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Abstract. In this paper, we study Gaussian Random Fields (GRFs) as spatial smoothing priors in
Functional Magnetic Resonance Imaging (fMRI) detection, and we solve GRFs using the variational
Expectation-Maximization (EM) algorithm. Relatively high noise in fMRI images presents a serious
challenge for the detection algorithms, creating a need for spatial regularization of the signals. Spa-
tial regularization is usually employed before or after detection, forming a two-process detector. In
a two-process detector, defects produced in the first process usually interfere with the performance
of the second process. Among all two-process detectors, the Gaussian-smoothing-based detector,
which performs detection on spatially smoothed signals, is the most popular. Gaussian filters, tra-
ditionally employed to boost the signal-to-noise ratio, often remove small activation regions. This
is mainly caused by applying a fixed, but arbitrary, Gaussian filter uniformly over the entire image.
In this work, we propose the EM-GRF-based detector that iterates between these two processes, so
that parameters of the Gaussian filter are readjusted according to the feedback from detection, and
the parameters for detection are readjusted according to the feedback from the filtered results. In
addition, we compare the performance of this detector with the Gaussian-smoothing-based detector
through ROC analysis on simulated data, and demonstrate their applications in a real fMRI study.

1 Introduction
Functional magnetic resonance imaging (fMRI) has provided researchers with a non-invasive dynamic
method for studying brain activation by capturing the change in blood oxygenation levels. Most fMRI
detection algorithms operate by comparing the time course of each voxel with the experimental protocol,
labelling the voxels whose time courses correlate significantly with the protocol as “active.” The commonly
used General Linear Model (GLM) [6] further assumes that the fMRI signal possesses linear characteristics
with respect to the stimulus and that the temporal noise is white. Furthermore, converting the GLM
estimates of each voxel into confidence interval statistics, such as P-value and Z-score, forms a so-called
Statistical Parametric Map (SPM). A confidence level is selected to reject the null hypothesis, which is
non-activation in this application. The signal from those voxels whose P-value or Z-score above a selected
confidence level is unlikely to be explained by the null hypothesis. Therefore, these voxels are labelled
as active voxels, and a binary map of active areas is created. In some applications, the sign of the GLM
estimate is augmented into the confidence statistic, producing a trinary activation map indicating both
positive and negative activations. However, because of a low signal-to-noise ratio (SNR), the binary maps
typically contain many small false positive islands, creating a need for spatial regularization.

A common approach to reducing such false detections employs a Gaussian filter to smooth the fMRI
signal prior to applying the GLM detector, and we refer this detector as the Gaussian-smoothing-based de-
tector. Unfortunately, Gaussian smoothing, though intended to combat low SNR, leads to overly smoothed
SPMs and a loss of detail in the resulting activation maps. In addition, the window size of the Gaussian
filter is entirely arbitrary, which makes comparison of results difficult. A number of alternative approaches
have explicitly incorporated spatial and temporal correlations into the estimation procedure. Examples
include autoregressive spatio-temporal models [2, 15], Markov Random Fields (MRFs) [3, 5, 4], Bayesian
models inferring hidden psychological states [7], adaptive thresholding methods that adjust statistical
significance of active regions according to their size. Similarly to the Gaussian-smoothing-based detector,
most of these detectors1 involve two processes: spatial regularization and detection. Therefore, defects
1 Cosman’s MRF-based detector [3] combines detection and spatial regularization into one process, but it is

restricted to binary activation configuration.
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produced in the first process will be carried over to the second one. For example, mild MRF regulariza-
tion usually cannot remove false positive voxels which acquire strong activation statistics in the detection
process.

We are interested in a real-number representation of brain activation, rather than discrete activation
state representation. By employing the two-gamma function [8]2 as a protocol-dependent regressor in
the GLM model, we are able to quantify activation using a real number. This enables us to distinguish
positive from negative activations, as well as activation strength. Gaussian Random Fields (GRF) is
employed for modelling spatial coherency, rather than a discrete spatial model, because of the real-number
representation of activation. We assume that, given the activation strength of each voxel, the time courses
of different voxels are conditionally independent. Spatial coherency is a model of the activation, not the
observed time courses. Different from the approaches mentioned in the previous paragraph, our approach
unifies spatial regularization and detection into an iterative process. Due to the fact that neither the
parameters in the signal model nor the parameters in the GRF are known, we adopt the variational
Expectation-Maximization (EM) approach. Parameters estimated in one process can be readjusted given
the feedback from the other process until convergence occurs. We compare the performance of our detector
with the conventional Gaussian-smoothing-based detector.

