6.881 Representation and Modeling for Image Analysis

Instructor: Polina Golland

Goals

- Learn useful mathematical techniques
- Read vision papers that use them
 - Old and new "classics"
- Practice
 - Presenting work
 - Writing/reviewing papers
- Understand the interconnectedness of everything

- Subspace (Manifold) learning
 - Theory: PCA
 - Applications: Eigen faces, Active Shape & Active Appearance Models.
 - Additional topics: kernel PCA, LLE
- Boundary Detection
 - Theory: Calculus of variations
 - Applications: Mumford-Shah functional, active contours: snakes and level sets
- EM:
 - Theory: EM algorithm
 - Applications: segmentation, tracking

Syllabus cont'd

- Graph algorithms
 - Theory: Graph cut algorithms
 - Applications: segmentation, stereo
- Clustering
 - Theory: hierarchical, k-means, spectral
 - Applications: grouping in images
- Graphical Models
 - Theory: MRFs, inference in graphical models
 - Applications: regularization, part/layer models

Syllabus (Approximate) cont'd

- Shape descriptors
- Transformations and manipulating them
- Information Theoretic Methods
- Classification

Format

- For each topical cluster
 - Tutorial on the method/theory
 - Paper presentations
 - Discussion
- We will expect that you
 - Have read the assigned reading material
 - Have questions and are ready to discuss

When you present

- Meet with us the week before to go over the presentation
- Present the paper/method in class and set the stage for discussion
 - What is the problem?
 - What methods are used?
 - What are the main assumptions?
 - How robust are the results?
 - Possible extensions: point to others' work or suggest your own ideas

Grades

- 40% method/paper presentations
- 20% participation in the discussions
- 30% final paper & presentation
 - Project or analysis paper
- 10% paper review

Final Project/Paper

The goal is to write a conference paper and to get feedback on it.

We will also have final presentations on the projects in the last three classes.

Proposals due: March 4. Final papers due: May 1. Paper reviews due: May 12.

Course participation

- Please register for the course
 - It increases the likelihood of your actually reading the papers
 - It increases the likelihood I will be able to offer this seminar again in the future
- Sitting in on this course is ok, but you still have to read the papers and participate in the discussions. You might also be asked to present.

- so you might as well get the credit for it

First Topic Cluster: PCA

- Today:
 - tutorial on Principal Component Analysis
- Next week
 - Eigenfaces
 - » PCA on intensity values of the faces images
 - » More recent work: kernel PCA
 - » Presenter: Polina Golland
 - Active Shape & Active Appearance Models
 - » PCA on point locations and intensity variation
 - » Looking for a presenter

Looking Ahead

- Tutorial on calculus of variations
- Mumford-Shah functional, snakes
- Level Set curve evolution

- Tutorial on EM
- EM segmentation
- EM for tracking in layer models
- EM for generative model training

End of logistics

Principal Component Analysis

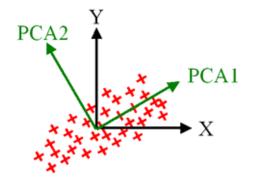
- Samples $\{\mathbf{x}_1, ..., \mathbf{x}_n\}$
- Find the best low dimensional approximation of the samples
 - Restrict to linear approximations
 - Minimize sum squares error
- Blackboard derivation of PCA

Properties

- **m** is the sample mean
- $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ form an orthonormal basis
- **v**_i's are the *k* largest eigenvectors of the sample covariance
- they can also be found sequentially!
- Mahalanobis distance
 (x-y)^TS⁻¹(x-y)

Geometric Interpretation

- Linear subspace that explains most variability in the sample.
- "Prefix optimal"
 - Error measure: sum of squares.



- K-dimensional Gaussian distribution that best approximates the sample.
- In physics: principal axes of inertia.

Extensions

- Data lies in a non-linear space
 - Kernel PCA
 - Locally linear embedding (LLE)
 - Other manifold learning methods