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This portion of the laboratory is an addendum to PART I, consisting of warm-up computer 
exercises with coalescent software. If you want to cut to the chase and get to the actual 
questions, they are a few pages on, in subsection 4.2 labeled “Questions”, but I would urge 
that you try out the ms program as suggested in section 4.1. 

Part 4: Warm-up using simple coalescent computer programs 
There are three or four readily available computer programs that are used to work with coalescent 
analysis in conjunction with polymorphism data. Three have been mentioned and/or demonstrated 
so far in class: ms, simcoal, and coalface. There’s also a java applet simulator for some 
very simple simulations, available at http://www.coalescent.dk/. Several other programs take the 
trees produced by these programs and then generate ‘artificial’ sequence data sets by sprinkling in 
Poisson-distributed mutations. In typical ‘simulation’ mode, given polymorphism data like the 
one you saw in the earlier sections of this lab, one can use the coalescent to simulate possible 
polymorphism pattern outcomes, and thus derive predicted polymorphism patterns, given various 
scenarios of population size changes, recombination, etc., all using basic parameters derived from 
the original data. We can then go back see which scenario is most compatible with the data – in 
the stronger sense of also obtaining confidence intervals for some of the test statistics we have 
seen above. (These might be otherwise quite hard to derive.) 

Another mode is rather different: instead of exploring the parameter space ‘by hand’ we can use 
likelihood methods to try to find the ‘best’ estimates for effective population size, mutation rate, 
and so forth. 

In this part of the lab, we shall deal only with the former, ‘hand simulation’ method to just ‘get 
acquainted’ with how to run a coalescent program and use it to simulate a set of sequences. 

In particular, we will for the most part use Hudson’s computer program ms, which simulates 
coalescent gene trees under a variety of possible population change, migration, recombination, 
and other historical scenarios. We use this program mostly because it is fast and accurate and can 
compile on almost any platform with a decent C compiler. Instructions for installing it are given 
below. (If you have access to either a Windows or a Linux box, you might want to install 
CoalFace, since that has a very nice interface that ms lacks, and can easily display the trees 
graphically, compute nucleotide diversity statistics, etc. – in short, you can use it as a check on 
your work with the ms program if you want, even though we won’t use it in this part of the lab. 
The ms program is not so user friendly: it outputs trees in a list format that must be piped other 
programs; ditto for its descriptive statistics. However, it has more options/flexibility in terms of 
describing recombination and structured population scenarios. The information for downloading 
and installing it are given at the end of this document.) 

4.1 Installing and running the ms program. 
There are two options for installing the ms program. First, there are pre-compiled binaries for 
Mac OS X, and RedHat linux systems (including pre-compiled versions of ms, stats, and 
sample_stats).



MacOS X version 
RedHat linux version 

Once you’ve downloaded and unpacked the appropriate file and run tar you’ll have a new 
directory (or folder) msdir with the three programs in it, and you should be ready to go. These 
programs are intended to be run from a unix terminal window, so once your have downloaded the 
executable you’d actually run them in the following way, redirecting output (as usual you might 
add the directory where you’ve downloaded the binaries to your PATH environment variable so 
you can avoid the ./ms usage): 

>./ms <input parameters> > <myoutputfile>�

If you have any difficulties at all running these compiled binaries, or if you need to use a 
Windows machine, you’ll have to do a simple compilation of the source code, which is available 
in both .gz and .zip formats in the labs section: 

Unix source tar.gz file 
Macintosh source tar.gz file 
Windows source .zip file 

The program is simple to compile on any platform with any current Ansi C compiler (there are a 
few changes to be noted for proper compilation under Mac OS X, however, so be sure you 
download the MacOS X files if that’s what you intend to compile it on). Again, once you’ve 
downloaded, uncompressed, and untarred the relevant file, you’ll have a new directory or Folder 
msdir. You should then do the following to compile all three programs (any Ansi C compiler 
ought to do): 

gcc –o3 –o ms ms.c streec.c rand1.c -lm�
gcc –o stats stats.c -lm �
gcc –o sample_stats sample_stats.c tajd.c -lm �

Here I’ve chosen a particular random number generator – I suggest you use this one so your�
results will ‘agree,’ with other folks’, but see the ms documentation about the choices (it’s not�
really of concern here ).�

Using the ms program.�
A complete pdf documentation file is located in the labs section. Running the program�
with ms –h willproduce a summary of all the command line arguments.�

In its most basic mode, the user supplies a command line in the form:�

ms nsam nreps -t θ 

The above line shows the simplest usage of ms that generates samples under the basic neutral 
model, with constant population size, no recombination, panmixis (free interbreeding), and an 
infinite-sites model. In this case there are three arguments to ms: nsam, nreps, and, following 
the switch “-t”, the parameter θ. The two arguments, nsam and nreps are required and must 
appear in this order.(Although there are exceptions, most of the switches can appear in any 
order.) nsam is the number of copies of the locus in each sample, and nreps is the number of 
independent samples to generate. The third parameter here is the mutation parameter, θ = (4N0µ) 
where N0 is the diploid population size and where µ is the neutral mutation rate for the entire 

These are available for download in the labs section:



locus. Remember that for most purposes, this basic parameter is ‘small’, between 0 and, say, 20!�
At least one of the options, -t –s, or -T must be used. The latter two options are described�
later. After nsam and nreps, any or all other switches with their parameters can be read from a�
file using -f filename.�
Example:�

ms 4 2 -t 5.0�

In this case, the program will output 2 samples, each consisting of 4 chromosomes (or 
‘sequences’), generated assuming that θ = 5.0. 

The output from the example command in the previous section would look like this (the exact 
output will depend on the random number generator) : 
ms 4 2 -t 5.0�
27473 36154 10290�
//�
segsites: 4�
positions: 0.0110 0.0765 0.6557 0.7571�
0010�
0100�
0000�
1001�
//�
segsites: 5�
positions: 0.0491 0.2443 0.2923 0.5984 0.8312�
00001�
00000�
00010�
11110�
The first line of the output is the command line. The second line shows the random number seeds. 
Following these two lines are a set of lines for each sample. Each sample is preceded by a line 
with just “//” on it. That line is followed by “segsites:” then the number of polymorphic sites in 
the sample. Following that line is a line that begins with “positions:” which is followed by the 
positions of each polymorphic site, on a scale of (0,1). The positions are randomly and 
independently assigned from a uniform distribution. (With recombination, the distribution is 
somewhat more complex.) Following the positions, the haplotypes (sequence blocks) for each of 
the samples is given, as a string of 0’s and 1’s. The zeroes denote the ‘ancestral form’, while the 
ones denote the mutant or ‘derived state’. (Recall that the infinite sites model only admits a binary 
change at any one site position.) A sample line is omitted if there are no mutations from the 
initial state of all zeroes. 

ms nsam nreps -T�

When the option -T is used the trees representing the history of the sampled chromosomes are 
output. For example, the command line ms 5 2 -T results in the following output: 

ms 5 2 -T�
3579 27011 59243�
//�
((2:0.074,5:0.074):0.296,(1:0.311,(3:0.123,4:0.123):0.187):0.060);�
//�
(2:1.766,(4:0.505,(3:0.222,(1:0.163,5:0.163):0.059):0.283):1.261);�

This output represents the trees for two samples. The tree format is in a commonly accepted 
particular list form that we’ll study more closely when we look at phylogenetics in the latter part 
of the course. This particular list form is called Newick format, and is used by the Phylip 



phylogenetic program and a number of applications. The branch lengths are in units of 4N0 

generations. The sampled chromosomes are labeled 1, 2 ... corresponding or ordered, sampled 
chromosomes. This labeling is irrelevant for unstructured population models, but with island 
models described later, the labeling can be important. With recombination a tree is output for 
each segment within which no recombination has occurred in the history of the sample. 

ms 5 10 -t 6.0 | grep segsites | cut -f 2 -d ’ ’ > SegSites.txt�

4.3 Questions 

Now we can test some theory. Let’s use coalescent simulations to estimate the average number of 
segregating sites when n = 5, and theta = 6.0, by generating 10,000 replicate samples, using unix 
to snip out the segregating sites from the output, and passing that to a simple statistical analysis 
program that is also in the same package. Selecting out the second column via the ‘cut’ command 
will give us just the mean value and the standard deviation. (The –d argument is used because 
the output from 

ms 5 10000 -t 6.0 | grep segsites | cut -f 2 -d ’ ’ | stats�

Remember Watterson found analytically that the expected number of segregating sites ought to 
be: 
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Question 8. 
Work out what the expected value should be for n=5 and this particular value of theta. Then 
compare the theoretical result to what you get via the simulation – please provide both answers. 
How much closer does your estimated value come to the true value of theta as you increase the 
number replicates by one and then two orders of magnitude? 

Note that the stats program will also print out and particular percentile statistic for the data on 
a particular column fed into it, including the median and, say, the 99th percentile of the 
distribution, via this form: 

stats 0.5 0.99 
Thus, you could actually use the output from this program to feed a graphing program to view the 
distribution of any quantity of interest (see the next paragraph below, e.g.). 

