Shape Influence in Geodesic Active Contours

Leventon, Grimson, Faugeras

Presenter: Polina Golland

Images courtesy of Michael Leventon.

Segmentation

• Active Contours, 'Snakes', Level Sets

Geodesic Active Contours

- Snake methodology defines an energy function E(C) over a curve C as $E(\mathcal{C}) = \beta \int |\mathcal{C}'(q)|^2 dq \lambda \int |\nabla I(\mathcal{C}(q))| dq$
- Caselles, et al. reduced the minimization problem to the expression.

$$\min_{\mathcal{C}(q)} \int g(|\nabla I(\mathcal{C}(q))|) |\mathcal{C}'(q)| dq$$

where g is a function of the image gradient of the form $\frac{1}{1+|\nabla I|^2}$.

• The following curve evolution equation can be derived using Euler-Lagrange. $\frac{\partial \mathcal{C}(t)}{\partial t} = g\kappa \mathcal{N} - (\nabla g \cdot \mathcal{N})\mathcal{N}$

where κ is the curvature and N is the normal.

 By defining an embedding function u of the curve C, the update equation for the higher dimensional surface is given by (Osher, Sethian '88):

$$\frac{\partial u}{\partial t} = g \kappa |\nabla u| + \nabla u \cdot \nabla g$$

Shape Prior for Segmentation

- Train on a set of shapes
 - Mean shape
 - PCA-based model of variation
- Bias the segmentation towards likely shapes

Training Data

 The training set, T, consists of a set of surfaces: T = {u₁, u₂, ..., u_n }

$$T = \left\{ \begin{array}{c} & & \\ & &$$

• The mean shape

$$\mu = \bigcirc$$

Principal Modes of Variation (using PCA)

Shape Distribution

Α

Modified Evolution Equation $u(t+1) = u(t) + \lambda_1 \left(g(c+\kappa) |\nabla u(t)| + \nabla u(t) \cdot \nabla g \right) + \lambda_2 \left(u^*(t) - u(t) \right)$

Shape+Pose Estimation

• Given the current contour

$$\langle \alpha_{_{\mathrm{MAP}}}, p_{_{\mathrm{MAP}}} \rangle = \operatorname*{argmax}_{\alpha, p} P(\alpha, p \mid u, \nabla I)$$

• Probability model

$$P(\alpha, p \mid u, \nabla I) = \frac{P(u, \nabla I \mid \alpha, p)P(\alpha, p)}{P(u, \nabla I)}$$
$$= \frac{P(u \mid \alpha, p)P(\nabla I \mid \alpha, p, u)P(\alpha)P(p)}{P(u, \nabla I)}$$

Shape+Pose Estimation (cont'd)

$$P(u \mid \alpha, p) P(\nabla I \mid \alpha, p, u) P(\alpha) P(p)$$

• Inside term

$$P(u \mid \alpha, p) = \exp\left(-V_{outside}\right)$$

• Gradient Term

$$P(\nabla I \mid u^*, u) = \exp(-|h(u^*) - |\nabla I||^2)$$

- Shape prior: Gaussian (PCA model)
- Pose prior: uniform over the image

Modified Evolution Equation $u(t+1) = u(t) + \lambda_1 \left(g(c+\kappa) |\nabla u(t)| + \nabla u(t) \cdot \nabla g \right) + \lambda_2 \left(u^*(t) - u(t) \right)$

Corpus Callosum Segmentation

Corpus Callosum Segmentation

Spine Modes

• 3D Models of seven thoracic vertebrae (T3-T9)

Spine Mean Shape

Spine 1st Mode of Variation

Segmentation of the Vertebrae

3/14/05

Comparison to human expert

3/14/05 **Leventon**

Summary

- Introduced shape prior into curve evolution
 - Previous work Fourier decomposition and ASH
 - This one is the first for the level set formulation
- PCA on training examples
- 2D and 3D
- Several follow-up methods that perform optimization differently.