User’s Guide

PAML.:
Phylogenetic Analysis
by Maximum Likelihood

Version 3.14 (September 2004)

Ziheng Yang

PAML MANUAL

© Copyright 1993 — 2004 by Ziheng Yang.

The software package is provided "as is" without warranty of any kind. In no event shall the author or his
employer be held responsible for any damage resulting from the use of this software, including but not
limited to the frustration that you may expetience in using the package. The program package, including
source codes, example data sets, executables, and this documentation, is distributed free of charge for
academic use only. Permission is granted to copy and use programs in the package provided no fee is
charged for it and provided that this copyright notice is not removed.

Suggested citation:

Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum
likelihood Computer Applications in BioSciences 13:555-556
(http://abacus.gene.ucl.ac.uk/software/paml.html).

The author can be reached at
Ziheng Yang

Department of Biology
University College London

http://abacus.gene.ucl.ac.uk/

2 PAML MANUAL

Table of Contents

Table Of CONENTS....ccivvrirurriiiiiiiiiitrreeeitiiiiertreeeerseasreeeeessesssssrreesessesssssseeeesssssssssnnes 2
IO L o 1y N 1
PAMIL DOCUIERIALION. ...ttt sns s sssaes 1
What PAMIL Progranms Can Dceceveniecueenicueinieeinieieisiseisesiessesesesseessessesssessessasssesssessesssas 1
What PAML Programs Cannot Dos..............cveeuniveoenieininicinisieseessseee s sssssssenns 2
Organisation of This Mannal ... 3

3 Input File FOIMALScuviiieiiiiiiiiiieeiiiiiiiieeeciiiieeeccceieseeesesssssssesessessssssssseeees 10
Sequence Data File FOIMAL ... 10
Tree File Format and Representations of Tree TOPOIZY «.......uovvvunvveviniiviniiiiviniiiiiiciciiciis 13
DASENI] CONMITOL TG0 vttt et easetsste st st st ensensenseneereas 15
DaASEIG CONIFOL Bt ..ottt 21
coden! (codonml and aantl) CONITOL Tl c........eueeceeuvecoreeeineiricineeiereerereeresee e 21

Codon Sequences (SEQLYPE = 1) coceeieeirieieireeeineieeseieeessesseeenessesesesensessesesssssescsnees 22
Amino Acid Sequences (SEQLYPE = 2) ..ot 25
QUOIVET ettt ettt st ettt et e st et e st et e et et et en e s et e ea e et e st et et e n b e Rt enter e saea et et et et ententeneens 27
P00 ..ottt nene 28
THCHICITEO «vvvevveveereereereesesseisessessessessesesssesssess et essessesses s et e es e s et essessensessetsess et et ansensesseasensesesensensensensensereens 29

4 Models and ANALYSES.....cceiiiiiiiuriieiiiiiniiiiiiieeiiiiiiniieeeeieniirreeeeessssrseeeesessssssssaes 29
GHETAL THOOTY ottt ettt ettt aene 29
INUCLeOtide SUDSIIULION ILOGOLS ...ttt st st sesssss s s ensesssasassresresean 31

Transition/transversion RALE RATIO .o.vov oo eeseeneseeseeseeseneneseeeeene 33
C0do11 SUDSTIUTION IVLOACLS «.....ocvoeoeveeeeieieeeeeieieeeeceeeeee ettt v s es et sseeaserseaeenn 34

Basic Model ...

Branch Models

NSRRI Lo Te [<) KT

Branch-s1t€ MOAELSoueevieeeeeeeeeeeeteeteee ettt enesre s s ae s eneenennenen 39

(@1 Ya LAY, Fa Ya 1< KOO 39

PAML MANUAL 3

Amino Acid SubSTINIION NOAELS ...ttt ssseasiens 40
Variable Rates AMONG STIEsocevuvecuniuviciniiciceiniceeisecste st sases 41
Models for Combined Analyses of Partitioned Data..............coeveecereuveocureeeenereereeneereneeneireseesenseenes 42
For Nucleotides (Baseml) ... ssssssssessssess 42
For Codons (codeml with seqtype = 1) ..o s 43
For Amino Acids (codeml with SEqtyPe = 2) ..o 43
Global and Local Clocks, and Sequences With Daresc.cvecvevencuriviniinicninicsisineseeenesiees 44
Reconstruction of Ancestral SeGUENCesucuviiecrviiciviniiiiiciciicsitesice s 44
Analysing Large Data Sets and Iteration AGOTIEDMIS.........cvveveenevecneeeneinecneisecneisesneaessaseaenees 45
T766 SCArch ALGOTIIIIMIS .ottt e 46
BOOIStrap Data Setsoeeeieiiniiiiiiiiiicii s 47
SIDUILION .o e 47
5 Technical NOLESceiviiiiiiiiiieeieiir ettt essse s sas s sae s snesssnesssanesans 49
The rub File Recording the Progress of IEration ... 49
SPCCIFYING INIHIAL 1V AIHES ..o 49
Fine-tuning the Iteration ALGOIIINMcccveecuriciviiviccinicniieceiscete et 50
Adjustable Variables in 196 S08700 COAESuueeeeeeeveeeeeeicirieirereereeeeree e 50
Inputting Site Pattern Frequencies (Dasenl] coeml)uuwveveveovvoneveosenesineseneseseseneineneanens 51
M07e COAOM MOUELS ...ttt st 52
6 APPENAIXES..uuriiiiiiiiiiiiiiieiiniiieiiiee it s aa e e s aa s e s s saa e e s bane s 53
Appendixc A. Using PAML. with Other Phylogenetics SOffareceeveveeoneveeeneeeenecrnenenns 53
PHYLIP oo s

PAUP, MacClade, and MrBayes
CIUSEAL ..

THEEVIEW ..orviiiiiit s
Other Programs ...

Appendix B. Overcoming Windows ARNOYANCEScuveceveuvecunieeseiieniricsiesesee s 55
Appendix C. Changes Since Version 3.13.......ccvcvenenieninicnieeiniessisecssseesse s sssssseenes 55

WA TS (S 0§ [PPN 58

PAML MANUAL 1

1 Overview

PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package of programs for
phylogenetic analyses of DNA and protein sequences using maximum likelihood.

PAML Documentation

Besides this manual, please note the following resources:

e PAML web site: http://abacus.gene.ucl.ac.uk/software/PAML.html has
information about downloading and compiling the programs. There are also
links from that site to the PAML FAQ page and the PAML discussion group.

e PAML FAQ page: http://abacus.gene.ucl.ac.uk/software/pamlFAQs.pdf

e PAML discussion group at http://www.rannala.org/phpBB2/. Bug reports and
questions should be directed to the discussion group.

What PAML Programs Can Do

The PAML package currently includes the following programs: baseml, basemlg, codeml,
evolver, pamp, yn00, memctree, and chi2, with baseml, codeml, and evolver to be the
most important ones. Examples of analyses that can be performed using the package
include

e Comparison and tests of phylogenetic trees (baseml and codeml);

e EHstimation of parameters in sophisticated substitution models, including models of
variable rates among sites and models for combined analysis of multiple genes or site
partitions (baseml and codeml);

e Likelihood ratio tests of hypotheses through comparison of implemented models
(baseml, codeml, chi2);

e Hstimation of divergence times under global and local clock models (baseml and
codeml);

e Likelihood (Empirical Bayes) reconstruction of ancestral sequences using nucleotide,
amino acid and codon models (baseml and codeml);

e Generation of datasets of nucleotide, codon, and amino acid sequence by Monte
Carlo simulation (evolver);

e EHstimation of synonymous and nonsynonymous substitution rates and detection of
positive selection in protein-coding DNA sequences (yn00 and codeml).

