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6.877 Computational Evolutionary Biology
Lecture 4: Climb every mountain?

The forces of evolution, part II

Agenda:
– The interaction of evolutionary forces, II: mutation-
selection balance
– Genetic drift, and genetic variation: how population
size matters
– The interaction of mutation, drift, selection: when
does one force prevail over another?
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Climb every mountain? Some surprising results
• The power of selection: what is the fixation probability for a new mutation?

• If no selection, the pr of loss in a single generation is 1/e or 0.3679

• In particular: suppose new mutation has 1% selection advantage as
heterozygote – this is a huge difference

• Yet this will have only a 2% chance of ultimate fixation, starting from 1 copy
(in a finite population a Poisson # of offspring, mean 1+s/2, the Pr of
extinction in a single generation  is e-1(1-s/2), e.g., 0.3642 for s= 0.01)

• Specifically, to be 99% certain a new mutation will fix, for s= 0.001, we need
about 4605 allele copies (independent of population size N  !!)

• Also very possible for a deleterious mutation to fix, if 2Ns is close to 1

• Why?  Intuition: look at the shape of the selection curve – flat at the start,
strongest at the middle

• To understand this, we’ll have to dig into how variation changes from
generation to generation, in finite populations

Regime 1: very low
copy #

Regime 2:
Frequency
matters

The fate of selected mutations

2Ns (compare to Nu factor)
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Changes between certain nucleotide ‘letters’
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Estimation of mutation rate in a bacterial chemostat. Image removed due to copyright restrictions. 
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A             a
per locus per generation
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Mutation-selection balance: an intuition

Mutation-selection balance: deleterious dominant allele, a

Assumptions:  frequency of a is small (= 1–p = q )
no heterozygote selection effect (h=0)
q is small due to selection

Then:

qs
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Exchange p and q (x= freq of q)
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This is 100 times greater than the recessive case…Why?
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What about the other forces?
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Genetic variability is lost in finite populations

Buri (1956):

107 Drosophila
populations, each
started with 16
heterozygotes for a
brown eye mutation
(bw)

The Wright-Fisher model

Let’s explore the consequences…

What is the pr that a particular allele has at least 1 copy in the
next generation?
Well, what is the pr of not picking an allele on one draw?
Ans: 1-(1/2N).  There are 2N draws (why?).  So, pr of not
picking for this many draws is [1-(1/2N)]2N = e-1 for large N

We get a binomial tree that depends on frequency, p, and total population size, N.

Image removed due to copyright restrictions. 
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Binomial sampling already implies some results

Pr that generation t has i copies of an allele A1, given 2N
independent trials is:

For example, the probability that generation t has 10
copies of A, where pr(A)=11/20=0.55 in gene pool for
generation t–1 is: 20!/10! 10! (0.55)10(0.45)10= 0.1593

Mean and variance of frequencies p
(nb, not just the allele numbers)

Because this is a binomial draw with
parameters p, 2N, the mean of this distribution
(the expected # of A1 alleles drawn) is just
2Np, i.e., mean frequency is p
The variance in allele # is: 2Np(1-p)
So the variance in allele frequency is:

E[p']= E[X]/2N = 2Np/2N= p

The variance of p goes down as the population
size increases:

Var[p' ]= Var[X]2/4N2= 
2Np(1–p)/4N2=p(1–p)/2N
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First consequence: new mutations, if neutral…

What is the probability that a particular allele has at least 1
copy in the next generation? In other words: that a brand-new
mutation survives?

Well, what is the pr of not picking an allele on one draw?
Ans: 1-(1/2N).  There are 2N draws (why?).
So, pr of not picking for this many draws is [1-(1/2N)]2N = e-1

for large N

So: probability of a new mutation being lost simply due
to ‘Mendelian bad luck’ is 1/e or 0.3679

Why doesn’t population size N matter?
Answer: it’s irrelevant to the # of offspring produced initially
by the new gene

N = 100
2N = 200
R = 100
G = 100
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N = 100
2N = 200
R = 100
G = 100

One allele always wins!
Survival of the fittest? Down with Darwin?

Is this always so?
Let’s try changing N and initial allele frequencies

 N = 10
2N = 20
R = 10
G = 10

Reduce N to 10
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N = 10
2N = 20
R = 10
G = 10

N = 1000
2N = 2000
R = 1000
G = 1000

Boost N to 1000
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N = 1000
2N = 2000
R = 1000
G = 1000

N = 100
2N = 200
R = 150
G = 50

Start at difft initial frequencies
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N= 100
2N = 200
R = 150
G = 50

N= 100
2N = 200
R = 150
G = 50
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What are the general rules?

