
6.875/18.425J Cryptography and Cryptanalysis March 7, 2005 

Handout 8: Problem Set #1 Solutions 

Problem 1 

∗ 
pSuppose p is a prime and g and h are both generators of Z . Prove or disprove the 

following statements: 

∗ 
p 

∗ 
p 

∗ 
p 

x : gxyA: Z mod p} = {x Z← 

mod p} = 

Z mod p}: g ; y ←{x ← 
∗ 
p 

∗ 
p 

x xB: Z Z : h mod p}

mod p}

mod p}


: g{x {x← ← 
∗ 
p 

∗ 
p 

x : xgC: Z mod p} = Z: g{x {x← ← 
gh ∗ 

p 
∗ 
p: xgD: Z mod p} = {x Z← : x{x ← 

∗ 
p 

x mod p} is a probability distribution. You 
are being asked to prove or disprove the statement that two probability distributions are 
(Recall from Handout #3 that {x Z← : g

identically distributed.) 

Solution: 

∗ 
p (See Part B). Therefore, on A: Not equal. The left distribution is uniform over Z

the left, gx is a quadratic residue with probability 1/2. In the right distribution, with

probability 3/4, either x or y is even. Therefore, gxy is a quadratic residue with probability 
3/4. Thus the two distributions cannot be equal. 

x x 

∗ 
p 

∗ 
p 

∗ 
p 

B: Equal.	 Because g and h are generators, the maps x �→ g and x �→ h
. Therefore both distributions are uniform over Z

are bijective 
from Z to Z . 

∗ 
p , while C: Not equal. Let p = 3, g = 2. Then the left distribution is uniform over Z

the right distribution has probability 1 on element 1. 

D: Not equal. Let p = 5, g = 2, h = 2 (note that g and h need not be distinct). Then 
the left distribution is uniform over {1,−1}, while the right distribution has probability 
1 on element 1. 

81




x

Problem 2 

Suppose that the Prime Discrete Logarithm Problem is easy. That is, suppose that there 
exists a probabilistic, polynomial time algorithm A that, on inputs p, g and gx mod p, 
outputs x if p is a prime, g is a generator of Z
∗ 

p and g
x mod p is prime. Show that there

exists a probabilistic polynomialtime algorithm, B, that solves the Discrete Logarithm 
Problem. 

Solution: 

The main idea here is to use the idea of random selfreducibility. That is, we want to 
reduce solving the discrete logarithm problem for a particular gx to solving the discrete 
logarithm problem for a uniformly random input gy+x . Then since a uniformly random 
input is likely to be prime, we can apply our algorithm for the Prime Discrete Logarithm 

x+yProblem to g .


Let A be an algorithm for solving the Prime Discrete Logarithm Problem. Our reduction

algorithm, B, works as follows: “on input (p, g, gx), pick a random y ← Z

gy mod p is prime. If not, choose a new y until that condition is satisfied. Then pass 

∗ 
p , and check if 

g
(p, g, gxgy mod p) to A, and receive from it a value z. Return z − y.”


First we prove that B is PPT: this amounts to analyzing how many ys we must choose

before gxgy mod p is prime. Note that gxgy mod p is a uniformly random element of Z∗,p 

and by the prime number theorem, an Ω(1/ log p) fraction of those elements are prime. 
Therefore we expect to choose O(log p) such y. Because A is polytime, B is expected 
polytime. 

The correctness of the algorithm is clear. Since gxgy mod p = gx+y mod p, the probability 
that our algorithm returns x is equal to the probability that A returns x + y when gxy is 
a uniformly random prime number less than p. 

Problem 3 

We define the Lily problem as: given two integers n and S determine whether S is 
relatively prime to φ(n). Prove that if it is hard to determine on inputs two integers n 
and e whether e is relatively prime with φ(n), then the RSA function is hard to invert. 

Solution: 

eThe main idea here is that if n and e are relatively prime then f(x) = x mod n is a 
permutation, but if n and e are not relatively prime then f(x) is a manytoone mapping. 
Therefore, if we choose x at random, an RSA inverting algorithm cannot return x on 

einput x with probability better than 1/2. Our reduction will show that we can solve 
the Lily problem with error probability 1/2 for any n and e such that RSA is “easy” for 

82




�

that n and e. (Note that we could repeat our procedure many times to reduce the error 
probability.) 

