6.877 Computational Evolutionary Biology

Lecture 4: Climb every mountain?

The forces of evolution, part II

Agenda:

- The interaction of evolutionary forces, II: mutationselection balance
- Genetic drift, and genetic variation: how population size matters
- The interaction of mutation, drift, selection: when does one force prevail over another?

Climb every mountain? Some surprising results

- The power of selection: what is the fixation probability for a new mutation?
- If no selection, the pr of loss in a single generation is $1 / e$ or 0.3679
- In particular: suppose new mutation has 1% selection advantage as heterozygote - this is a huge difference
- Yet this will have only a 2% chance of ultimate fixation, starting from 1 copy (in a finite population a Poisson \# of offspring, mean $1+s / 2$, the Pr of extinction in a single generation is $e^{-1}(1-s / 2)$, e.g., 0.3642 for $s=0.01$)
- Specifically, to be 99% certain a new mutation will fix, for $s=0.001$, we need about 4605 allele copies (independent of population size $N!!$)
- Also very possible for a deleterious mutation to fix, if $2 N s$ is close to 1
- Why? Intuition: look at the shape of the selection curve - flat at the start, strongest at the middle
- To understand this, we'll have to dig into how variation changes from generation to generation, in finite populations

But wrt selection: Don't make this mistake

B $\mathrm{B}^{\text {B }}$ C NEWS)

Friday, 27 September, 2002. 11:51 GMT 12:51 UK
Blondes 'to die out in 200 years'
The last natural blondes will die out within
200 years, scientists believe.
A study by experts in Germany suggests
people with blonde hair are an endangered
species and will become extinct by 2202.
Researchers predict the last truly natural
blonde will be born in Finland - the country with the highest proportion of blondes.

Image removed
due to
copyright restrictions.

But they say too few people now carry the
gene for blondes to last beyond the next two
centuries.
Image removed
The problem is that blonde hair is caused by due to
a recessive gene.
opyright restrictions.
Dyed rivals
The researchers also believe that so-called bottle blondes
may be to blame for the demise of their natural rivals.
They suggest that dyed-blondes are more attractive to men
who choose them as partners over true blondes.

Botte-biendes like
Ann $\begin{aligned} & \text { Widdecombe may be }\end{aligned}$
to blame
http://news.bbc.co.uk/1/hi/health/2284783.stm

From DNA to mutatians

Nucleotide base pairs T (hymine) -A (denine) C(ytosine) - Guanine

Changes between certain nucleotide 'letters'

Figure by MIT OCW.

Coat color mutants in mice. From		
Schlager G. and M. M. Dickie. 1967. Spontaneous mutations and		
mutation rates in the house mouse. Genetics $57: 319-330$		
Locus	Gametes tested	No. of Mutations

Estimation of mutation rate in a bacterial chemostat. Image removed due to copyright restrictions.

Mutation - the weak force

but...sets the context

$x=$ current frequency of A
$x^{\prime}=x(1-u)+(1-x) v$.
$\Delta x=x^{\prime}-x=-u x+v(1-x)$.
$x_{e}=\frac{v}{u+v}$

Mutation critical for introducing new alleles but very slow at changing them

Mutation-selection balance: an intuition

$$
q_{e}=u / s
$$

Rare mutant a has risk s being eliminated each generation
Each mutant remains avg of $1 / s$ generations (coin toss until big D)
So, with this number of generations and rate u of producing a 's per generation we have $q_{e}=u \times 1 / s=u / s$

Mutation-selection balance: deleterious dominant allele, a

Assumptions: frequency of a is small ($=1-p=q$) no heterozygote selection effect ($h=0$) q is small due to selection
Then:

$$
\begin{aligned}
& \Delta_{s} p=\frac{p q s[p h+q(1-h)]}{1-2 p q h s-q^{2} s} \approx q s \\
& \Delta_{u} p=-u \\
& 0=\Delta_{u} p+\Delta_{s} p \\
& \approx-u+q s ; \text { So } \\
& \hat{q}=\frac{u}{s}
\end{aligned}
$$

Exchange p and $q(x=$ freq of $q)$

- Dominant disease

$\begin{array}{ll}E_{s}[\Delta x] \approx-s x(1-x) & \text { Selection } \\ E_{u}[\Delta x]=(1-x) u & \text { Mutation }\end{array} \Rightarrow \tilde{x}=\frac{u}{s}$

By an equilibrium calculation. Huntington's disease. Dominant. Does not express itself until after age $40.1 / 100,000$ of people of European ancestry have the gene. Reduction in fitness maybe 2%.
= If allele frequency is q, then $2 q(1-q)$ of everyone are heterozygotes.

- 0.02 of these die. Each has half its copies the Huntington's allele.
- So as the frequency of people with the gene is $\simeq 1 / 100,000$, the fraction of all copies that are mutations that are eliminated is $0.00001 \times 1 / 2 \times 0.02 \simeq 10^{-7}$
- If we are at equilibrium between mutation and selection, this is also the fraction of copies that have a new mutation.