The strength of PAML is its collection of sophisticated substitution models. Tree search
algorithms implemented in baseml and codeml are rather primitive, so except for very
small data sets with say, <10 species, you are better off to use another package, such as
phylip, paup, or mrBayes, to infer the tree topology. You can get a collection of trees
from other programs and evaluate them using baseml or codeml as user trees.

http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.rannala.org/phpBB2/

2 PAML MANUAL

baseml and codeml. The program baseml is for maximum likelihood analysis of
nucleotide sequences. The program codeml is formed by merging two old
programs: codonml, which implements the codon substitution model of
Goldman and Yang (1994) for protein-coding DNA sequences, and aaml,
which implements models for amino acid sequences. These two are now
distinguished by the variable seqtype in the control file codeml.ctl, with 1 for
codon sequences and 2 for amino acid sequences. In this document I use
codonml and aaml to mean codeml with seqtype = 1 and 2, respectively. The
programs baseml, codonml, and aaml use similar algorithms to fit models by
maximum likelihood, the main difference being that the unit of evolution in the
Markov model, referred to as a "site" in the sequence, is a nucleotide, a codon,
or an amino acid for the three programs, respectively. Markov process models
are used to describe substitutions between nucleotides, codons or amino acids,
with substitution rates assumed to be either constant or variable among sites.

evolver. This program can be used to simulate sequences under nucleotide, codon and
amino acid substitution models. It also has some other options such as
generating random trees, and calculating the partition distances (Robinson and
Foulds 1981) between trees.

basemlg. This program implements the (continuous) gamma model of Yang (1993). It
is very slow and unfeasible for data of more than 6 or 7 species. Instead the
discrete-gamma model in baseml should be used.

pamp. This implements the parsimony-based analysis of Yang and Kumar (1996).

yn00. This implements the method of Yang and Nielsen (2000) for estimating
synonymous and nonsynonymous substitution rates (ds and dx) in pairwise
comparisons of protein-coding DNA sequences.

chi2. This is for conducting likelihood ratio tests. It calculates the chi square critical
values, which you can compare with your test statistic calculated from the real
data to determine whether the test is significant at the 5% or 1% levels. Run the
program by typing the program name “chi2”. The program can also calculate
the P value when you input the test statistic and the d.f. Run the program by
typing “chi2 p”.

What PAML Programs Cannot Do

There are many things that you might well expect a phylogenetics package should do but
PAML cannot. Here is a partial list, provided in the hope that it might help you avoid
wasting time.

e Sequence alignment. You should use some other programs such as Clustal or
TreeAlign to align the sequences automatically or do a manual alignment,
perhaps with assistance from programs such as BioEdit and GeneDoc. Manual
adjustment does not seem to have reached the mature stage to be entirely
trustable so you should always do manual adjustment if you can. If you are
constructing thousands of alighments in genome-wide analysis, you should
implement some quality control, and, say, calculate some measure of sequence
divergence as an indication of the unreliability of the alignment. For coding
sequences, you might align the protein sequences and construct the DNA

PAML MANUAL 3

alignment based on the protein alignment. Note that alignment gaps are treated
as missing data in baseml and codeml (if cleandata = 1). If cleandata =
1, all sites with ambiguity characters and alighment gaps are removed.

Gene prediction. The codon-based analysis implemented in codonml (codeml
for codons with seqtype = 1) assumes that the sequences are pre-aligned exons,
the sequence length is an exact multiple of 3, and the first nucleotide in the
sequence is codon position 1. Introns, spacers and other noncoding regions
must be removed and the coding sequences must be aligned before running the
program. The program cannot process sequences downloaded directly from
GenBank, even though the CDS information is there. It cannot predict coding
regions either.

Tree search in large data sets. As mentioned eatlier, you should use another
program to get a tree or some candidate trees and use them as user trees to fit
models that might not be available in other packages.

Organisation of This Manual

Chapter 2 “Installation and Getting Started” explains how to install the programs and
how to run the example data sets included in the package to get started. Chapter 3
“Input File Formats” explains the formats of the sequence data file, the tree file. It also
goes through the variables in the control files such as baseml.ctl and codelm.ctl, which
you use to specify the model of analysis. Chapter 4 “Models and Analyses” provides
background information about the models and analyses implemented. It also mentions
the control variables used to implement the models. Chapters 3 and 4 thus constitute
the bulk of this manual.

4 PAML MANUAL

2 Installation and Running PAML
Programs

PAML programs do not have a graphics or menu-driven interface, so you have to know
how to run programs from the command line. There is not much of an installation
either. You download the archive from the PAML web site, typically named
PAMLX* * tar.gz, and unpack the files onto your hard disk. If you use Windows, the
executables are included together with the source code. If you use UNIX or MAC OS
X, you will have to compile the programs yourselves.

Windows

The executables for Windows (95/98/NT/2000/XP) ate included in the package.
1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html

and download the latest archive and save it on your hard disk. Unpack, say,
using WinZip, the atchive into a folder, say D:\software\paml\ (that is, the
\software\paml folder on the D: drive). You should remember the name of the
folder. I will use D:/software/paml/ as an example here, which you should
substitute with the folder name you used.

2. Start a command box. On Windows, it is called "MS-DOS prompt" or
"Command Prompt" and usually can be found "Start — Programs —
Accessories”. You can right click on the title bar to change the window
properties (such as font, colour, size etc.).

3. Change directory to the paml folder. For example you type one of the
following.
d:
cd \software\paml
dir
4. Note that Windows commands and file names are case-insensitive. The folder src\
contains the source files. The examples\ contains vatious example files, and bin contains
Windows executables. You can use Windows Explorer to look at the files. To run the
program baseml using the default control file baseml.ctl in the current folder, you can a
command somewhat like the following.

bin\baseml

D:\software\paml3.14\bin\baseml

This causes baseml to read the default control file baseml.ctl in the current
folder and do the analysis according to its specifications. Now you can print out
a copy of baseml.ctl, and open a text editor to view the relevant sequence and
tree files.

Similarly you can run codeml and look at the control file codeml.ctl.

Next you can prepatre your own sequence data files and tree files. Control files and other
input files are all plain text files. A common problem occurs due to differences in the
way UNIX and Windows deal with carriage return or line breaks. If you use MS Word
to prepare the input files, you should save them as “Text with line breaks” or “Text

http://abacus.gene.ucl.ac.uk/software/paml.html

PAML MANUAL 5

without line breaks”. Sometimes only one of those two works. Do not save the file as a
Word document. I have collected some notes in the section “Overcoming Windows
Annoyances” in the Appendix (maybe this is in the PAML FAQ page).

UNIX

UNIX executables are not provided in the package, so you will have to compile them
using the source files included in the package, in the src/folder. Note that UNIX
commands and file or folder names are case-sensitive. The following assumes that you
are at the UNIX prompt.

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html
and download the latest archive and save on your hard disk. Unpack it using
gzip, with a command like the following (replace the version numbers and use
the correct name for the archive file)

gzip —d paml3.14.tar.gz
Probably you can use some other programs to unpack the files as well, but I am
not sure.

2. You can use Is to look at the files in the folder. The Windows executables in the bin folder are
useless, so we delete them (using tm). Then cd to the stc/ folder to compile using make.
rm -r bin/*.exe
cd src
make
1ls -1F
rm *.o
mv baseml basemlg codeml pamp evolver yn00 chi2 ../bin
cd ..
bin/codeml

3. If successful, the above commands should have compiled the programs and
generated new files named baseml, basemlg, codeml, pamp, evolver, yn00, and
chi2. Then remove (rm) the intermediate object files *.0, and move (mv) the
compiled executables into the PAML main folder (one level up from
paml/stc/). Then cd to the PAML main folder and run codeml, using the
default control file codeml.ctl. You can then print out a copy of codeml.ctl and
look at it.

If the compilation (the make command) is unsuccessful, you might have to open and
edit the file Makefile before issuing the make command. For example, you can change
cc to gee and -fast to -O3 or -O4. If that does not work either, look at the file
readme.txt in the stc/ folder for compiling instructions. You can copy the compiling
commands onto the command line. For example

cc -0 baseml baseml.c tools.c —-1lm
cc —-o codeml codeml.c tools.c -1lm

would compile baseml and codeml using the C compiler cc. However, in this case code
optimization is not turned on. If it works, you should use compiler switches to optimize
the code, say,

cc -0 codeml -02 codeml.c tools.c -1m

You might want to mv the executables into the bin/ folder on your account rather than
the PAML main folder. And finally, if your current folder is not on your search path,

http://abacus.gene.ucl.ac.uk/software/paml.html

6 PAML MANUAL

you will have to add ./ in front of the executable file name; that is, use ./codeml instead
of codeml to run codeml.