In the next section, we present the background of GLM and briefly outline how the GLM detector
can be augmented with a GRF spatial prior. Section 3 reviews the variational EM algorithm followed by
empirical evaluation of the detectors on simulated data and real data sets in Section 4. Conclusions and
discussions are in Section 5.

2 General Linear Model Augmented with a GRF Spatial Prior

2.1 Background

An fMRI scan contains a time course for each voxel. GLM models the fMRI signal as a linear combination
of the protocol-dependent signals and the protocol-independent signals, such as cardiopulmonary factors.
GLM assumes the brain behaves as a Linear Time Invariant (LTI) system. The presence of the protocol-
dependent signal indicates that the corresponding voxel is active due to the stimulus.

Since we focus on using a real number to represent activation strength in this work, we employ one of
the most commonly used Hemodynamic Response Functions (HRF), a two-gamma function, to construct
the model of the protocol-dependent signal, γ. γ is a column vector, resulting from a convolution of
the HRF and the experimental protocol. xi indicates the strength of the protocol-dependent signal. The
protocol-independent signal is unknown, but it is of a lower frequency compared with the protocol-
dependent signal. One of the most common approaches is to model the protocol-independent signal
as a constant (DC signal); other approaches include low-frequency Fourier components or low-order
polynomials. In this paper, we adopt the former approach. Therefore, we remove the DC component of
the original fMRI signal in the preprocessing step. The zero-mean fMRI signal is yi ∈ RNT (i = 1, ..., NV ),
where NT is the number of time samples and NV is the number of voxels in the scan. According to the
GLM model, the signal is a noisy version of the protocol-dependent signal:

yi = xiγ + εi (1)

for i = 1, ..., NV . For white temporal noise, εi ∼ N (0, σ2
i I). The least squares estimate of the activation

strength of voxel i, xi, is found through a linear regression:

x̂i = (γT γ)−1γT yi, (2)
2 A two-gamma function captures the fact that there is a small dip after the HRF has return to zero: h(t) =

(t/d1)
a1 exp(−(t−d1)

b1
) − c(t/d2)

a2 exp(−(t−d2)
b2

) where, dj = ajbj is the time to the peak, and a1 = 6, a2 = 12,
b1 = b2 = 0.9s, and c = 0.35
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and the corresponding F-statistic is given by Fi = x̂iΣ̂
−1
xi

x̂i/1, where the denominator corresponds to the
number of regression coefficients in xi, and it is 1 in our case. Σ̂xi is the estimated variance. Jezzard [8]
shows the general derivation of Fi with multiple regression coefficients in xi. A conventional GLM detector
constructs SPM using P-value, converted from Fi. In contrast, we use xi to represent activations in this
work.

Let random variable X = [X1, ..., XNV
] represent an activa-

y3
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y4
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X1 X2

Fig. 1. Graphical model for PX,Y .

tion configuration of all voxels in the volume. Continuous ran-
dom variable Xi represents activation strength of voxel i. x =
[x1, · · · , xNV

] is one possible configuration, which is also called
the SPM. Fig. 1 depicts the graphical representation of the model.
The conditional probability of obtaining an fMRI scan, y, given
the activation strength of all voxels, x, can be formulated as:

PY |X,θ(y|x,θ) =
NV∏

i=1

pY i|Xi
(yi|xi, θ) =

NV∏

i=1

N (yi;xiγ, σ2
i I) (3)

where y denotes signals of all voxels in an fMRI volume. The second equality is obtained based on the
assumption that the noisy signal of each voxel is independent given the activation strength of the voxels.

2.2 A Gaussian Random Field (GRF) Prior

Choosing a GRF prior to model brain activation corresponds to our interest in a real-number represen-
tation of brain activation. GRF is able to capture the biological fact that adjacent voxels tend to have
similar activation level. It is more appropriate to quantify brain activation using a real number rather
than quantizing it into binary or trinary states, since some regions of the brain should be more active
than others associated with a particular task. Additionally, according to neuroscience literatures [1, 13,
10], some regions in the brain show negative activations when a subject performs certain tasks. For
example, Schwartz [12] found that pre-frontal cortex regions usually shows negative activation during
rapid eye movement sleep. Negative activation is caused by decreased glucose metabolism, but a further
interpretation for negative activation is still an active research area.