Similar calculations can be done with recessive alleles.

Selection-mutation equilibrium

What does this mean?
In almost every case where we can see selection operating on phenotype, $s \gg u$ (hard to imagine $s<10^{-6}$)
Exception: DNA and protein data
$u=10^{-7}$ and $s=10^{-3}$, then $q_{e}=0.0001$
Note: at each gen, a fraction $u(1-q)=0.9999 \times 10^{-7}$ mutate A to a
A fraction $u q=10^{-11}$ mutate from a to A (So back mutation safely ignored)

The selection-mutation equilibrium: recessive case

Diploid Selection Diploid Meiosis Haploid Mutation Haploid Mating Diploid Newborns \longrightarrow Adults \longrightarrow Gametes \longrightarrow Gametes \longrightarrow Newborns

$$
\begin{array}{ccc}
A A & A a & a a \\
1 & 1 & 1-s .
\end{array}
$$

After selection (check this!):

$$
\begin{aligned}
& p^{*}=\frac{p(p \times 1+(1-p) \times 1)}{p^{2} \times 1+2 p(1-p) \times 1+(1-p)^{2} \times(1-s)} \\
& p^{*}=\frac{p}{1-s(1-p)^{2}}
\end{aligned}
$$

After adding mutation:

$$
p^{\prime}=\frac{p(1-u)}{1-s(1-p)^{2}}
$$

Computing the equilibrium

$$
\begin{gathered}
p^{\prime}=\frac{p(1-u)}{1-s(1-p)^{2}} \\
1-s\left(1-p_{e}\right)^{2}=1-u \\
\left(1-p_{e}\right)^{2}=u / s \\
q_{e}=1-p_{e}=\sqrt{u / s}
\end{gathered}
$$

For $u=10^{-7}$ and $s=10^{-3}, q_{e}=0.01$

This is 100 times greater than the recessive case...Why?

Informal argument for recessive diploid

Key: must be homozygous to lose
from $\mathrm{H}-\mathrm{W}$: frequency of affected organisms the same:
$q_{e}^{2}=u / s$
$\operatorname{Pr} s q_{e}$ of being eliminated in each gen
Average mutant persists $1 /\left(s q_{e}\right)$ generations
Population has $1 / s q_{e} 0$ generations worth of mutants
Times u mutants per generation $=$
$q_{e}=u \times 1 / s q_{e}$
What about the other forces?

Genetic variability is lost in finite populations

Buri (1956):
107 Drosophila populations, each Image removed due to copyright restrictions. started with 16 heterozygotes for a brown eye mutation (bw)

The Wright-Fisher model

We get a binomial tree that depends on frequency, p , and total population size, N .
\rightarrow Binomial sampling $\quad \operatorname{Pr}\{j \mid i\}=\frac{2 N!}{j!(2 N-j)!}\left(\frac{i}{2 N}\right)\left(1-\frac{i}{2 N}\right)^{2 N-j}$
What is the pr that a particular allele has at least 1 copy in the next generation?
Well, what is the pr of not picking an allele on one draw?
Ans: $1-(1 / 2 N)$. There are $2 N$ draws (why?). So, pr of not picking for this many draws is $[1-(1 / 2 N)]^{2 N}=e^{-1}$ for large N

Let's explore the consequences...

Binomial sampling already implies some results
Pr that generation t has i copies of an allele A_{1}, given $2 N$ independent trials is:

For example, the probability that generation t has 10 copies of A, where $\operatorname{pr}(\mathrm{A})=11 / 20=0.55$ in gene pool for generation $t-1$ is: $20!/ 10$! 10 ! $(0.55)^{10}(0.45)^{10}=0.1593$

Mean and variance of frequencies p
(nb, not just the allele numbers)

Because this is a binomial draw with parameters $p, 2 N$, the mean of this distribution (the expected \# of A_{1} alleles drawn) is just $2 N p$, i.e., mean frequency is p
The variance in allele \# is: $2 N p(1-p)$
So the variance in allele frequency is:

$$
E[p]=E[X] / 2 N=2 N p / 2 N=p
$$

The variance of p goes down as the population size increases:

$$
\begin{aligned}
\operatorname{Var}\left[p^{\prime}\right]= & \operatorname{Var}[X]^{2} / 4 N^{2}= \\
& 2 N p(1-p) / 4 N^{2}=p(1-p) / 2 N
\end{aligned}
$$

First consequence: new mutations, if neutral...

What is the probability that a particular allele has at least 1 copy in the next generation? In other words: that a brand-new mutation survives?