Mac OS X

Since OS X is UNIX, you should follow the instructions for UNIX systems above. You
should open a command terminal (Applications-Ultilities-Terminal) and then compile
and run the programs from the terminal. You cd to the PAML folder and then look at
the readme.txt or Makefile files. See above. However, you will need the Apple
Developer’s Toolkit, which is not included in a standard installation of OS X. Without
this toolkit, you will get a "Command not found" etror with either cc or make. So you
should go to the Apple web site http://developer.apple.com/tools/ to download and
install the Toolkit first before you can compile the programs. Perhaps I should buy a
MAC just to compile PAML programs. There are some more notes about running
programs on MAC OS X or UNIX at the FAQ page.

PowerMacs (PPC or G3 prior to OS X)

Since OS X is now common, I have stopped distributing executables for MACs running
OS 9 or eatlier. MAC executables for two old versions, 3.0a and 3.0c, are still in the
OldVersions/ folder at the ftp site.

A few commonly used DOS and UNIX (including OS X) commands are listed in the
PAML FAQ page.

Files in the Package

The following is a list of files included in the package, which I prepared some time ago.
The list is not up to date now, and you probably do not need to read this section.

Source codes (in the src/ folder):

baseml. c: various models for nucleotide sequences

codeml . c: models for codon (seqtype = 1) and amino acid (seqtype = 2)
sequences

pamp . c: parsimony analyses of nucleotide or amino acid sequences
mcmctree. c: Bayes Markov chain Monte Carlo method on trees
evolver.c: simulation of sequence data and comparison of trees
basemlg. c: Nucleotide-based model with (continuous) gamma rates among
sites

yn00. c: Estimation of dN and dS by the method of Yang and Nielsen (2000)
treesub. c:a few functions

treespace. c: a few more functions

tools. c: my toolkit

tools.h: header file

Compiling commands

Makefile: make file
Makefile.UNIX: make file for UNIX/Linux/MAC OSX

PAML MANUAL 7

README . txt: compiling commands for GNU gcc, and unix CC compilers
Control files:

baseml. ctl: control file for running baseml and basemlg;
codeml. ctl: control file for codeml (i.e., codonml and aaml)
pamp . ctl: control file for pamp

yn00.ctl: control file for yn00

mcmctree. ctl: control file for mcmctree

Data files for codeml (see the files for details):

grantham. dat: amino acid distance matrix (Grantham 1974)
miyata.dat: amino acid distance matrix (Miyata ez a/. 1980)
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff ¢z a/.
(1978)

jones . dat: Empirical amino acid substitution matrix of Jones ¢z a/ (1992)
wag . dat: Empirical amino acid substitution matrix of Whelan and Goldman (in
press)

mtREV24.dat: Empirical amino acid substitution matrix of Adachi and
Hasegawa (1996b)

mtmam. dat: Empirical amino acid substitution matrix for mitochondrial
proteins of mammals

Data files for evolver (see those small files for details):

MCbase.dat: data file for simulating nucleotide sequences
MCcodon.dat: data file for simulating codon sequences
MCaa .dat: data file for simulating amino acid sequences

Excample tree files:

4s . trees: tree structure file for 4-sequence data
5s. trees: tree structure file for 5-sequence data

Documentations:

readme. txt: PAML readme file
PAML.html: PAML web page, serving also as part of the manual (html file)
PAMLDOC . pdf: this document

Example Data Sets

The examples/ folder contains many example data sets. They were used in the
original papers to test the new methods, and I included them so that you could duplicate
our results in the papers. Sequence alignments, control files, and detailed readme files
are included. They are intended to help you get familiar with the input data formats and
with interpretation of the results, and also to help you discover bugs in the program.

examples/HIVNSsites/: This folder contains example data files for the HIV-1
env V3 region analyzed in Yang et al. (2000). The data set is for demonstrating
the NSsites models described in that paper, that is, models of variable ® ratios
among amino acid sites. Those models are called the “random-sites” models by
Yang & Swanson (2002) since a priori we do not know which sites might be
highly conserved and which under positive selection. They are also known as

8 PAML MANUAL

“fishing-expedition” models. The included data set is the 10th data set analyzed
by Yang et al. (2000) and the results are in table 12 of that paper. Look at the
readme file in that folder.

examples/lysin/ : This folder contains the sperm lysin genes from 25 abalone
species analyzed by Yang, Swanson & Vacquier (2000) and Yang and Swanson
(2002). The data set is for demonstrating both the “random-sites” models (as in
Yang, Swanson & Vacquier (2000)) and the “fixed-sites” models (as in (Yang
and Swanson 2002)). In the latter paper, we used structural information to
partition amino acid sites in the lysin into the “buried” and “exposed” classes
and assigned and estimated different o ratios for the two partitions. The
hypothesis is that the sites exposed on the surface are likely to be under positive
selection. Look at the readme file in that folder.

examples/lysozyme/ : This folder contains the primate lysozyme ¢ genes of
Messier and Stewart (1997), re-analyzed by Yang (1998). This is for
demonstrating codon models that assign different o ratios for different
branches in the tree, useful for testing positive selection along lineages. Those
models are sometimes called branch models or branch-specific models. Both
the “large” and the “small” data sets in Yang (1998) are included. Those models
require the user to label branches in the tree, and the readme file and included
tree file explain the format in great detail. See also the section “Tree file and
representations of tree topology” later about specifying branch/node labels.

The lysozyme data set was also used by Yang and Nielsen (2002) to implement
the so-callled “branch-site” models, which allow the ® ratio to vary both among
lineages and among sites. Look at the readme file to learn how to run those
models.

examples/MouseLemurs/ : This folder includes the mtDNA alignment that Yang
and Yoder (2003) analyzed to estimate divergence dates in mouse lemurs. The
data set is for demonstrating maximum likelihood estimation of divergence
dates under models of global and local clocks. The most sophisticated model
described in that paper uses multiple calibration nodes simultaneously, analyzes
multiple genes (or site partitions) while accounting for their differences, and also
account for variable rates among branch groups. The readme file explains the
input data format as well as model specification in detail. The readme?2 file
explains the ad hoc rate smoothing procedure of Yang (2004).

examples/mtCDNA/ : This folder includes the alignment of the 12 protein-coding
genes on the same strand of the mitochondrial genome from seven ape species
analyzed by Yang, Nielsen, & Hasegawa (1998) under a number of codon and
amino acid substitution models. The data set is the “small” data set referred to
in that paper, and was used to fit both the “mechanistic”” and empirical models
of amino acid substitution as well as the “mechanistic” models of codon
substitution. The model can be used, for example, to test whether the rates of
conserved and radical amino acid substitutions are equal. See the readme file for
details.

examples/TipDate/ : This folder includes the example data file used by Rambaut
(2000) in his description of his TipDate models, for viral sequences with known
dates of sequence determination. The readme file explains how to use baseml to
fit the TipDate model, a global clock but with sequences determined at different

PAML MANUAL 9

dates. Local clock models can be applied as well. See the
examples/MouseLemurs/ folder for how to do this. Note that I use the symbol
@ in the sequence name to prefix the date of sequence determination. The file
here is readable by Rambaut’s TipDate program, but the file in his package
requires some editing (by inserting the @ symbol) before it can be read by
baseml.

Some other data files are included in the package as well. The details follow.

brown.nuc and brown. trees: the 895-bp mtDNA data of Brown e# a/. (1982), used
in Yang e al. (1994) and Yang (1994b) to test models of variable rates among
sites.

mtprim9.nuc and 9s. trees: mitochondrial segment consisting of 888 aligned sites
from 9 primate species (Hayasaka, Gojobori, and Horai 1988), used by Yang
(1994a) to test the discrete-gamma model and Yang (1995a) to test the auto-
discrete-gamma models.

abglobin.nuc and abglobin. trees: the concatenated o- and B-globin genes,
used by Goldman and Yang (1994) in their description of the codon model.
abglobin.aa is the alignment of the translated amino acid sequences.

stewart.aa and stewart. trees: lysozyme protein sequences of six mammals
(Stewart, Schilling, and Wilson 1987), used by Yang ez a/. (1995) to test methods
for reconstructing ancestral amino acid sequences.

Which Files Are Needed?