Suppose for contradiction that RSA is “easy” to invert. That is, there exists a PPT 
A such that given (n, e, c) where n is an integer, e is relatively prime with φ(n) and 

∗ A(n, e, m,nm ∈ Z
that 

ee) outputs m such that m = c mod n. For simplicity, we will assume 
RSA inverter inverts with probability 1 over the choice of m. (If the RSA
our


inverter sometimes failed, we could use a random selfreducibility argument to create an 
RSA inverter that works with overwhelming probability over the choice of m.) 

We construct a B which solves the Lily problem as follows: “on input (n, e), choose m ←
If A returns m then output Relatively ∗ 

n at random and give (n, e, m
Z
 e mod n) to A.

Prime and otherwise output Not Relatively Prime.


B is clearly PPT since A is PPT. Now, if (e, φ(n)) = 1, then our RSA inverter is receiving

ea valid input (n, e, m mod n) and is obligated to output m in which case B correctly 

outputs Relatively Prime. 

Now suppose (e, φ(n)) > 1. We claim that every eth residue modn has at least two 
eth roots (the proof is given below). Since m is chosen randomly, A has absolutely no 

einformation about which of the eth roots of m is the m we started with. Therefore, no 
matter how A answers in this case, it cannot cause us to output Relatively Prime with 
probability greater than 1/2. 

eFinally, we prove the claim that when (e, φ(n)) = α, every m has at least two eth roots 
mod n. Let β = 1 be an element such that βe = 1. (By Cauchy’s Theorem such an 
element must exist.) Then βm �= 

e 
m mod n but (βm)e = βeme = me mod n. Thus m 

and βm are distinct eth roots of m mod n. 

Problem 4: Factoring 

Let On be an oracle that on input x returns a square root of x mod n, if one exists, and 
⊥ otherwise. Prove that there exists a probabilistic polynomialtime algorithm that on 
input an integer n and access to On outputs n’s factorization. 

Solution: 

Recall that in class we proved a similar result when n is a product of two distinct odd 
primes. The exact same technique yields that if we can take square roots mod n then 
we can find a nontrivial factor α of n. We would like to recurse on α and n/α but this 
would require taking square roots mod α and n/α and we have only an oracle for square 
roots mod n. Therefore, we show that our oracle for square roots mod n can be used to 
find square roots mod d for any d dividing n. 

First we will outline our algorithm, then we will fill in the details. On input d, (where d 

83




� �

� �

� �

divides n) algorithm A does the following: 

1. If 2 divides d then store 2 and run A(d/2). 

2. If d is a prime power pk then store pk and halt. 

3. Choose x at random from Zd 
∗ and find a square root y = x and y = −x of x2 mod n. 

4. Let α = gcd(y + x, n). 

5. Run A(α) and A(n/α). 

In Step 2, observe that if d is a prime power then k is at most log(d). Therefore, for 
each i < log(d) we can take the ith root of d and test whether this root is prime. (ith 
roots can be found in many ways, in particular using Newton’s Method.) This allows us 
to determine in polynomial time whether d is a prime power. 

In Step 4, observe that an argument identical to what we saw in class (when we considered 
the special case where n was the product of two primes) yields that α is a nontrivial 
factor of n. 

All that remains is to handle Step 4. Here we must use On to find a square root y of 
2x mod d where y = x and y = −x. Here we observe that if y2 = x2 mod n (that is, 

2 2that y is a square root of x2 mod n) then n divides y − x . Therefore, since d divides 
2 2n, d divides y2 − x . This implies that y2 = x mod d. We have thus shown that if y is 

a square root of x2 mod n then y is a square root of x2 mod d. Thus On(x2) returns a 
square root of x mod d. All that remains is to ensure y = x mod d and y = −x mod d. 
Here we observe that x2 has at least 4 square roots mod d (since d is odd and not a 
prime power). On has absolutely no information about which of the square roots of x2 

we started with. Therefore, On must give us a square root y not equal to plus or minus 
x mod d at least half the time. Thus we can just repeat Step 3 a small number of times 
and we are very likely to get x and y with the desired properties. 

84



