
Massachusetts Institute of Technology 
6.877 Computational Evolutionary Biology, Fall, 2005 

Laboratory 2, Part I: Evolution, polymorphism, and the coalescent 

Handed out: October 18, 2005 Due: October 31, 2005�

This portion of the laboratory is PART I of 2 parts. PART II will be handed out next�
Monday. PART I consists of a series of ‘problem set’ type exercises followed by some�
warmup computer exercises.�

Exercises with the basic theory.�
Preamable: some review and ‘cheat sheet’ summary.�

0. Definitions and descriptive statistics for DNA sequences 

Heterozygosity (also known as ‘gene diversity’) is the probability that two random sequences 
are different. To calculate it, one can straightforwardly examine all sequence pairs and coun 
the fraction of the pairs in which the two sequences are different from each other. It is often 
faster to start by counting the number of copies of each type in the data. Let ni denote the 
number of copies of type i and let n be the sum of all these types. Then the heterozyosity is 
estimated by: 
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Number of segregating sites. A ‘segregating site’ is a site that is polymorphic in the data. The 
number of sites is usually denoted S (or Sn if referring to n samples). 

Mean pairwise difference. Let kij denote the number of nucleotide site differences between 
sequences of type i and sequences of type j. The mean pairwise difference is: 
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Mean pairwise difference per nucleotide. If the sequences are L bases long, we can standardize 
the above value by the length: 

Mismatch distribution. 
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A histogram whose ith entry is the number of pairs of sequences that 
differ by i sites. Here i ranges from 0 through the maximal difference between pairs in the 
sample. 

Site frequency spectrum. A histogram whose ith entry is the number of polymorphic sites at 
which the mutant allele is present in i copies within the sample. Here, the indexing i ranges 
from 1 to n–1. 

Folded site frequency spectrum. Often one cannot tell which allele is the mutant and which is 
ancestral. In that case, we combine the entries for i and n–i so the new i ranges from 1 
through n/2. 

Neutral substitutions. The rate at which neutral mutants are substituted into the population 
depends on several factors. 



The number of new mutant genes introduced per generation. In a population of 2N genes, this 
number is 2Nu. 

The fraction of those mutants that eventually become fixed. If drift continues long enough, all 
but one of the genes in the current population will be lost, and the one that survives will be 
fixed. Each gene has a probability of 1/(2N) of increasing to fixation (its initial frequency). 

The rate of substitution is the number of new mutants per generation (2Nu) times the probability 
that a given mutant will be fixed, 1/(2N). So this product is just u: remarkably, the substitution 
rate is just equal to the rate of mutation of neutral alleles. It does not depend on the size of the 
population or the extent of subdivision within it. 

We now turn to the problem set questions. 

Question 1. Effective population size. 
We have seen that the effective population size, Ne, plays a crucial role in all the theoretical 
accounts of evolution. Since we multiply this (typically large) number by another (typically very 
small) factor, s, u, m, or r (recombination rate), to get the crucial value of theta, it’s important to 
get this value as correct as we can make it, because this will have profound impact on the 
outcome of polymorphism patterns. Thus, it’s actually extremely important to figure out how to 
correct for different variations that are actually seen biologically. In class (and the slides), we 
saw how to correct for fluctuating population size by ‘back calculating’ what the population 
‘should have been’ in order to get the same change in variance as would be produced by a 
Wright-Fisher model. This idea, viewed from another perspective, is also covered in the Rice 
book, pages 111–112. Here’s another common correction that is often encountered in biological 
situations. 
Elephant seals possess an interesting system of mating. One alpha-male lies in the center of a 
harem of females and attempts to mate with as many of these females as possible throughout the 
course of the mating season. The harem is also surrounded by 5 beta-males, usually younger and 
smaller, who lie around the harem and protect it from invasion by other males. When the alpha-
male starts to mate, the beta-males use his distraction to do some mating of their own with the 
females at the outer edges of the harem. Other males, not alphas or betas, stay in the water and 
are not allowed to mate at all. One would think that the alpha male sires the most offspring in 
this situation, however, recent genetic studies have found that beta-males as a group actually have 
at least as much mating success as the alpha-male. From a typical harem 50% of the children are 
sired from beta males and 50% are sired from the alpha. Given that there are 40 alpha-males, and 
2000 females in the population, assuming that each of the harems is exactly the same size, 
assuming that all beta-males have exactly the same probability of having an offspring, and 
assuming that all females are fertile and available for mating, calculate the effective population 
size for this population of elephant seals. NOTE: assume non-overlapping generations for 
simplicity. 