GRF is formed by multivariate Gaussian variables. It is characterized by mean, w, and covariance
matrix, Σ. Estimating the covariance matrix is difficult given a limited amount of data, which is usually
the case in fMRI studies. Since GRF is used to model spatial coherency, we pre-define the covariance
based on the distance of the image grid.

Σi,j = 2− 2
1 + e−Di,j

(4)

where, D is the distance matrix of any pair of voxels. For example, Di,j stores the distance between voxel
i and j. With the logistic function, the elements in Σ is normalized between zero and one. The structure
of Σ agrees with our model that voxels appearing close should have a higher correlation. In contrast, we
assume w is unknown in our model. Therefore, the prior distribution of the activation strength, X is

pX(x) = N (x;w, Σ). (5)

In this paper, we only use the proposed GRF to model voxels within each slice because most fMRI
data is highly anisotropic with respect to the third spatial dimension. However, the extension to a three
dimensional volume of data is straightforward but requires more computation time.
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2.3 MAP Estimate

Presented in Eq. (3), the fMRI signal of each voxel is conditionally independent, given the activation
strength. We seek the MAP estimate of x given the signals,

x∗ = arg max pX|Y (x|y;θ) (6)
= arg max pX|Y (y|x;θ)pX(x; θ) (7)

= arg max
NV∏

i=1

N (yi;xiγ, σ2
i I)N (x;w, Σ) (8)

where, θ includes all of the parameters in the likelihood and prior models, {σi ∀i}, w, and Σ. If all of
the parameters are known, we can obtain a close form solution for x. In practise, the parameters are
unknown except that we treat Σ as a known parameter, and we approximate this MAP problem via the
variational EM approach. The variational EM algorithm allows us to find a distribution, qX(x), which
closely approximates pX|Y (x|y;θ). Then, we approximate x∗ by x̂∗ = arg max qX(x).

3 Variational EM

To formulate our problem into the EM framework, we consider Y and X as the observed and hidden
variables. In the EM algorithm, we would like to maximize the logarithm of the probability of the observed
data, L = log PY (y;θ) = log

∫
x

PX,Y (x, y; θ). We cannot optimize L directly because it involves unknown
functions PY (y; θ) or PX,Y (x, y; θ). We maximize its lower bound G(qX , θ) instead. The following is the
derivation of obtaining this lower bound:

L(θ) = log
∫

x

PX,Y (x, Y ;θ) (9)

= log
∫

x

qX(x)
PX,Y (x, Y ; θ)

qX(x)
(10)

≥
∫

x

qX(x) log
PX,Y (x, Y ; θ)

qX(x)
(11)

= Eq

[
log

PX,Y (x, Y ;θ)
qX(x)

]
(12)

= G(qX , θ) (13)
= −D(qX(x)||PX|Y (x|y, θ)) + log pY (y; θ) (14)

where, qX(x) represents the set of admissible probability density functions of X. Eq.(11) is obtained
according to Jensen’s Inequality. G(qX , θ) is less or equal to L(θ) because D(·), the KL-Divergence of
two distributions, is a non-negative quantity. We can further expand the lower bound as the following:

G(qX , θ) =
∫

x

qX(x) log
pY,X(y, x; θ)

qX(x)
(15)

=
∫

x

qX(x) log
pY |X,θ(y|x,θ)PX(x; θ)

qX(x)

=
∫

x

qX(x) log pY |X,θ(y|x, θ) +
∫

x

qX(x) log PX(x; θ)−
∫

x

qX(x) log qX(x). (16)
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According to the EM algorithm, we should set qX(x) = PX|Y (x|y, θ) at each E-step. At each M-
step, we maximize G(qX ,θ) over θ while fixing qX . Even though we can obtain a close form solution
for PX|Y (x|y, θ) at the E-step in our problem, the algorithm requires marginalization of PX|Y (x|y, θ) at
the M-step, and it is highly computation intensive. For instance, when we update σ2

i at each M-step, we
need to marginalize PX|Y (x|y, θ) over X except Xi. In contrast, if {x1, x2, · · · , xNv} are independently
distributed, the proposed MAP problem is similar to finding the MAP labels in a mixture of Gaussian
problem, which can be solved through the EM algorithm. In the mixture of Gaussian problem, we can
explicitly derive the posteriori distribution of Xi, PXi|Y (xi|yi,θ).

