

The forces of evolution: a dynamical system model for computing a new state from the current state

- Statics: what's the model if we are *at equilibrium* there are <u>no</u> forces acting? (And: what assumptions are required to <u>maintain</u> equilibrium?)
- Dynamics: what's the F=ma analog so we can compute p' from p?

Mendelian genetics terminology review for "Evolutionary first law" (Hardy-Weinberg equilibrium)

Gene or locus:

• Classical genetic: Chromosomal region to which a phenotypic mutation can be mapped

Molecular: Open reading frame and associated regulatory elements

Evolutionary: A stretch of hereditary material sufficiently small such that it is not broken up by recombination, and which can be acted on by natural selection

- Allele: One of two or more possible forms of a gene (locus)
- Genotype: The total complement of alleles present in an organism
- Allozyme: distinct protein form, corresponding to an allele
- Polymorphism: (Ford, 1940) working definition a less common allele with a frequency > 1% (e.g., a mutation that has become common) within a species
 - Example: red hair color MC1R loss-of-function allele (the *only* pigmentation gene so far identified in human that explains substantial phenotypic variance

Patterns of va	riation at 1	he DNA level		
Synonymous & nonsynonymous mutations				
Arg Gln V AGA C A A C L		Arg Gln Val AGA CA A GTA L		
CAG CGA C Arg Arg V		AGA CA G GTA Arg Gln Val		
D. simulans	$\pi_{ ext{total}}$ $\pi_{ ext{silent}}$ $\pi_{ ext{nonco}}$	= 0.010 per site = 0.038 $_{ding} = 0.023$		
• Nucleotide variation v. protein variation?				
	Humans	D. melanogaster		
Allozyme	6%	14%		
Nucleotide	0.1%	1%		

Alleles & genotypes: Genetic composition of a
populationhas 3 components

- 1. The number of alleles at a locus
- 2. The frequency of alleles at the locus
- 3. The frequency of genotypes at the locus (not the same as 2!)

	AA	Aa	aa
Population 1	50	0	50
Population 2	25	50	25

freq(A)=0.5 in both;

but when can we compute genotype freqs from allele freqs?

The first law: Hardy-Weinberg equillibrium - 8

assumptions!

- 1. Genotype frequencies are the same in both males and females
- 2. Genotypes mate at random with respect to their genotype at this particular locus
- 3. Meiosis is fair
- 4. No input of new genetic material (no mutation, migration)
- 5. Population is of arbitrarily large size s.t. actual frequency of matings is equal to their expected frequency, and the actual frequency of offspring from each mating is equal to the Mendelian expectations
- 6. All matings produce the same # of offspring, on average
- 7. Generations do not overlap
- 8. There are no differences among genotypes in pr of survival (no selection)

H-W

freq(AA in zygotes) = p^2 freq(Aa in zygotes) = 2pqfreq(aa in zygotes) = q^2

- 1. If assumptions #1-#8 are true, then equations $\underline{\mathrm{must}}$ be true
- If genotypes are in H-W proportions, then one or more of assumptions #1-#8 may still be violated
- 3. If genotypes are not in H-W proportions, one or more of Assumptions #1-#8 must be false

An example: testing whether a population is in H-W equillibrium					
Data: 1000 individuals					
90 are AA					
420 are Aa					
490 are aa					
Q: is this population in H-W equillibrium?					
Step 1: calculate allele frequencies.					
freq A allele = total # A alleles/total # alleles = $(90^{*}2+420)/2000 = 0.3$					
freq a allele = $1-0.3 = 0.7$, i.e., $(490*2+420)/2000$					
Step 2: calculate genotype frequencies.					
p = freq AA = 90/1000 = 0.09; freq Aa = $420/1000 = 0.42$; $q = freq aa = 420/1000 = 0.42$; $q = 100/1000 = 0.42$; $q = 100/10000 = 0.42$; $q = 1$					
490/1000=0.49					
Step 3: calculate expected H-W genotype proportions, in ratio p^2 : $2pq : q^2$					
$p^2 = 0.3^2 = 0.09$					
$2pq = 2 \ge 0.3 \ge 0.7 = 0.42$					
$q^2 = 0.7^2 = 0.49$					

The genetics of natural selection: the simplest case

• Which H-W assumptions involve selection?

Assumption # 3: Meiosis is fair.

But: suppose the alleles are not

equally frequent in gametes produced. Example: t-allele in mouse, 95% in heterozygotes. Or: gamete competition (sperm, pollen)

Assumption #6: All matings produce the same # of offspring. But: suppose # offspring depends on maternal genotype or parental genotype, or both - *fertility* selection

Assumption #8: Survival does not depend on genotype.

But: suppose prob of survival from zygote to adult depends on genotype viability selection

The algebra of viability selection - J.B.S. Haldane, 1924 1 gene in 2 different forms (alleles) genotype AA Aa aa p^2 q^2 frequency 2pqrelative w_{11} w_{12} w_{22}

 $w_{12} 2pq$

 \pm survivors

 $w_{22} q^2$

particular genotype will survive and reproduce – factor altering H-W proportions Note that if $N_t = \#$ before selection, the total # after selection is: $N_{t+1} = \bar{w}N_t$ where 2

Intuitively, w is a 'growth rate' – the expectation that an individual with a

 $w_{11} p^{2}$

$$\bar{w} = w_{11}p^2 + w_{12}2pq + w_{22}q$$

fitness

after

selection

What is the average (marginal) fitness of A's?

 $w_1^* = P(\text{paired with another A})w_{11} + P(\text{paired with an a})w_{12} =$ $w_1^* = pw_{11} + qw_{12}$ or if just 2 alleles: $w_1^* = pw_{11} + (1-p)w_{12}$

genotype	AA	Aa	aa
frequency	p^2	2pq	q^2
relative fitness	w_{11}	w_{12}	w_{22}
after selection	$w_{11}p^2$	$w_{12} 2pq$	$w_{22} q^2$

 w_1^* This is the *expectation* that A will survive

Two allele case: we can now calculate p - p' *i.e.*, the change in allele frequency, or *evolution*

In this generation, freq $A = p_t = \# A$'s/total # alleles In next generation, freq $A = p_{t+1} =$ expected # A survivors/total expected # survivors

Expected # A's = $w_1^* n_A$

Expected # all alleles = $\bar{w}n_{total}$

$$p_{t+1} = \frac{w_1^* n_A}{\bar{w} n_{total}} = \frac{p_t w_1^*}{\bar{w}}$$
$$p_{t+1} - p_t = \frac{p_t w_1^*}{\bar{w}} - \frac{p_t \bar{w}}{\bar{w}}$$
$$\triangle p = \frac{p_t (w_1^* - \bar{w})}{\bar{w}}$$

Think about what this means: what if w_l is greater than average fitness? Less?