For other sample statistics, including Tajima’s D, we can use the sample_stats program by 
Hudson in the same package. The program will compute the nucleotide diversity π, the number 
of segregating sites, Tajima’s D, and two additional statistics we haven’t yet discussed. 

ms 30 4 -t 3.0 | sample_stats�
pi: 1.751724 ss: 6 D: 0.446936 thetaH: 1.282759H: 0.468966�
pi: 1.705747 ss: 9 D:-0.774289 thetaH: 0.501149H: 1.204598�
pi: 1.390805 ss: 6 D:-0.233099 thetaH: 1.022989H: 0.367816�
pi: 3.156322 ss:15 D:-0.560417 thetaH: 3.119540H: 0.036782�

Question 9. 
Now you can use these three programs piped together to show that, say, for n=5, θ=6.0, E[π]=θ, 
as expected by theory. Try this by generation 10,000 replicates with these values: first generate 



the samples using ms, then pipe these through sample_stats; then pull the 2nd column from 
this output and feed it to stats. (You can use the unix ‘cut’ program as before, via cut –f 2 
to pull out the 2nd column from the output of sample_stats and thus get the mean value of π.) 
Question 9(i) Please do this for several different replicate sizes and provide a table of E[π], θ, 
and indicate how close the convergence is. 

Question 9(ii) Because individuals are correlated through their common ancestry, increasing the 
number of individuals does not lead to proportional increases in the performance of an estimate. 
Theory predicts that as the sample size becomes infinite the standard deviation of our estimate of 
θ (based on nucleotide diversity) will be as follows: 
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Using ms and the program pipeline as above, please test the theoretical predictions against 
simulation for θ=4.0. First, compute the theoretical limit. You might want to use, e.g., 10,000 
simulated samples at a time, while increasing n and then plot the resulting standard deviation 
against n, in gnuplot, or Excel, matlab, etc. also indicating where the theoretical limit is. Here’s 
the sample output you might get for θ=1.0. 

TrueTheta n MeanEstimate SDEstimate 
1 2 0.979800 1.372655 
1 3 0.984733 1.093850 
1 4 1.006700 0.993173 
1 5 1.005380 0.940195 
… 
1 12 0.989418 0.802780 
1 13 0.998744 0.808657 
1 14 0.991237 0.791793 
1 15 1.001560 0.811949 

Question 9(iii) Briefly comment on the implications of your results for sequence sample 
collection. 

Question 10. Exponentially growing populations and Tajima’s D 
Recall that we would like to use Tajima’s D to detect ‘statistically significant’ deviations from the 
neutral model, but mentioned that growing populations can also ‘fool’ this test statistic. In this 
question, we’d like to briefly explore this issue, and how we can use coalescent models to test 
this. First, we need to know how the program handles population growth simulation. 

Simulating population size changes. 
To specify that demographic parameters change at specific times in the past, the -e switches are 
used. These switches are: -eG, -eg, -eN, -en, -em, -ema, -es and -ej. In each 
case the first parameter following the switch is the time when the demographic change occurred, 
measured from the present in units of 4N0 generations. In all cases, the parameter values specified 
apply to the time interval immediately farther in the past from the time point specified. (The term 
”past-ward” will be used to indicated farther in the past.) The arguments that follow the time 
parameter specify subpopulations and other relevant parameters, as indicated in the following list: 

It is important to note that ms generates genealogical histories by working back from the present, 
and that each of these -e commands changes the parameters for the period immediately pastward 
(farther back in the past from) the time point specified. For example, 

ms 10 30 -t 4.0 -eN 0.2 .02�



specifies that the population size was constant at size N0 from the present back to time 0.2 ∗ 4N0 , 
and farther back in time the population size was 0.02 ∗ 4N0 . The population size change was 
instantaneous and occurred at time 0.2 * 4N0 generations before the present. 

10

An example. Suppose we have one panmictic population that underwent a size reduction, 
followed by a period of constant size, followed by population expansion – in short, possibly much 
like the current human population (putting to one side possible migration events). This 
demographic history is shown in figure 1 below. To be concrete let us suppose that the population 
sizes are N1 = 10,000, N2 = 5,000, and N3 = 20,000. Also suppose that the neutral mutation rate is 

−8 per site per generation and that we are considering a segment 8,000 base pairs long. In this 
case, if we take N0 to be 20,000, we have θ = 4 ∗ 20, 000 ∗ 10− 8 ∗ 8, 000 = 6.40. Suppose that T1 is 
16,000 generations, or 16,000/(4*20,000) = 0.2 in units of 4N0 generations. Similarly, suppose 
that T2 is 24,000 generations or 0.3 in units of 4N0 generations. To specify the exponential growth 
on the command line we need to calculate the growth parameter α. To obtain α we solve the 
equation, 

5,000 = 20,000 ∗ exp− α0.2, which is α = −(1/0.2) ∗ log(5, 000/20, 000) = 6.93. 