•Higher population size = alleles stick around longer.
•Less susceptibility to “random walk”
•Probability of winning seems related to initial frequencies.
•At 50/50 initial allele frequency, 50% chance of either allele winning.
•Hypothesis:  probability of winning is proportional to initial allele
frequency.  (Proof follows)
•Hypothesis: One allele must always win.

Drift & the inevitable decay of heterozygosity
(variation), Ht
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A mathematical analysis of drift: the decay of
heterozygosity (loss of variation)

• Define Ht= probability in generation t that 2 alleles
picked at random are different from one another
(‘heterozygous’); homozygosity, Gt as 1-Ht (‘identical
by descent’)

• Now develop a recurrence relation for Ht
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Recurrence relation for G, H

Generation t Generation t+1

Generation t Generation t+1

Gt= Identical in one
of 2 possible ways:
(1) clone from same
ancestor; or (2) the
two ancestors were
different, but they
were identical by
descent back then;
add these 2
probabilities

Recurrence relation for Gt, Ht

This has important implications for allele fixation:
eventually, one allele always wins, just as we said…and…we
can now figure out the pr of fixation (assuming no selection
– we will factor that back in …)
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What is the half-life of H?

H0/2  = H0(1-1/2N)t – cancel H0 from both sides,
take natural logs, solve for t

t = 2N ln2 (using ln(1+x) approx x)

N = 106, t = 1.38e6 generations

Important part: this says something about the time-
scale of drift – it’s roughly the population size

Time scale & interaction of forces

Drift: 2N generations
HW: 1 or 2  generations
So: these ‘forces’ don’t interact w/ each other…

Important: after 2N generations, all variation is gone - this is how far back
we can ‘see’ - everybody derived from this single allele
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Fixation probability of an allele is proportional to
its initial frequency

All variation is ultimately lost, so eventually 1 allele is
ancestor of all alleles
There are 2N alleles
So the chance that any one of them is ancestor of all is 1/2N

If there are i initial copies, the fixation chance is i/2N

(Simple argument because all alleles are equivalent – there is
no natural selection)

Adding mutations – the mutation-drift balance

Variation, H

Loss at rate 1/(2N)

Mutation gain 2Nu
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Modeling mutations - 2 ways

Modeling the balance

Assume N is large, compared to u

Take our existing formula for G and factor in
mutation rate u (which reduces G, increases H):

Pr that we did not mutate (both alleles)
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4Nu = θ = the fundamental parameter
fixing population variability



27

Analysis…implications

•Heq =4Nu/(1+4Nu)

•Let Nu be large compared to 1.  Then the population is almost always
heterozygous. (Mutations occur before drift can remove)

•Let Nu be very small compared to 1.  Then the population has little
variation.  (Drift removes variation before a new mutation occurs)

•If 1/u « N, time scale of mutation is much less than drift, so population
will have many unique alleles; if N « 1/u, then time scale of drift is
shorter, population will be devoid of variation

Examples

Example: HIV virus.
μ = 10-5  per nucleotide and N = 107-108 infected cells in a host.

 This means almost every nucleotide is variable in the population.
Example: Human

 μ = 10-8  per nucleotide and N = 103-105 (?)
A typical nucleotide shows almost no variation in the population.
 μ = 10-5  per gene. A typical gene will have few variants in a
population.
 μ > 1 per genome. Every genome is essentially unique.
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The forces of evolution…

Goal: understand relation between forces: u, 1/N

signal

noise

Population “large” wrt
genetic drift
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4Nu = θ

Homozygosity (identity)= 1–H =G= 1/θ

Heterozygosity=

These are the key measures of how ‘variant’ two
genes (loci), sequences, etc. are

What can we learn about their distributions?
How can we estimate them from data?

How can we use them to test hypotheses about
evolution?

“Follow the variation”

Loss of ancestral lineages: why lineages ‘coalesce’
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Eventually, only one copy of an allele will survive
(assuming no selection, migration in, etc.)

Wright-Fisher random mating… large population
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Genealogy of a sample of gene copies

Ancestry of a sample in the population pedigree
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Why lineages coalesce

In other words…

On average, depth 2N
before collapse to 1
ancestor

We’ll prove this next time  – see ch. 3 of Rice book