You may copy the executables to a directory containing your data files. Please note that
the program codeml may need some of the data files in the package such as
grantham.dat, dayhoff.dat, jones.dat, wag.dat, mtREV24.dat, or

mtmam. dat. You should probably copy these files together. Other programs do not
need such data files apart from the sequence and tree files you specify in the control file.
There should be better ways of managing the multiple files, but I am too lazy and stupid
to figure that out.

Note also that the programs produce result files, with names such as rub, 1nf, rst, or
rates. You should not use these names for your own files as otherwise they will be
overwritten.

3 Input File Formats

Sequence Data File Format

Have a look at some of the example data files in the package (.nuc, .aa, and .paup). As
long as you get your data file into one of the formats, PAML programs should be able to
read it. The “native” format is the PHYLIP format used in Joe Felsenstein’s PHYLIP
package (but see below). PAML has limited support for the NEXUS file format used by
PAUP and MacClade. Only the sequence data or trees are read, and command blocks
are ignored. PAML does not deal with comment blocks in the sequence data block, so
please avoid them.

Below is an example of the PHYLIP format (Felsenstein 2002). The first line contains
the number of species and the sequence length (possibly followed by option characters).
For codon sequences (codeml with seqtype = 1), the sequence length in the sequence file refers to
the number of nucleotides rather than the number of codons. The only options allowed in the
sequence file are I, S, C and G. The sequences may be in either znterleaved format (option
1, example data file abglobin.nuc), or sequential format (option S, example data file
brown.nuc). The default option is S, so you don’t have to specify it. Option G is used
for combined analysis of multiple gene data and is explained below. The following is an
example data set in the sequential format. It has 4 sequences each of 60 nucleotides (or

20 codons).
4 60
sequence 1
AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2
AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3
AAGCTTCACCGGCGCAGTTGTTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4
AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Species/sequence names. Do not use the following special symbols in a
species/sequence name: “,: # () $ =" in a species name as they are used for special
putposes and may confuse the programs. The symbol @ can be used as part and end of
the sequence name to specify the date of determination of that sequence, for example,
vitus1@1984. The @ symbol is considered part of the name and the sequence was
determined in 1984. The maximum number of characters in a species name
(LSPNAME)) is specified at the beginning of the main programs baseml. c and
codeml.c. In PHYLIP, exactly 10 characters are used for a species name, which I
often found to be too restrictive. So I use a default value of 30. To make this
discrepancy less a problem, PAML considers two consecutive spaces as the end of a
species name, so that the species name does not have to have exactly 30 (or 10)
characters. To make this rule work, you should not have two consecutive spaces within a
species name. For example the above data set can have the following format too.

4 60

sequence 1 AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT

PAML MANUAL 11

sequence 2 AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT

sequence 3 AAGCTTCACC GGCGCAGTTG TTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT

sequence 4 AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

If you want the file to be readable by both PHYLIP and PAML, you should limit the
number of characters in the name to 10 and separate the name and the sequence by at
least two spaces.

In a sequence, T, C, A, G, U, t, ¢, a, g, u are recognized as nucleotides (for baseml,
basemlg and codonml), while the standard one-letter codes (A, R, N, D, C, Q, E, G,
H LL K MF P, ST, W, Y, V or their lowercase equivalents) are recognized as amino
acids. Ambiguity characters (undetermined nucleotides or amino acids) are allowed as
well. Three special characters ".", "-", and "?" are interpreted like this: a dot means the
same character as in the first sequence, a dash means an alignment gap, and a question
mark means an undetermined nucleotide or amino acid. Non-alphabetic symbols such
as ><I"[$%&[]() 110123456789 inside a sequence are simply ignored and can be freely
used as signposts. Lines do not have to be equally long and you can put the whole

sequence on one line.

The way that ambiguity characters and alignment gaps are treated in baseml and
codeml depends on the variable cleandata in the control file. In the maximum
likelihood analysis, sites at which at least one sequence involves an ambiguity character
are removed from all sequences before analysis if cleandata = 1, while if cleandata =
0, both ambiguity characters and alignment gaps are treated as ambiguity characters. In
the pairwise distance calculation (the lower-diagonal distance matrix in the output),
cleandata = 1 means “complete deletion”, with all sites involving ambiguity characters
and alignment gaps removed from all sequences, while cleandata = 0 means “pairwise
deletion”, with only sites which have missing characters in the pair removed.

There are no models for insertions and deletions in the PAML programs. So an
alignment gap is treated as an ambiguity (that is, a question mark ?). Note also that for
codon sequences, removal of any nucleotide means removal of the whole codon.

Notes may be placed at the end of the sequence file and will be ignored by the programs.

Option G: This option is for combined analyses of heterogeneous data sets such as data
of multiple genes or data of the three codon positions. The sequences must be
concatenated and the option is used to specify which gene or codon position each site is
from.

There are three formats with this option. The first is illustrated by an excerpt of a
sequence file listed below. The example data of Brown ez 2/ (1982) are an 895-bp
segment from the mitochondrial genome, which codes for parts of two proteins (ND4
and ND5) at the two ends and three tRNAs in the middle. Sites in the sequence fall
naturally into 4 classes: the three codon positions and the tRNA coding region. The first
line of the file contains the option character G. The second line begins with a G at the
first column, followed by the number of site classes. The following lines contain the site
marks, one for each site in the sequence (or each codon in the case of codonml). The
site mark specifies which class each site is from. If there are g classes, the marks should
be 1,2, ..., g and if g > 9, the marks need to be separated by spaces. The total number of
marks must be equal to the total number of sites in each sequence.

12 PAML MANUAL

5 895 G
G 4

3
123
123
123
123
123
123
123
1231231231231231231231231231231231231
A444
A444
44
444444444444444444
123
123
123
12312312312312312312312312312312312312312312312312312312312
Human
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC. . v v v v
Chimpanzee

The second format is useful if the data are concatenated sequences of multiple genes,
shown below for an example data set. This sequence has 1000 nucleotides from 4 genes,
obtained from concatenating four genes with 100, 200, 300, and 400 nucleotides from
genes 1, 2, 3, and 4, respectively. The "lengths" for the genes must be on the line that
starts with G, Ze., on the second line of the sequence file. (This requirement allows the
program to determine which of the two formats is being used.) The sum of the lengths
for the genes should be equal to the number of nucleotides, amino acids, or codons in
the combined sequence for baseml (or basemlq), aaml, and codonml, respectively.

5 1000 G

G 4 100 200 300 400

Sequence 1
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA

The third format applies to protein-coding DNA sequences only (for baseml). You use
option characters GC on the first line instead of G alone. The program will then treat
the three codon positions differently in the nucleotide-based analysis. It is assumed that
the sequence length is an exact multiple of three.

5 855 GC
human GTG CTG TCT CCT

Option G for codon sequences (codeml with seqtype = 1). The format is similar to
the same option for baseml, but note that the sequence length is in number of
nucleotides while the gene lengths are in number of codons. This has been a source of
confusion. Below is an example:
5 300 G

G2 40 60
This data set has 5 sequences, each of 300 nucleotides (100 codons), which are
partitioned into two genes, with the first gene having 40 codons and the second gene 60
codons.

PAML MANUAL 13

Tree File Format and Representations of Tree Topology

A tree structure file is used when runmode = 0 or 1. The file name is specified in the
appropriate control file. The tree topology is typically specified using the parenthesis
notation, although it is possible to use a branch representation, as described below.

Parenthesis notation: The first is the familiar parenthesis representation, used in most
phylogenetic software. The species can be represented using either their names or their
indexes corresponding to the order of their occurrences in the sequence data file. If
species names are used, they have to match exactly those in the sequence data file
(including spaces or strange characters). Branch lengths are allowed. The following is a
possible tree structure file for a data set of four species (human, chimpanzee, gorilla, and
orangutan, occurring in this order in the data file). The first tree is a star tree, while the
next four trees are the same.

45 // 4 species, 5 trees

(1,2,3,4); // the star tree

((1,2),3,4); // species 1 and 2 are clustered together

((1,2),3,4); // Commas are needed with more than 9 species

((human, chimpanzee) ,gorilla, orangutan) ;
((human:.1l,chimpanzee:.2):.05,gorilla:.3,orangutan:.5);

If the tree has branch lengths, baseml and codeml allow you to use the branch lengths in

the tree as starting values for maximum likelihood iteration.