To solve this problem, you should read the relevant section in the Rice textbook, pages 113–114; 
please show the details of your work and how you arrive at your answer (not just a final number!) 
(And, Yes, one can just go through the Rice book and follow that derivation, but it’s more 
interesting to work out the details as applied to this particular case.) 



Question 2. Neutral evolution and drift. How would an increase in population size affect the 
rate of neutral substitutions in the generations immediately following the increase? 

Question 3. Neutral evolution and drift. Consider a stretch of noncoding, nonfunctional DNA 
that is 1, 000 nucleotides long. Assume that the mutation rate is high – 2 changes per site per 
million generations. 

Question 3(i) In a population of 10,000 individuals, how many new alleles will be created in the 
population each generation? 

Question 3(ii) What fraction of these new alleles will ultimately be fixed? 

Question 3(iii) What is the rate of molecular evolution? (substitutions per site per generation) 

Question 3(iv) In a population of 50 individuals with the same mutation rate, how many new 
alleles will be created per generation? What fraction of these will ultimately be fixed? What is 
the rate of molecular evolution? 

Question 3(v) Which population will have greater heterozygosity at any one time? Why? 

Question 4. The neutral theory of evolution 

Question 4(i) In a population of 10,000 individuals with a neutral mutation rate of 1 nucleotide 
change per site per 10 million generations, what is the expected heterozygosity per site? 

Question 4(ii) What is the expected heterozygosity for a protein that is 500 amino acids long? 
Express the meaning of this result in a sentence (i.e., express it in words). 

Question 4(iii) What is the expected heterozygosity if there are 12 individuals in the population? 

Question 5. Segregating sites, S. 
What is the ratio between the expected value of S in a sample of 100 DNA sequences and the 
expected value in a sample of 200? (You should do the calculation, and, if you want to go a little 
further, try to derive the ratio mathematically). 

Question 5. Nucleotide polymorphisms and the number of segregating sites, S 
Here is a set of 10 (real) DNA sequences, each with 40 sites, taken from a mitochondrial DNA 
sample: 

seq1 AATATGGCAC CTCCCAACCC TCTAGCATAT ACCACTTACA�
seq2 .......T.. .C......TG C......C.. ..........�
seq3 ..C....... .......... .......... ..........�
seq4 .......T.. .C......TG C......... G.........�
seq5 .......... .......... .......... ..........�
seq6 .....A.... ........T. C......... G....C....�
seq7 ..C....T.. .C......TG C......... G.........�
seq8 .....A.T.. TC......TG C......... G.........�
seq9 .......... .......... C......... ..........�
seq10 .G...A.... ........T. C......C.. .T....C..G�



Each column corresponds to a different site. Periods indicate sites that are identical to the site in �
sequence 1. To save typing, the file is available for download in the labs section: 
Question 5 sequence data. �Use these data to answer the following questions.�

Question 5(i). Calculate the mean pairwise difference among the sequences, the nucleotide�
diversity π.�

Question 5(ii). Use this value to estimate θ.�

Question 5(iii). Calculate the number of segregating sites, S, given this sample (more properly�
denoted S10).�

Question 5(iv). Use this value to provide a second estimate of θ.�

Question 5(v). What can you infer from the similarity (or dissimilarity) of these two estimates?�

To ease your computation, I have posted a very simple awk script piS that computes the�
diversity statistic π and an estimate of θ based on the Waterston segregating sites statistic (along�
with some other things, viz, Tajima’s D statistic), for a set of aligned sequences like this. The�
script is available in the labs section. and ought to run (i.e., it’s been tested on) any linux box;�
Mac OS X, etc. (you can download it as a text file and run it locally – I will check re getting it going
on the MIT server).
It is invoked this way:�

awk –f piS.awk <name of sequence file> > <myhomedir> myoutputfile.txt�

where you should make sure myoutputfile.txt is a file in your home directory. Running 
this program will give you output like the following, 

pi: 53.626812 �
Segregating sites: 184/1878�

theta_hat[estimated from S]: 49.273068�
 Tajima's D: 0.354335 �

a1=3.734292 a2=1.602387 b1=0.362319 b2=0.242754�
c1=0.094530 c2=0.067558 e1=0.025314 e2=0.004345�

The a1, a2, etc. coefficients are those needed to compute Tajima’s D, as part of the variance 
calculation devised by Tajima. 
Part 2: Analyzing some real polymorphism data 
The same program can be used to analyze full-size data sets. As an example, consider the paper 
by Hey et al. (1993) in Genetics that examined a 1.9kb stretch of one locus, the per locus, in 
Drosophila melanogaster and three sister species. They were interested in details about 
speciation history, and common ancestors, and so were eventually drawn to a coalescent analysis. 
Here, we’ll start to get our hands dirty by taking a look at the whole dataset. 
 