Inspired by the mixture of Gaussian problem, we restrict the family of admissible probability density
function, qX(x), as independently Gaussian distributions (Eq. (17)). In the case of probability distri-
butions, the appropriate simplification comes from properties of independence. The simplest family of
variational distribution is one where all the variables, {Xi : i = 1, ..., NV }, are independent of each other.

qX(x) =
NV∏

i=1

N (xi; ωi, η
2
i ) (17)

where, ωi and η2
i are the mean and variance of Xi’s distribution. Some later derivations are simplified

by writing the mean and variance into vector forms: ω = [ω1, · · · , ωNV ]T and η2 = [η2
1 , · · · , ω2

NV
]T . The

admissible probability density function reflects our interest of a real-number representation of activation
because of the Gaussian distribution. We find qX(x) among the set of admissible probability density
functions that provides the best approximation to PX|Y (x|y, θ). The consequence approach is called the
variational EM algorithm.

You may notice that each hidden variable, Xi, is a continuous random variable, there is an infinite
rather than a finite number of labels. Nevertheless, the EM algorithm and the variational EM algorithm
are general to both continuous and discrete hidden variables. Summation in the conventional EM formulas
are replaced by integration.

By substituting Eq. (3), (5) and (17) into Eq. (16), we get

G(qX ,θ) =
NT

2

∫ NV

i=1

log(2πσ2
i )− 1

2

∫ NV

i=1

[yT
i yi/σ2

i − 2µiy
T
i γ/σ2

i + γT γ(µ2
i + η2

i )]− 1
2

log(|Σ|) (18)

− NV

2
log(2π)− 1

2
[
µT Σ−1µ + diag(Σ−1)T η2 − 2µT Σ−1ω + ωT Σ−1ω

]

+
1
2

∫ NV

i=1

log(2πeη2
i ).

The following outlines the E and M steps in the variational EM algorithm:

– E-Step: Maximize G(qX ,θ) with respect to the admissible function, qX . This means to maximize
G(qX ,θ) with respect to the variational parameters, µi and η2

i , ∀i.
– M-Step: Maximize G(qX , θ) with respect to the model parameters, ω and σ2

i , ∀i.

It is important to note that the lower bound, G(qX , θ), may not touch L(θ) in each E-step in the
variational EM algorithm, while the EM algorithm guarantees this touch.

In the E-step, we set the partial derivatives of G(qX ,θ) to zero with respect to the parameters in the
admissible probability density function, µi and η2

i .

∂G(qX ,θ)
∂µ

= Syr − γT γSµ−Σ−1µ + Σ−1ω = 0

⇒ µ = (γT γS + Σ−1)−1(Syr + Σ−1ω)−1 (19)
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where, yr = [yT
1 γ, · · · , yT

Nγ]T , σ2T = [σ2
1 , · · · , σ2

N ]T , and S = (σ2T I)−1.

∂G(qX , θ)
∂η2

i

= − 1
2σ2

i

γT γ +
1

2η2
i

− 1
2
diag(Σ−1)i = 0

⇒ η2
i =

1
diag(Σ−1)i + γT γ/σ2

i

(20)

where, diag(Σ−1)i is the ith element in the vector formed by the diagonal of Σ−1.
In the M-step, we set the partial derivatives of G(qX , θ) to zero with respect to the modelling param-

eters, ωi and σ2
i .

∂G(qX , θ)
∂ω

= Σ−1µ−Σ−1ω = 0

⇒ ω = µ (21)

and

∂G(qX , θ)
∂σ2

i

= −NT

2σ2
i

+
1

2(σ2
i )2

[yT
i yi − 2yT

i γµi + γT γ(µ2
i + η2

i )] = 0

⇒ σ2
i =

1
NT

(yT
i yi − 2yT

i γµi + γT γ(µ2
i + η2

i )). (22)

We stop the iteration when the lower bound, G(qX , θ), converges to a local maximum. As men-
tioned before, we would like to obtain x̂∗ = arg max qX(x). Since qX(x) is composed by independently
distributed Gassian distributions, x̂∗ = ω. The ROC analysis, the confusion matrix analysis, and the
thresholded activation maps presented in the next section are created from ω.