Whether you should use rooted or unrooted trees depends on the model, for example,
on whether a molecular clock is assumed. Without the clock (clock = 0), unrooted trees
should be used, such as ((1,2),3,4) or (1,2,(3,4)). With the clock or local-clock models,
the trees should be rooted and these two trees are different and both are different from
(((1,2),3),4). In PAML, a rooted tree has a bifurcation at the root, while an unrooted tree
has a trifurcation or multifurcation at the root.

Tree files produced by PAUP and MacClade. PAML programs have only limited
compatibility with the tree file generated by PAUP or MacClade. First the “[&U]”
notation for specifying an unrooted tree is ignored. For the tree to be accepted as an
unrooted tree by PAML, you have to manually modify the tree file so that there is a
trifurcation at the root, for example, by changing “(((1,2),3),4)” into “((1,2),3,4)”.
Second, the “Translate” keyword is ignored by PAML as well, and it is assumed that the
ordering of the sequences in the tree file is exactly the same as the ordering of the
sequences in the sequence data file.

Branch or node Iabels. Some models implemented in baseml and codeml allow
several groups of branches on the tree, which are assigned different parameters of
interest. For example, in the local clock models (clock = 2 or 3) in baseml or codeml,
you can have, say, 3 branch rate groups, with low, medium, and high rates respectively.
Also the branch-specific codon models (model = 2 or 3 for codonml) allow different
branch groups to have different s, leading to so called “two-ratios” and “three-ratios”
models. All those models require branches or nodes in the tree to be labeled. Branch
labels are specified in the same way as branch /engrhs except that the symbol “#” is used
rather than “:”. The branch labels are consecutive integers starting from 0, which is the
default and does not have to be specified. For example, the following tree

((Hsa Human, Hla gibbon) #1, ((Cgu/Can_colobus, Pne langur), Mmu rhesus), (Ssc_squirrelM,
Cja marmoset)) ;

14 PAML MANUAL

is from the tree file examples/lysozyme/lysozyme.trees, with a branch label for
fitting models of different @ ratios for branches. The internal branch ancestral to human
and gibbon has the ratio m1, while all other branches (with the default label #0) have the

background ratio @o. This fits the model in table 1C for the small data set of lysozyme
genes in Yang (1998). See the readme file in the examples/lysozyme/ folder.

On a big tree, you might want to label all branches within a clade. For this purpose, you
can use the clade label §. § is for A, which looks like a good clade symbol but is missing
on most keyboards. So (clade) $2 is equivalent to labeling all nodes/branches within the
clade with #2. The following two trees are thus equivalent.

(((rabbit, rat) $1, human), goat_cow, marsupial);

(((rabbit #1, rat #1) #1, human), goat_cow, marsupial);

Here are the rules concerning nested clade labels. The symbol # takes precedence over
the symbol §, and clade labels close to the tips take precedence over clade labels for
ancestral nodes close to the root. So the following two trees are equivalent. In the first
tree below, $1 is first applied to the whole clade of placental mammals (except for the
human lineage), and then $2 is applied to the rabbit-rate clade.

((((rabbit, rat) $2, human #3), goat cow) $1, marsupial);

((((rabbit #2, rat #2) #2, human #3) #1, goat cow #1) #1, marsupial);

I have found it convenient to create the tree file with labels and read the tree using Rod
page’s (1996) TreeView to check that the tree and labels are right. New versions of
TreeView also allow you to add branch labels in the tree-edit window, but even being
able to view the labels is a big help. TreeView however does not recognize or allow
labels for tips or tip branches. Another program that you can use to create and/or view
branch or node labels is Andrew Rambaut’s TreeEdit, available for the MAC. T have no
experiencing of using it.

Divergence date symbol @. Fossil calibration information is specified using the
symbol @. This is used for the clock and local clock models in baseml and codeml. See
the readme file in the examples/MouseLemurs/ folder. In the mcmctree program
implementing Bayes MCMC dating methods, I also use symbols < and > to specity soft
bounds on fossil calibration nodes ages, while @ is used to represent the most likely age.
So in the following example, the human-chimpanzee divergence is most likely at 6MY
and quite unlikely to be outside the (4MY, 10MY) interval.

((gorilla, (human, chimpanzee) '>.04 @0.06 <.10'), orangutan) '>.12 <.30';

Branch representation of tree topology: A second way of representing the tree
topology used in PAML is by enumerating its branches, each of which is represented by
its starting and ending nodes. This representation is also used in the result files for
outputting the estimated branch lengths, but you can also use it in the tree file. For
example, the tree ((1,2),3,4) can be specified by enumerating its 5 branches:

56 6 1 6 2 53 5 4

The nodes in the tree are indexed by consecutive natural numbers, with 1, 2, ..., s
representing the s known sequences in the data, in the same order as in the data. A
number larger than s labels an internal node, at which the sequence is unknown. So in
the above tree, node 5 is ancestral to nodes 6, 3, and 4, while node 6 is ancestral to nodes
1 and 2.

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html

PAML MANUAL 15

This notation is convenient to specify a tree in which some sequences in the data are
direct ancestors to some others. For example, the following tree for 5 sequences has 4
branches, with sequence 5 to be the common ancestor of sequences 1, 2, 3, and 4:

4

51 52 53 5 4

£Warning. 1did not try to make this tree representation work with all models
implemented in baseml and codeml. If you use this representation, you should test the
program carefully. If it does not work, you can let me know so that I will try to fix it.

baseml Control File

The default control file for baseml is baseml.ctl, and an example is shown below.
Note that spaces are required on both sides of the equal sign, and blank lines or lines
beginning with "*" are treated as comments. Options not used can be deleted from the
control file. The order of the variables is unimportant.

segfile = brown.nuc * sequence data file name

outfile = mlb * main result file
treefile = brown.trees * tree structure file name

noisy = 3 * 0,1,2,3: how much rubbish on the screen
verbose = 0 * 1: detailed output, 0: concise output
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
* 3: StepwiseAddition; (4,5):PerturbationNNI
model = 5 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85

* 5:T92, 6:TN93, 7:REV, 8:UNREST, 9:REVu; 10:UNRESTu
Mgene = 0 * O:rates, l:separate; 2:diff pi, 3:diff kapa, 4:all diff

* ndata = 1 * number of data sets
clock = 0 * 0:no clock, l:clock; 2:1local clock; 3:CombinedAnalysis
fix kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
kappa = 2.5 * initial or fixed kappa
fix alpha = 1 * 0: estimate alpha; 1: fix alpha at value below
alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
Malpha = 0 * 1: different alpha's for genes, 0: one alpha
ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates
fix_rho =1 * 0: estimate rho; 1: fix rho at value below
rho = 0. initial or fixed rho, 0:no correlation

nparK = 0 * rate-class models. 1l:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK

nhomo = 0 * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2
getSE = 0 0: don't want them, 1: want S.E.s of estimates
RateAncestor = 0 (0,1,2): rates (alpha>0) or ancestral states
Small Diff = le-6

cleandata
icode

1

1 remove sites with ambiguity data (l:yes, 0:no)?

0
readpattf = 0

0

0

(RateAncestor=1 for coding genes, "GC" in data)
read site pattern frequences instead of sequences
0: ignore, -1: random, 1l: initial, 2: fixed

0: simultaneous; 1: one branch at a time

B

fix blength =
method =

* Ok % ok ot

The control variables are described below.

segfile, outfile, and treefile specifies the names of the sequence data file, main
result file, and the tree structure file, respectively. You should not have spaces
inside a file name. In general try to avoid special characters in a file name as
they might have special meanings under the OS.