The full Drosophila dataset as used in the original Hey Genetics paper and in this question is 
available for download: Sites Drosophila data set . (We provide this format for completeness 
because it can be used later on in Hey’s own program, later on.) For now, though, we need the in 
the form that the awk program likes; that data set is in the labs section. 
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Question 6. Repeat Questions 5(i)–(v) for this dataset. Be sure to think about the fact that this is 
not data all drawn from a single species – in particular, it might not meet the requirements of the 
infinite site model either. (Please examine the data at least briefly for this possibility – whether 
this has an effect on the analysis is a different story, of course. In addition, as the Hey paper 
notes, there is the possibility of population growth and migration, none of which is taken into 
account by these summary statistics.) 

In addition, at this point you should take a look at the description of Tajima’s D, and go back and 
consider what it means in terms of the data for both Question 5 and Question 6. (We’ll push on 
this same data more later on.) For a description of Tajima’s D, see below. 

Question 7. Tajima’s D. 
Fumio Tajima introduced a statistic that is widely used to test the null hypothesis of mutation-drift 
equilibrium and constant population size. Tajima considered two statistics: the mean pairwise 
difference π and the number S of segregating sites. Under the null hypothesis, the expected values 
of these statistics are: 
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where θ=4Nu, 2N is the haploid population size, u is the mutation rate per generation, and a1 is 
defined below, and should be familiar you from the coalescent process as the expected total length 
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of time to coalescence, hence the time available for mutation: 

Under the null hypothesis, both π and S/a1 estimate θ, so they should be roughly equal in value. If 
they are about equal in value, then we cannot reject the hypothesis. If they are very different, on 
the other hand, we reject the hypothesis. But how different is “very different”? The answer 
depends on how variable these two statistics are from sample to sample. Tajima obtained a 
formula for the sampling variance of these statistics, and so defined D this way: Let 

denote the sampling variance of the difference between the two estimates. Then Tajima’s D is: 
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It expresses the difference between the two estimates relative to their standard error. If the 
difference between π and S/a1 were normally distributed, then we could expect D to lie between 
negative 2 and +2 about 95% of the time. In fact, this difference is not normally distributed 
(technically, Tajima argued that it has what is called a beta distribution) but it is not too far off. 
We should be suspicious of values of D that are much outside the interval [–2, 2]. Later in the 
second part of this Lab, we shall see how to use coalescent programs to generate confidence 
intervals via simulation. 

Although D is simple in concept, it is tedious to calculate. We need three pieces of data: S, and 
the number, n, of DNA sequences in the sample. Given these data, Tajima used the fact that the 
variance in the estimate of S derived from nucleotide diversity can be expressed this way: 

If we go through a (fairly sophisticated) calculation of the difference in the variance of the two 
estimators of θ (which we omit here), as it turns out we need the following numbers: 
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And finally, the D value is computed as: 

Question 7 (at last). Lynn Jorde’s lab has published a large sample of DNA sequences from the 
D-loop of the human mitochondrial genome. There are 630 sites. For the Asian sample, we get: 

77 sequences, 630 sites �
pi: 8.438483�
Segregating sites: 103/630�
theta_hat[estimated from S]: 20.958331 �
Tajima’s D: -2.021749 �
a1=4.914514 a2=1.631862 b1=0.342105 b2=0.228184 c1=0.138626 c2=0.086985�

e1=0.028208 e2=0.003374�

For the African sample: 
72 sequences, 630 sites �
pi:15.339984�
Segregating sites: 88/630 �
theta_hat[estimated from S]: 18.155855 �
Tajima’s D: -0.525801 �
a1=4.846921 a2=1.630948 b1=0.342723 b2=0.228612 c1=0.136406 c2=0.085989�

e1=0.028143 e2=0.003423�

In one case, D is strongly negative and in the other case weakly negative. How would you 
interpret these results? 

(This (almost) ends Part I of the laboratory.) 