4 Results

In this section, we used both synthetic and real fMRI data to compare the performance of the proposed
EM-GRF-based detector and the Gaussian-smoothing-based detector.

4.1 Synthetic Data Sets

To quantitatively evaluate the performance of the method, we generated realistic phantom data by apply-
ing EM segmentation [9] to an anatomical MRI scan and placing activation areas of variable size (average
diameter of 15mm) randomly in the gray matter. We randomly assigned the selected activation regions
as either positively or negatively active regions. In other words, all of the voxels in an activation region
have an identical activation state; voxels belonging to different activation regions, although they are very
close, may be in different activation states. We then downsampled the scan to an fMRI resolution. The
gray matter voxels represent 10% of the total number of voxels in a volume, and 7% and 3% of the gray
matter voxels are positively and negatively active voxels. We created simulated fMRI scans based on a
fixed parametric hemodynamic response function, on an event-related protocol, and on varying levels of
noise. Fig. 2 displays the synthetic signals before and after adding noise.

More realistic synthetic data should include variation in activation strength in selected activation
regions. However, this type of data prevents us from performing ROC analysis and confusion matrix
analysis. Therefore, we chose to have identical activation strength for the selected active voxels in our
synthetic data. In other words, the simulated HRF for the negative voxels is the negative version of
the HRF for the positive voxels. As mentioned before, the EM-GRF-based detector is flexible enough to
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handle variation in activation strength, so it can handle equal activation strength with minor reduction in
statistical power. Results of applying this detector to real fMRI data can better illustrate the advantages
of this detector.

We used the estimated SNR, ŜNR = −10 log10(|γx̂|2)/σ̂2, to determine a realistic level of the simulated
noise, as the true SNR is unaccessible for real fMRI scans. Since the signal and noise overlap in some
frequency bands, part of the noise energy is assigned to the estimated signal during detection. The
estimated SNR is therefore an optimistic approximation of the true SNR, which can still be used as a
monotonic upper bound of the true SNR. In our real fMRI studies, the estimated SNR is about -5dB.
Here, we illustrate the results of the synthetic data for two levels of true SNR, -6dB and -9dB, which
correspond to estimated SNR of -4.3dB and -6.2dB, respectively. Fig 2b and c display the signals from a
non-active voxel, a positively active voxel, and a negatively active voxel at two noise levels. As we can
see, it is very difficult for humans to differentiate the three types of activations from the signals.

(a) Signal without Noise
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(b) SNR = -9dB (c) SNR = -6dB
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Fig. 2. Three types of time course signals at two noise levels.

In all experiments, we used the same GLM detector based on the two-gamma HRF introduced in
Section 2.1. To create a baseline for comparison, we applied the GLM detector to the raw signals. On
the other hand, in the Gaussian-smoothing-based detector, the GLM detector is applied to the spatially
smoothing signals. To evaluate the EM-GRF-based detector, we performed the variational EM algorithm
described in Eq. (19) to Eq. (22) on the raw images.

We adjust the definitions of false positive and true positive rate for handling three activation types.
False positive rate is defined as the percentage of non-active voxels being classified as either positively
or negatively active voxels. We define true positive rate as the percentage of the active voxels (including
positively and negatively active voxels) being correctly classified. As we can see, misclassification between
two activation types are ignored. However, in the range of false positive rates between 0.001% and 0.1%,
there is no misclassification between the two activation types in our experiments. We performed the
confusion matrix analysis in addition to the ROC analysis to analyze whether the detectors have different
detection performance for positive and negative activations.
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(a) SNR = -9dB (b) SNR = -6dB
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Fig. 3. ROC curves for different smoothing techniques, at two noise levels. False positive rate is shown
on the log scale.

Fig. 3 shows the ROC curves created by the three detectors by varying the threshold applied to the
corresponding statistics of each method. Since the F-statistic, provided by the GLM detector and the
Gaussian-smoothing-based detector, is one-sided, we augment it with the sign of x̂i to distinguish positive
activations from negative activations. On the other hand, the mean of the activation statistic from the
EM-GRF-based detector has a range from (−∞, ∞). Due to the large number of voxels in the volume
and the relatively small number of active voxels, only very low false positive rates are of interest (we
focus on the false positive rates below 0.5%, which correspond to about 7% of the total number of the
active voxels, or approximately 150 voxels). The error bars indicate the standard deviation of the true
detection rate over 15 different data sets, independently created and processed.