16 PAML MANUAL

noisy controls how much output you want on the screen. If the model being fitted
involves much computation, you can choose a large number for noisy to
avoid loneliness. verbose controls how much output in the result file.

runmode = 0 means evaluation of the tree topologies specified in the tree structure file,
and runmode = 1 or 2 means heuristic tree search by the star-decomposition
algorithm. With runmode = 2, the algorithm starts from the star tree, while if
runmode = 1, the program will read a multifurcating tree from the tree
structure file and try to estimate the best bifurcating tree compatible with it.
runmode = 3 means stepwise addition. runmode = 4 means NNI perturbation
with the starting tree obtained by a parsimony algorithm, while runmode =5
means NNI perturbation with the starting tree read from the tree structure file.
The tree search options do not work well, and so use runmode = 0 as much as
you can. For relatively small data set, the stepwise addition algorithm seems
usable.

model specifies the model of nucleotide substitution. Models 0, 1, ..., 8 represent
models JC69, K80, F81, F84, HKY85, T92, TN93, REV (also known as GTR),
and UNREST, respectively. Check Yang (1994 JME 39:105-111) for notation.
Two more models are implemented recently. model = 9 are special cases of the
REV model, while model = 10 are special cases of the unrestricted model. The
format is shown in the following examples and should be self-explanatory.
Basically you include extra information on the same line that specifies the model
when model = 9 or 10. The number in the brackets [] are the number of free
rate parameters. For example, this should be 5 for REV and 11 for UNREST.
Following that number are equal number of parenthesis pairs (). The rate
parameters in the output file will follow this order here. The pairs that are not
mentioned will have rate 1. When model = 9, you specify TC or CT, but not
both. When model = 10, TC and CT are different. See the following examples
and Yang (1994a) for notation.

model = 10 [0] /* JCe69 */

model = 10 [1 (TC CT AG GA)] /* K80 */

model = 10 [11 (TA) (TG) (CT) (CA) (CG) (AT) (AC) (AG) (GT) (GC) (GA) 1 /* unrest
*/

model = 10 [5 (AC CA) (AG GA) (AT TA) (CG GC) (CT TC)] /* SYM */

model = 9 [2 (TA TG CA CG) (AG)] /* TN93 */

Mgene is used in combination with option G in the sequence data file, for combined
analysis of data from multiple genes or multiple site pattitions (such as the three
codon positions). More details are given later in the Models and Methods
section. Choose 0 if option G is not used in the data file.

ndata: specifies the number of separate data sets in the file. This variable is useful for
simulation. You can use evolver to generate 200 replicate data sets, and then
set ndata = 200 to use baseml to analyze them.

clock specifies models concerning rate constancy or variation among lineages. clock
= 0 means no clock and rates are entirely free to vary from branch to branch.
An unrooted tree should be used under this model. For clock = 1,2, 0r 3, a
rooted tree should be used. clock = 1 means the global clock, with all
branches having the same rate. If fossil calibration information is specified in
the tree file using the symbol @, the absolute rate will be calculated. Multiple
calibration points can be specified this way. If sequences have dates, this option
will fit Andrew Rambaut’s TipDate model. clock = 2 implements local clock

PAML MANUAL 17

models of Yoder and Yang (2000) and Yang and Yoder (2003), which assume
that branches on the tree can be partitioned into several rate groups. The
default is group 0, while all other groups have to be labeled using branch/node
labels (symbols # and §) in the tree. The program will then estimate those rates
for branch groups. clock = 3 is for combined analysis of multiple-gene or
multiple-partition data, allowing the branch rates to vary in different ways
among the data partitions (Yang and Yoder 2003). To account for differences
in the evolutionary process among data partitions, you have to use the option G
in the sequence file as well as the control variable Mgene in the control file
(baseml.ctl or codeml.ctl). Read the section above on “Tree file format” about
how to specify fossil calibration information in the tree, how to label branch
groups. Read Yang and Yoder (2003) and the readme file in the
examples/MouseLemurs/ folder to duplicate the analysis of that paper. Also
the variable (= 5 or 6) is used to implement the ad hoc rate smoothing
procedure of Yang (2004). See the file readme?2.txt for instructions and the
paper for details of the model.

fix kappa specifies whether x in K80, F84, or HKYS85 is given at a fixed value or is to
be estimated by iteration from the data. If fix kappa = 1, the value of
another vatiable, kappa, is the given value, and otherwise the value of kappa is
used as the initial estimate for iteration. The variables fix kappa and kappa
have no effect with JC69 or F81 which does not involve such a parameter, or
with TN93 and REV which have two and five rate parameters respectively,
when all of them are estimated from the data.

fix_alpha and alpha work in a similar way, where alpha refers to the shape
parameter o of the gamma distribution for variable substitution rates across
sites (Yang 1994a). The model of a single rate for all sites is specified as
fix alpha =1 and alpha = 0 (0 means infinity), while the (discrete-) gamma
model is specified by a positive value for alpha, and ncatG is then the number
of categories for the discrete-gamma model (baseml).

fix rho and rho work in a similar way and concern independence or correlation of
rates at adjacent sites, where p (tho) is the correlation parameter of the auto-
discrete-gamma model (Yang 1995a). The model of independent rates for sites
is specified as fix rho =1 and rho = 0; choosing alpha = 0 further means a
constant rate for all sites. The auto-discrete-gamma model is specified by
positive values for both alpha and rho. The model of a constant rate for sites
is a special case of the (discrete) gamma model with & = o (alpha = 0), and
the model of independent rates for sites is a special case of the auto-discrete-
gamma model with p = 0 (rho = 0).

nparkK specifies nonparametric models for variable and Markov-dependent rates across
sites: nparK = 1 or 2 means several (ncatG) categories of independent rates for
sites, while nparK = 3 or 4 means the rates are Markov-dependent at adjacent
sites; nparK = 1 and 3 have the restriction that each rate category has equal
probability while nparK = 2 and 4 do not have this restriction (Yang and
Roberts 1995). The variable nparK takes precedence over alpha or rho.

nhomo is for baseml only, and concerns the frequency parameters in some of the
substitution models. The option nhomo =1 fits a homogeneous model, but

estimates the frequency parameters (77r, 7ic and 77a; 7 is not a free parameter as

18

PAML MANUAL

the frequencies sum to 1) by maximum likelihood iteration. This applies to F81,
F84, HKY85, T92 (in which case only 7gc is a parameter), TN93, or REV
models. Normally (nhomo = 0) these are estimated by the averages of the
observed frequencies. In both cases (nhomo = 0 and 1), you should count 3 (or
1 for T92) free parameters for the base frequencies.

Options nhomo = 3, 4, and 5 work with F84, HKY85, or T92 only. They fit
the nonhomogeneous models of Yang and Roberts (1995) and Galtier and
Gouy (1998). The nucleotide substitution is specified by the variable mode 1
and is one of F84, HKY85 or T92, but with different frequency parameters used
in the rate matrix for different branches in the tree, to allow for unequal base
frequencies in different sequences. The position of the root then makes a
difference to the likelihood, and rooted trees are used. Because of the
parameter richness, the model may only be used with small trees except that you
have extremely long sequences. Yang and Roberts (1995) used the HKY85 or
F84 models, and so three independent frequency parameters are used to
describe the substitution pattern, while Galtier and Gouy (1998) used the T92
substitution model and uses the GC content ¢ only, with the base frequencies
give as 7rr = 7ma = (1 — m6c)/2 and ¢ = 76 = 76c/2. The option nhomo = 4
assigns one set of frequency parameters for the root, which are the initial base
frequencies at the root, and one set for each branch in the tree. This is model
N2 in Yang and Roberts (1995) if the substitution model is F84 or HKY85 or
the model of Galtier and Gouy (1998) if the substitution model is T92. Option
nhomo = 3 uses one set of base frequencies for each tip branch, one set for all
internal branches in the tree, and one set for the root. This specifies model N1
in Yang and Roberts (1995).

The option nhomo = 5 lets the user specify how many sets of frequency
parameters should be used and which node (branch) should use which set. The
set for the root specifies the initial base frequencies at the root while the set for
any other node is for parameters in the substitution matrix along the branch
leading to the node. You use branch (node) labels in the tree file (see the
subsection “Tree file and representations of tree topology” above) to tell the
program which set each branch should use. There is no need to specify the
default set (0). So for example nhomo = 5 and the following tree in the tree file
species sets 1, 2, 3, 4, and 5 for the tip branches, set 6 for the root, while all the
internal branches (nodes) will have the default set 0. This is equivalent to
nhomo = 3.

(C((1 #1, 2: #2), 3 #3), 4 #4), 5 #5) #6;

The output for nhomo = 3, 4, 5 is under the heading “base frequency
parameters (4 sets) for branches, and frequencies at nodes”. Two sets of
frequencies are listed for each node. The first set are the parameters (used in
the substitution rate matrix for the branch leading to the node), and the second
set are the expected base frequencies at the node, calculated from the model
((Yang and Roberts 1995); page 456 column top). If the node is the root, the
same set of frequencies are printed twice.