The command line to generate 1000 samples of size 15 is thus written as follows: 

ms 15 1000 -t 6.4 -G 6.93 -eG 0.2 0.0 -eN 0.3 0.5�

The phrase -G 6.93 specifies that the population decreases as we go back in time according to 
−6.93t the equation, N(t) = N0 exp . The phrase -eG 0.2 0.0 specifies that the growth rate changes 

to zero at time 0.2, and the population size preceding this time will be N0 exp−6.93∗0.2 = N0 ∗ 0.25. 
The phrase -eN 0.3 0.5 specifies that the population size before 0.3 times units was half of 
N. 

Figure 1. Example of strong bottleneck followed by exponential expansion, as it relates to the 
arguments to be supplied to the ms program. 

Now on to the actual question. We can obtain a distribution for a sample statistic like Tajima’s D 
as follows. The command: 

ms 30 10000 -t 3.0 -eN .2 0.1 | sample_stats | cut -f 6 | stats .025 .5 .975�

will output the estimated mean, standard deviation, 2.5th percentile, median, and the 97.5th 

percentile of the distribution of Tajima’s D for a model in which the population has experienced 

Courtesy of Richard Hudson.  Used with permission.



a recent rapid increase in size. (In this example, the population size was one-tenth the current size 
until 0.2 ∗ 4N0 generations ago. Since Tajima’s D is output in the 6th column of the output of 
sample_stats we use “cut -f 6” to get the D values.) This gives the output as a tab-
delimited table. 

Now we can generate ‘simulated’ Tajima D scores and recover their distribution under the 
‘expanding population’ scenario. Here are the questions. 

Question 10(i). Run the program as described and print out, then plot, the distribution of 
Tajima’s D for this given set of population parameters (you’ll have to ‘fill in’ more percentiles to 
get a better looking graph). Compare this to the value you get when you run the same simulation 
without any population growth. Now go back to Question 5(v) and Question 7 of this lab and 
reflect a bit… 

Question 10(ii). In Question 7, we saw that mitochondrial DNA in one sample population led to 
a Tajima’s D value less than –2, which is the usual cut-off on one side (given a beta distribution) 
for significance at the 0.05 level, so we can reject the null model with this confidence level – 
there is supposedly a less than a 5% probability that this difference between nucleotide diversity 
and the segregating sites estimator could be due to chance alone, thus possibly rejecting the 
neutrality of the mutations. However, there are other elements to the null model, in particular, 
that of population growth. Can expanding population growth ever get us in trouble here? 

In order to investigate this question see if you can find any combination of changes in the 
population demographic parameters above (e.g., the rate of the expansion, how long ago it was) 
that could ‘push’ the score below –2.0. (You want to start with the same parameter values as in 
Question 10(i). However don’t simulate 10,000 samples. Instead, start with, say, 50 samples and 
just run the output of the ms program through sample_stats to see if you can find a Tajima’s 
D value greater than +2 or less than –2. You might also try experimenting with changing the θ 
value, which you may recall is a compound parameter of population size and mutation rate, and 
see if you can find a combination with demographics that works.) Of course, just finding one 
odd-ball example doesn’t make the case; rather, we want to know how likely this is, due to 
chance. For this, you’ll have to create 10,000 sample data sets as before. Please describe the 
outcome of your results along with a brief description of their implications with respect to this 
particular context: what combination of segregating sites, time expansion, etc. leads to high 
positive or negative D values? What about in this mitochondrial DNA context – if we simulate 
lots of samples, what is the chance that population size changes alone could account for a score 
below –2? Please explain what you’ve found out. 

4.3 Appendix: Installing and running the CoalFace program. 
CoalFace is a simulation of the coalescent process with the visual display of gene genealogies, 
developed by Wayne Delport & Michael Cunningham at the University of Pretoria. CoalFace has 
been developed predominantly as a teaching tool, yet some basic coalescent simulation analyses 
can be performed. Both Windows and Linux (Intel) executables are available at 
http://www.up.ac.za/academic/genetics/staff/Bloomer/Research/software.htm.
 
 To install, just download, uncompress, and then either just double-click the CoalFace app (in the 
CoalFace Windows folder that is produced) or run the shell script CoalFace (in Linux) in the 
CoalFace directory. From the first “Main” tab you can select the population size and the number 
of simulation repetitions to run, as with ms. However, you don’t select the theta parameter in the 
same way; instead, you have to select a mutation rate in conjunction with the (effective) 
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population size, which is done under the “Sequence” tab in the “mutation rate” box. You also  
want to tick the “draw mutations on genealogy” checkbox on the “Main” tab so you can see the 
mutations generated on the coalescent tree. Statistical output from the coalescent simulation is 
placed into a file you specify under the “Files” tab, viz., the “Output File” box. After a run, that 
file will contain various statistics on (simulated) nucleotide diversity, etc. 