(a) GLM detector, SNR = -9 dB (b) GLM detector, SNR = -6 dB

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 23.46 76.54 0.00 Negative Active 60.04 39.96 0.00

Not Active 0.05 99.90 0.05 Not Active 0.05 99.90 0.05

Positive Active 0.00 77.55 22.45 Positive Active 0.00 39.39 60.61

(c) Gaussian-smoothing-based detector, SNR = -9 dB (d) Gaussian-smoothing-based detector, SNR = -6 dB

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 38.81 61.19 0.00 Negative Active 49.59 50.41 0.00

Not Active 0.04 99.90 0.06 Not Active 0.04 99.90 0.06

Positive Active 0.00 50.85 49.15 Positive Active 0.00 39.83 60.17

(e) EM-GRF-based detector, SNR = -9 dB (f) EM-GRF-based detector, SNR = -6 dB

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 27.99 72.01 0.00 Negative Active 71.44 28.56 0.00

Not Active 0.05 99.90 0.05 Not Active 0.05 99.90 0.05

Positive Active 0.00 72.52 27.48 Positive Active 0.00 29.02 70.98

Table 1. Detection performance of three selected detectors at two SNR levels.
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As expected, the accuracy of all methods improves with increasing SNR. At high noise levels (low
SNR), Gaussian smoothing outperforms EM-GRF. As the simplest smoothing technique, Gaussian smooth-
ing is more robust to noise. At either SNR level, we can notice that the Gaussian-smoothing-based detector
has a larger standard derivation. Applying a fixed window size for smoothing causes the detector’s high
sensitivity to activation configurations. The EM-GRF-based detector, on the other hand, adjusts the
smoothing parameters according to the detection results and the detection parameters according to the
smoothing outputs. Therefore, it is more robust to different activation configurations. As the SNR in-
creases, EM-GRF provides better regularization of the activation state (for example, at SNR=-6dB, at
the false positive rate of 0.01%, the MRF outperforms the Gaussian smoothing by about 12% in true
detection accuracy; at 70% true detection, the EM-GRF-based detector approximately halves the false
detections compared to the Gaussian-smoothing-based detector). We believe that with the improving
scanning technology, the EM-GRF-based detector will become even more helpful in reducing spurious
false detection islands.

Table 1 presents the confusion matrix of average statistics of the three detectors over the same 15
data sets, when false positive rate is fixed at 0.1%. While the GLM detector and the EM-GRF-based
detector have similar detection power for both positive and negative activations, the Gaussian-smoothing-
based detector has higher detection power for the positive activation. As mentioned before, our synthetic
data has approximately twice as many positively active voxels as negatively active voxels. The Gaussian-
smoothing-based detector averages signals spatially which leads to overemphasis of the positive activation.
Some weak negative signals are suppressed during the averaging process.

Besides the quantitative analysis presented above, we find it useful to visually inspect the resulting
activation maps. Fig. 4 illustrates the detection results by showing one axial slice of the estimated acti-
vation map. The top image shows the phantom activation areas that were placed in the volume and used
to generate the simulated fMRI scan. The bottom four rows show the same slice in the reconstructed
volume at two different noise levels. All the reconstructions were performed at 0.1% false positive rate.
In other words, each image in Fig. 4 shows one slice in the reconstructed volume that corresponds to a
point on the ROC curve of the respective detector at 0.1% false positive rate.

The activation map produced by the basic GLM detector shows very little of the original activation
at low SNR (Fig. 4b). Given this map, users would have difficulty inferring the true activation areas
and disambiguating them from spurious false detections. The corresponding activation map at a high
SNR (Fig. 4e) gives reasonable result but it is still fragmented. The Gaussian-smoothing-based detector
(Fig. 4c) leads to an improved estimate compared with Fig. 4b. Activation regions that are square are
better captured by the Gaussian-smoothing-based detector. At low SNR (-9dB), the EM-GRF model
(Fig. 4d) fills in many of the active pixels that were missed by the GLM detector, but as we saw before,
its results are not as accurate as those produced by the Gaussian-smoothing-based detector. At higher
SNR (-6dB), EM-GRF produces a relatively accurate result (Fig. 4g). On the other hand, the Gaussian-
smoothing-based detector is not able to detect activation regions that have a long, thin pattern. It again
depicts the Gaussian-smoothing-based detector’s high sensitivity to activation configurations.