PAML MANUAL 19

Note that the use of the variable fix kappa here with nhomo = 3,4 or 5 is
unusual. £ix kappa = 1 means one common xis assumed and estimated for
all branches, while fix kappa = 0 means one Kis estimated for each branch.

nhomo = 2 uses one transition/transversion rate ratio (k) for each branch in the
tree for the K80, F84, and HKY85 models (Yang 1994b; Yang and Yoder 1999).

getSE tells whether we want estimates of the standard errors of estimated parameters.
These are crude estimates, calculated by the curvature method, Ze., by inverting
the matrix of second derivatives of the log-likelihood with respect to
parameters. The second derivatives are calculated by the difference method, and
are not always reliable. Even if this approximation is reliable, tests relying on the
SE's should be taken with caution, as such tests rely on the normal
approximation to the maximum likelihood estimates. The likelihood ratio test
should always be preferred. The option is not available and choose getSE = 0
when tree-search is performed.

RateAncestor = 1 also works with runmode = 0 only. For models of variable rates
across sites, the program will calculate rates for sites along the sequence (output
in the file rates) and performs marginal ancestral reconstruction (output in
rst). For models of one rate for all sites, RateAncestor = 1 does both
marginal and joint ancestral sequence reconstruction (Yang, Kumar, and Nei
1995). The program lists results site by site. You can also use the variable
verbose to control the amount of output. If you choose verbose = 0, the
program will list the best nucleotide at each node for the variable sites only and
results for constant sites are suppressed. If verbose = 1, the program will list
all sites for the best nucleotide at each node. If verbose = 2, the program also
lists the full posterior probability distribution for each site at each ancestral node
(for marginal reconstruction).

For nucleotide based (baseml) analysis of protein coding DNA sequences
(option GC in the sequence data file), the program also calculates the posterior
probabilities of ancestral amino acids. In this analysis, branch lengths and other
parameters are estimated under a nucleotide substitution model, but the
reconstructed nucleotide triplets are treated as a codon to infer the most likely
amino acid encoded. Posterior probabilities for stop codons are small and reset
to zero to scale the posterior probabilities for amino acids. To use this option,
you should add the control variable 1 code in the control file baseml.ctl.
This is not listed in the above. The variable icode can take a value out of 0, 1,
..., 11, corresponding to the 12 genetic codes included in PAML (See the control
file codeml.ctl for the definition of different genetic codes). A nucleotide
substitution model that is very close to a codon-substitution model can be
specified as follows. You add the option characters GC at the end of the first
line in the data file and choose model = 4 (HKY85) and Mgene = 4. The
model then assumes different substitution rates, different base frequencies, and
different transition/ transversion rate ratio (kappa) for the three codon positions.
Ancestral reconstruction from such a nucleotide substitution should be very
similar to codon-based reconstruction. (Thanks to Belinda Change for many
useful suggestions.)

Small Diff isa small value used in the difference approximation of derivatives.

20 PAML MANUAL

cleandata = 1 means sites involving ambiguity characters (undetermined nucleotides
such as N, ?, W, R, Y, etc. anything other than the four nucleotides) or
alighment gaps are removed from all sequences. This leads to faster calculation.
cleaddata = 0 (default) uses those sites.

method: This variable controls the iteration algorithm for estimating branch lengths
under a model of no clock. method = 0 implements the old algorithm in
PAML, which updates all parameters including branch lengths simultaneously.
method =1 specifies an algorithm newly implemented in PAML, which
updates branch lengths one by one. method =1 does not work under the
clock models (clock =1, 2, 3).

icode: This specifies the genetic code to be used for ancestral reconstruction of
protein-coding DNA sequences. This is implemented to compare results of
ancestral reconstruction with codon-based analysis. For example the F3x4
codon model of Goldman and Yang (1994) is very similar to the nucleotide
model HKY85 with different substitution rates and base frequencies for the
three codon positions. The latter is implemented by using use options GC in
the sequence data file and model = 4 and Mgene = 4. To use the option
icode, you have to choose RateAncestor =1.

readpattf: This forces the program to read site pattern frequencies instead of
sequence data. See the section on “Rarely used features”.

fix blength: This tells the program what to do if the tree has branch lengths. Use
0 if you want to ignore the branch lengths. Use —1 if you want the program to
start from random starting points. This might be useful if there are multiple
local optima. Use 1 if you want to use the branch lengths as initial values for the
ML iteration. Tty to avoid using the “branch lengths” from a parsimony
analysis from PAUP, as those are numbers of changes for the entire sequence
(rather than per site) and are very poor initial values. Use 2 if you want the
branch lengths to be fixed at those given in the tree file (rather than estimating
them by ML). In this case, you should make sure that the branch lengths are
sensible; for example, if two sequences in the data file are different, but the
branch lengths connecting the two sequences in the tree are all zero, the data
and tree will be in conflict and the program will crash.

Output: The output should be self-explanatory. Descriptive statistics are always listed.
The observed site patterns and their frequencies are listed, together with the proportions
of constant patterns. Nucleotide frequencies for each species (and for each gene in case
of multiple gene data) are counted and listed. Imax = In(Lmax) is the upper limit of the
log likelihood and may be compared with the likelihood for the best (or true) tree under
the substitution model to test the model's goodness of fit to data (Goldman 1993; Yang,
Goldman, and Friday 1995). You can ignore it if you don’t know what it means. The
pairwise sequence distances are included in the output as well, and also in a separate file
called 2base. t. This is a lower-diagonal distance matrice, readable by the NEIGHBOR
program in Felesenstein's PHYLIP package (Felsenstein 2002). For models JC69, K80,
I'81, I'84, the appropriate distance formulas are used, while for more complex models,
the TN93 formula is used. baseml is mainly a maximum likelihood program, and the
distance matrix is printed out for convenience and really has nothing to do with the later
likelihood calculation.

PAML MANUAL 21

With getSE = 1, the S.E.s are calculated as the square roots of the large sample variances
and listed exactly below the parameter estimates. Zeros on this line mean errors, either
caused by divergence of the algorithm or zero branch lengths. The S.Es of the common
parameters measure the reliability of the estimates. For example, (k — 1)/SE(x), when k
is estimated under K80, can be compared with a normal distribution to see whether
there is real difference between K80 and JC69. The test can be more reliably performed
by comparing the log-likelihood values under the two models, using the likelihood ratio
test. It has to be stressed that the S.E.’s of the estimated branch lengths should not be
misinterpreted as an evaluation of the reliability of the estimated tree topology (Yang
1994c¢).

If the tree file has more than one tree, the programs baseml and codeml will
calculate the bootstrap proportions using the RELL method (Kishino and Hasegawa
1989), as well as the method of Shimodaira and Hasegawa (1999) with a correction for
multiple comparison. The bootstrap resampling accounts for possible data partitions
(option G in the sequence data file).

basemlg Control File

basemlg uses the same control file baseml.ctl, as baseml. Tree-search or the
assumption of a molecular clock are not allowed and so choose runmode = 0 and
clock = 0. Substitution models available for basemlg are JC69, F81, K80, F84 and
HKY85, and a continuous gamma is always assumed for rates at sites. The variables
ncatG, given rho, rho, nhomo have no effect. The S.E.'s of parameter estimates
are always printed out because they are calculated during the iteration, and so getSE has
no effect.