Well, what is the pr of not picking an allele on one draw? Ans: $1-(1 / 2 N)$. There are $2 N$ draws (why?).
So, pr of not picking for this many draws is $[1-(1 / 2 N)]^{2 N}=e^{-1}$ for large N

So: probability of a new mutation being lost simply due to 'Mendelian bad luck' is $1 / e$ or 0.3679

Why doesn't population size N matter?
Answer: it's irrelevant to the \# of offspring produced initially by the new gene

One allele always wins!
Survival of the fittest? Down with Darwin?

Is this always so?
Let's try changing N and initial allele frequencies

$\mathrm{N}=100$
$2 N=200$
$R=150$
$\mathrm{G}=50$

What are the general rules?

- Higher population size $=$ alleles stick around longer.
- Less susceptibility to "random walk"
- Probability of winning seems related to initial frequencies.
- At $50 / 50$ initial allele frequency, 50% chance of either allele winning.
- Hypothesis: probability of winning is proportional to initial allele frequency. (Proof follows)
- Hypothesis: One allele must always win.

Drift \& the inevitable decay of heterozygosity
(variation), H_{t}

A mathematical analysis of drift: the decay of heterozygosity (loss of variation)

- Define $H_{t}=$ probability in generation t that 2 alleles picked at random are different from one another ('heterozygous'); homozygosity, G_{t} as $1-H_{t}$ ('identical by descent')
- Now develop a recurrence relation for H_{t}

Recurrence relation for G_{t}, H_{t}

This has important implications for allele fixation: eventually, one allele always wins, just as we said...and... we can now figure out the $p r$ of fixation (assuming no selection - we will factor that back in ...)

What is the half-life of H ?

$H_{0} / 2=H_{0}(1-1 / 2 N)^{t}-$ cancel H_{0} from both sides, take natural logs, solve for t
$t=2 N \ln 2($ using $\ln (1+x)$ approx $x)$
$N=10^{6}, t=1.38 \mathrm{e} 6$ generations

Important part: this says something about the timescale of drift - it's roughly the population size

Time scale \& interaction of forces

Drift: $2 N$ generations
HW: 1 or 2 generations
So: these 'forces' don't interact w/ each other...

Important: after $2 N$ generations, all variation is gone - this is how far back we can 'see' - everybody derived from this single allele

Fixation probability of an allele is proportional to its initial frequency

All variation is ultimately lost, so eventually 1 allele is ancestor of all alleles
There are $2 N$ alleles
So the chance that any one of them is ancestor of all is $1 / 2 N$
If there are i initial copies, the fixation chance is $i / 2 N$
(Simple argument because all alleles are equivalent - there is no natural selection)

Adding mutations - the mutation-drift balance

Mutation gain 2 Nu

Loss at rate $1 /(2 N)$

Modeling the balance
Assume N is large, compared to u
Take our existing formula for G and factor in mutation rate u (which reduces G, increases H):

Pr that we did not mutate (both alleles)

$$
\frac{1}{2}
$$

$4 N u=\theta=$ the fundamental parameter fixing population variability

Analysis...implications

- $H_{\text {eq }}=4 N u /(1+4 N u)$
- Let $N u$ be large compared to 1 . Then the population is almost always heterozygous. (Mutations occur before drift can remove)
- Let $N u$ be very small compared to 1 . Then the population has little variation. (Drift removes variation before a new mutation occurs)
- If $1 / u « N$, time scale of mutation is much less than drift, so population will have many unique alleles; if $N « 1 / u$, then time scale of drift is shorter, population will be devoid of variation

Examples

Example: HIV virus.
$\mu=10^{-5}$ per nucleotide and $\mathrm{N}=10^{7}-10^{8}$ infected cells in a host.
This means almost every nucleotide is variable in the population.
Example: Human
$\mu=10^{-8}$ per nucleotide and $\mathrm{N}=10^{3}-10^{5}(?)$
A typical nucleotide shows almost no variation in the population.
$\boldsymbol{\mu}=10^{-5}$ per gene. A typical gene will have few variants in a population.
$\boldsymbol{\mu}>1$ per genome. Every genome is essentially unique.

Mutation vs. drift: the key number is $4 N \mu$ vs. 1
$N \mu>1$, diversity increases heterozygosity maintained around 0.5

Gain heterozygosity \rightarrow variance stays high

Population "large" wrt genetic drift

\square

Loss of ancestral lineages: why lineages 'coalesce'
\longleftarrow Sequences \longrightarrow

Eventually, only one copy of an allele will survive (assuming no selection, migration in, etc.)

Wright-Fisher random mating... large population

 $\bigcirc(\odot) \odot \odot \odot \odot \odot \odot$

 $\odot(\odot) \odot \odot \odot \odot \odot \odot$
 $\odot \odot \odot \odot \odot \odot \odot \odot \odot \odot ~$

Genealogy of a sample of gene copies

Ancestry of a sample in the population pedigree

Why lineages coalesce
under the Wright-Fisher model
each gene comes from a random copy in the previous generation

In other words...

On average, depth $2 N$ before collapse to 1 ancestor

We'll prove this next time - see ch. 3 of Rice book

