, g is a generator of Z_{p}^{*} and $g^{x} \bmod p$ is prime. Show that there exists a probabilistic polynomial-time algorithm, B, that solves the Discrete Logarithm Problem.

Solution:

The main idea here is to use the idea of random self-reducibility. That is, we want to reduce solving the discrete logarithm problem for a particular g^{x} to solving the discrete logarithm problem for a uniformly random input g^{y+x}. Then since a uniformly random input is likely to be prime, we can apply our algorithm for the Prime Discrete Logarithm Problem to g^{x+y}.

Let A be an algorithm for solving the Prime Discrete Logarithm Problem. Our reduction algorithm, B, works as follows: "on input (p, g, g^{x}), pick a random $y \leftarrow Z_{p}^{*}$, and check if $g^{x} g^{y} \bmod p$ is prime. If not, choose a new y until that condition is satisfied. Then pass $\left(p, g, g^{x} g^{y} \bmod p\right)$ to A, and receive from it a value z. Return $z-y$."

First we prove that B is PPT: this amounts to analyzing how many y s we must choose before $g^{x} g^{y} \bmod p$ is prime. Note that $g^{x} g^{y} \bmod p$ is a uniformly random element of Z_{p}^{*}, and by the prime number theorem, an $\Omega(1 / \log p)$ fraction of those elements are prime. Therefore we expect to choose $O(\log p)$ such y. Because A is poly-time, B is expected poly-time.

The correctness of the algorithm is clear. Since $g^{x} g^{y} \bmod p=g^{x+y} \bmod p$, the probability that our algorithm returns x is equal to the probability that A returns $x+y$ when $g^{x y}$ is a uniformly random prime number less than p.

Problem 3

We define the Lily problem as: given two integers n and S determine whether S is relatively prime to $\phi(n)$. Prove that if it is hard to determine on inputs two integers n and e whether e is relatively prime with $\phi(n)$, then the RSA function is hard to invert.

Solution:

The main idea here is that if n and e are relatively prime then $f(x)=x^{e} \bmod n$ is a permutation, but if n and e are not relatively prime then $f(x)$ is a many-to-one mapping. Therefore, if we choose x at random, an RSA inverting algorithm cannot return x on input x^{e} with probability better than $1 / 2$. Our reduction will show that we can solve the Lily problem with error probability $1 / 2$ for any n and e such that RSA is "easy" for
that n and e. (Note that we could repeat our procedure many times to reduce the error probability.)

Suppose for contradiction that RSA is "easy" to invert. That is, there exists a PPT A such that given (n, e, c) where n is an integer, e is relatively prime with $\phi(n)$ and $m \in Z_{n}^{*}, A\left(n, e, m^{e}\right)$ outputs m such that $m^{e}=c \bmod n$. For simplicity, we will assume that our RSA inverter inverts with probability 1 over the choice of m. (If the RSA inverter sometimes failed, we could use a random self-reducibility argument to create an RSA inverter that works with overwhelming probability over the choice of m.)

We construct a B which solves the Lily problem as follows: "on input (n, e), choose $m \leftarrow$ Z_{n}^{*} at random and give $\left(n, e, m^{e} \bmod n\right)$ to A. If A returns m then output Relatively Prime and otherwise output Not Relatively Prime.
B is clearly PPT since A is PPT. Now, if $(e, \phi(n))=1$, then our RSA inverter is receiving a valid input $\left(n, e, m^{e} \bmod n\right)$ and is obligated to output m in which case B correctly outputs Relatively Prime.

Now suppose $(e, \phi(n))>1$. We claim that every e th residue $\bmod n$ has at least two e th roots (the proof is given below). Since m is chosen randomly, A has absolutely no information about which of the e th roots of m^{e} is the m we started with. Therefore, no matter how A answers in this case, it cannot cause us to output Relatively Prime with probability greater than $1 / 2$.

Finally, we prove the claim that when $(e, \phi(n))=\alpha$, every m^{e} has at least two eth roots $\bmod n$. Let $\beta \neq 1$ be an element such that $\beta^{e}=1$. (By Cauchy's Theorem such an element must exist.) Then $\beta m \neq m \bmod n$ but $(\beta m)^{e}=\beta^{e} m^{e}=m^{e} \bmod n$. Thus m and βm are distinct e th roots of $m^{e} \bmod n$.

Problem 4: Factoring

Let O_{n} be an oracle that on input x returns a square root of $x \bmod n$, if one exists, and \perp otherwise. Prove that there exists a probabilistic polynomial-time algorithm that on input an integer n and access to O_{n} outputs n 's factorization.

Solution:

Recall that in class we proved a similar result when n is a product of two distinct odd primes. The exact same technique yields that if we can take square roots $\bmod n$ then we can find a non-trivial factor α of n. We would like to recurse on α and n / α but this would require taking square roots $\bmod \alpha$ and n / α and we have only an oracle for square roots $\bmod n$. Therefore, we show that our oracle for square roots $\bmod n$ can be used to find square roots mod d for any d dividing n.

First we will outline our algorithm, then we will fill in the details. On input d, (where d
divides n) algorithm A does the following:

1. If 2 divides d then store 2 and run $A(d / 2)$.
2. If d is a prime power p^{k} then store p^{k} and halt.
3. Choose x at random from Z_{d}^{*} and find a square root $y \neq x$ and $y \neq-x$ of $x^{2} \bmod n$.
4. Let $\alpha=\operatorname{gcd}(y+x, n)$.
5. Run $A(\alpha)$ and $A(n / \alpha)$.

In Step 2, observe that if d is a prime power then k is at most $\log (d)$. Therefore, for each $i<\log (d)$ we can take the i th root of d and test whether this root is prime. (i th roots can be found in many ways, in particular using Newton's Method.) This allows us to determine in polynomial time whether d is a prime power.

In Step 4, observe that an argument identical to what we saw in class (when we considered the special case where n was the product of two primes) yields that α is a non-trivial factor of n.

All that remains is to handle Step 4. Here we must use O_{n} to find a square root y of $x^{2} \bmod d$ where $y \neq x$ and $y \neq-x$. Here we observe that if $y^{2}=x^{2} \bmod n$ (that is, that y is a square root of $x^{2} \bmod n$) then n divides $y^{2}-x^{2}$. Therefore, since d divides n, d divides $y^{2}-x^{2}$. This implies that $y^{2}=x^{2} \bmod d$. We have thus shown that if y is a square root of $x^{2} \bmod n$ then y is a square root of $x^{2} \bmod d$. Thus $O_{n}\left(x^{2}\right)$ returns a square root of $x \bmod d$. All that remains is to ensure $y \neq x \bmod d$ and $y \neq-x \bmod d$. Here we observe that x^{2} has at least 4 square roots $\bmod d$ (since d is odd and not a prime power). O_{n} has absolutely no information about which of the square roots of x^{2} we started with. Therefore, O_{n} must give us a square root y not equal to plus or minus $x \bmod d$ at least half the time. Thus we can just repeat Step 3 a small number of times and we are very likely to get x and y with the desired properties.