Because of the intensive computation required by basemlg, the discrete-gamma model
implemented in baseml is recommended for data analysis. If you choose to use
basemlg, you should run baseml first, and then run basemlg. This allows baseml
to collect initial values into a file named in.basemlg, for use by basemlg. Note that
basemlg implements only a subset of models in baseml.

codeml (codonml and aaml) Control File

Since the codon based analysis and the amino acid based analysis use different models,
and some of the control variables have different meanings, it may be a good idea to use
different control files for codon and amino acid sequences. The default control file for
codeml is codeml.ctl, as shown below.

seqgfile = stewart.aa * sequence data file name
outfile = mlc * main result file name
treefile = stewart.trees * tree structure file name
noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
verbose = 0 * 1: detailed output, 0: concise output
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
* 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise
segqtype = 2 * l:codons; 2:AAs; 3:codons-->AAs
CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
* ndata = 10
clock = 0 * 0:no clock, l:clock; 2:1local clock; 3:TipDate

aaDist = 0 * 0O:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a

22

PAML MANUAL

aaRatefile =

model =

NSsites =

icode =
Mgene =

fix kappa =
kappa =
fix omega =

omega = .

fix_alpha =
alpha =
Malpha =
ncatG =

fix rho
rho =

getSE
RateAncestor =

Small Diff

* cleandata =
* fix blength
method =

* 7:AAClasses
wag.dat * only used for aa segs with model=empirical (_F)
* dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own

* models for codons:
* 0:one, 1l:b, 2:2 or more dN/dS ratios for branches

* models for AAs or codon-translated AAs:
* 0:poisson, l:proportional,2:Empirical,3:Empirical+F
* 6:FromCodon, 8:REVaa 0, 9:REVaa(nr=189)

O:one w;l:neutral;2:selection; 3:discrete;4:freqgs;
5:gamma; 6:2gamma; 7 :beta; 8:betas&w; 9:betaγ
10:beta&gamma+l; 1ll:beta&normal>1l; 12:0&2normal>1;
13:3normal>0

o
*

O:universal code; l:mammalian mt; 2-11l:see below
O:rates, l:separate;

o
*

* 1: kappa fixed, 0: kappa to be estimated

initial or fixed kappa

* 1: omega or omega_ 1 fixed, 0: estimate

* initial or fixed omega, for codons or codon-based AAs

s O N O
*

* 0: estimate gamma shape parameter; 1: fix it at alpha
* initial or fixed alpha, 0O:infinity (constant rate)

* different alphas for genes

* # of categories in dG of NSsites models

w o o

=
*

0: estimate rho; 1: fix it at rho
0. * initial or fixed rho, 0:no correlation

0 * 0: don't want them, 1: want S.E.s of estimates
0 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

.5e-6

0 * remove sites with ambiguity data (l:yes, 0:no)?
0 * 0: ignore, -1: random, 1l: initial, 2: fixed

0 * 0: simultaneous; 1l: one branch at a time

The variables seqfile, outfile, treefile, noisy, Mgene, fix alpha, alpha,
Malpha, fix rho, rho, clock, getSE, RateAncestor, Small Diff,
cleandata, ndata, fix blength, and method are used in the same way as in
baseml.ctl and are described in the previous section. The variable seqtype
specifies the type of sequences in the data; segqtype = 1 means codon sequences (the
program is then codonml); 2 means amino acid sequences (the program is then aaml);
and 3 means codon sequences which are to be translated into proteins for analysis.

Codon Sequences (seqtype = 1)

CodonFreq specifies the equilibrium codon frequencies in codon substitution model.
These frequencies can be assumed to be equal (1/61 each for the standard
genetic code, CodonFreq = 0), calculated from the average nucleotide
frequencies (CodonFreq = 1), from the average nucleotide frequencies at the
three codon positions (CodonFreq = 2), or used as free parameters
(CodonFreq = 3). The number of parameters involved in those models of
codon frequencies is 0, 3, 9, and 60 (for the universal code), for CodonFreq =
0, 1, 2, and 3 respectively.

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's
matrix is used (= 1) (Yang, Nielsen, and Hasegawa 1998). The example
mitochondtial data set analyzed in that papet is included in the example/mtdna
folder in the package.

PAML MANUAL 23

aaDist = 7 (AAClasses), which is implemented for both codon and amino acid
sequences, allow you to have several types of amino acid substitutions and let
the program estimate their different rates. The model was implemented in Yang
et al. (1998). The number of substitution types and which pair of amino acid
changes belong which type is specified in a file called OmegaAA.dat. You can
use the model to fit different @ ratios for “conserved” and “charged” amino
acid substitutions. The folder examples/mtCDNA contain example files for
this model; check the readme file in that folder.

runmode = -2 performs ML estimation of ds and dy in pairwise comparisons. The
program will collect estimates of ds and di into the files 2ML. dS and 2ML. dN.
Since many users seem interested in looking at dy / ds ratios among lineages,
examination of the tree shapes indicated by branch lengths calculated from the
two rates may be interesting although the analysis is ad hoc. 1f your species
names have no more than 10 characters, you can use the output distance
matrices as input to Phylip programs such as neighbor without change.
Otherwise you need to edit the files to cut the names short.

model concerns assumptions about the @ ratios among branches (Yang 1998; Yang and
Nielsen 1998). model = 0 means one @ ratio for all lineages (branches), 1
means one ratio for each branch (the free-ratio model), and 2 means an arbitrary
number of ratios (such as the 2-ratios or 3-ratios models). When model =2,
you have to group branches on the tree into branch groups using the symbols #
ot § in the tree. See the section above about specifying branch/node labels.

With model = 2, the variable fix omega fixes the last ratio (0g-1 if you have
k£ ratios in total) at the value of omega specified in the file. This option can be
used to test, for example, whether the ratio for a specific lineage is significantly
different from one. See the readme file in the examples/lysozyme/ folder
and try to duplicate the results of Yang (1998).

NSsites specifies models that allow the di/ds ratio (@) to vary among sites (Nielsen
and Yang 1998; Yang et al. 2000). NSsites = m corresponds to model M in
Yang ef al. (2000). The variable ncatG is used to specify the number of

categories in the @ distribution under some models. The values of ncatG used
to perform analyses in that paper are 3 for M3 (discrete), 5 for M4 (freq), 10 for
the continuous distributions (M5: gamma, M6: 2gamma, M7: beta, M8:beta&w,
M9:beta&gamma, M10: beta&gamma+1, M11:beta&normal>1, and
M12:0&2normal>1, M13:3normal>0). This means M8 will have 11 site classes
(10 from the beta distribution plus 1 additional class). The postetior
probabilities for site classes as well as the expected @ values for sites are listed in
the file rst, which may be useful to pinpoint sites under positive selection, if
they exist.

To run several Nssites models in one batch, you can specify several models
on the same line, as follows:

NSsites = 0 1 2 3 7 8

This forces the program to run models MO, M1, M2a, M33, M7, and M8 on the
same data set in one go. When more than one NSsites model is specified in this
way, the number of categories (ncatG) used will match those used in Yang ez
al. (2000), and you do not have any control over it.

24

PAML MANUAL

The continuous neutral and selection models of Nielsen and Yang (1998) are
not implemented in the program.

Version 3.14 introduced some changes to the NSsites models M1 and M2.
Specifically, the old version of those two models assume a class of conserved
sites with ay = 0 while in the modified models, called M1a and M2a, a is
estimated from the data under the constraint 0 < ey < 1. Furthermore, the
Bayes empirical Bayes (BEB) calculation of posterior probabilities for site
classes has been implemented for models M2a (NSsites = 2) and M8 (NSsites =
8) to replace the old naive empirical Bayes (NEB) calculation (Yang, Wong, and
Nielsen 2005). The current advice is that you use M1a and M2a to construct an
LRT and M7 and M8 to construct an LRT, and use M2a and M8 to identify sites
under positive selection. See the section Codon Models in the next Chapter for
more details.

Excample files for NSsites models: The HIV envy data set used in Yang ef al. ((2000):
table 12) is included in the PAML/examples/hivNSsites folder. The abalone
sperm lysin data set was analyzed by Yang, Swanson and Vacquier (2000) using
several NSsites models. This data set is included in the examples/ folder as
well. Also the lysozyme data set, included in the examples/ folder, was analyzed
by Yang and Nielsen (2002) using a few NSsites models.

The branch-site models of Yang and Nielsen (2002) are specified by

2
3

Model A: model = 2, NSsites
Model B: model = 2, NSsites

See that paper for details. Under both models A and B, the number of site
classes is fixed at 4 (Yang and Nielsen 2002), and the variable ncatG is ignored
by the program. (To run the discrete model with only 2 site classes, which is the
null model to be compared with model B, you should specify model = 0,
NSsites = 3,ncatG = 2. The discrete model with 3 site classes (ncatG =
3) is not nested within model B, and you cannot use it for comparison with
model B using the p? distribution.) The output should be self-explanatory. The
(“large”) lysozyme data set analyzed in that paper is included in the examples
folder in the package. Look at the readme file.

Version 3.14 intr