4.2 Real fMRI Data Sets

In the real fMRI experiments, since the ground truth is unavailable, constructing ROC analysis is not
possible. Instead, we visually compare the resulting activation maps. This approach effectively evaluates
the ability of each detector to reconstruct the true activation areas with less evidence on the strength of
the signal.

In this fMRI study [14], the original scans were obtained during an auditory “two-back” word exper-
iment. Each experiment consisted of five rest epochs and four task epochs, each epoch 30 seconds long.
In the rest condition, the subjects were instructed to concentrate on the noise of the scanner and lie still.
In the task condition, the subjects were presented with a series of pre-recorded single-digit numbers, one
number every three seconds. The subjects were asked to tap their index finger to the thumb when hearing
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(a) Ground Truth

(b) No Smoothing (c) Gaussian (d) EM + GRF

SNR = -9dB

(e) No Smoothing (f) Gaussian (g) EM + GRF

SNR = -6dB

Fig. 4. One slice from estimated activation maps for the same ground truth at 0.1% false positive rate.
True detections are shown in yellow; false positive voxels are shown in red.

a number that was the same as the one spoken two numbers before. The experiment was repeated ten
times for each subject. The anatomical images were acquired on a 1.5 Tesla GE signa clinical MR scanner
(T1-weighted SPGR, 256×256, 124 slices, 1.5mm slice thickness). The EPI images were acquired on the
same scanner (axial, TR/TE=2500/50msec, FA90, 64×64, 24 slices, 6mm slice thickness, no gap). The
original study contains nine subjects, but for the purposes of voxel-by-voxel comparison of the detectors,
we present the results for one subject across all detectors. The estimated SNR when averaging over all
voxels in the brain was -4.7dB (-2.3dB when averaging voxels in selected Regions of Interest (ROIs)
relevant to the task).

Fig. 5a shows one axial slice in the reconstructed activation map using GLM without any spatial
smoothing on the full-length fMRI signal (all 9 epochs). The ground truth for this scan is unknown, but
we can use this map as a visual reference when evaluating the performance of the detectors on the time
course of reduced length. For example, Fig. 5b shows the result of applying the same GLM detector to
the first 5 epochs of the time course. This map is more fragmented due to loss in SNR from reducing
the length of the signal. The other two images illustrate the results of applying the Gaussian-smoothing-
based detector and the EM-GRF-based detector. Although Gaussian smoothing removes most of the
single-voxel-activation islands, its activation map (Fig. 5c) is an overestimate compared with Fig. 5a. EM-
GRF regularization (Fig. 5d) yields reasonable reconstruction results that are close to the activation map
estimated from the full-length signal, but do not look overly smoothed. This highlights the potential
benefit of using the EM-GRF-based detector in fMRI detection.
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(a) No Smoothing (long)

(b) No Smoothing (short) (c) Gaussian (d) EM + GRF

Fig. 5. Real fMRI study. One slice in the estimated activation map. (a) No spatial smoothing, using the
entire time course. (b)-(d) Estimation based on the first five epochs of the time course using different
spatial smoothing methods.

5 Discussion and Conclusions

Different from traditional fMRI detectors that represent activation strength by significance statistics of
the regression coefficients, we directly used the regression coefficients to represent activation strength and
activation type. Furthermore, we incorporated GRF to provide spatial regularization for the regression
coefficients. Our approach is flexible to other spatial regularization methods as long as they reflect the
real-number representation of activation.

Our studies confirm the importance of spatial regularization in reducing fragmentation of the activa-
tion maps. This paper investigates the improvement of the proposed EM-GRF-based detector in fMRI
image analysis. Unlike most current detectors, which consider detection and spatial regularization as
two separate processes, the EM-GRF-based detector iteratively adjusts the detection parameters and the
spatial regularization parameters through the variational EM algorithm. This iterative detector is similar
to a feedback system, and it is able to diminish adversarial effect caused by unsatisfactory performance
of the first process in two-process detectors. The experiments on real fMRI data confirm this advantage
of the EM-GRF-based detector over the Gaussian-smoothing-based detector in terms of its ability to
recover activation from significantly shorter time courses.
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