
Debugging

Applications in

Pervasive Computing

Larry Rudolph

May 1, 2006

SMA 5508; MIT 6.883

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry 1 Rudolph

Outline

� Video of Speech Controlled Animation

� Survey of approaches to debugging

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Turning bugs

into features

�	 Speech recognition is not 100%

�	 Who likes it when its wrong?

�	 Children

�	 Example: story telling (easy reading)

�	 Computer recognizes the words that the child is
reading and animates it

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Voice controlled

animation

‣ A very fertile domain: room for improvement

‣ mouse is very limited

‣ hard to specify parameters

‣ choose from list -- awkward when long

‣ one action and one parameter

‣	 speech allows multiple parameters (and sub-parameters)

‣ objects are parameters; adjectives are params of params

‣ Unfortunately, no good models of children’s voices

‣ so we have to act like children :)

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Testbed for other

ideas

�	 Naming

�	 give basic object a name

�	 give composite object a name (macro)

�	 many parameters come from context (environment)

�	 differentiate between base object and instantiated
object

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Controlling Errors

� Two types of consequences to errors:

� something useful (or interesting)

� something destructive (or boring)

� Who gets to decide?

� tolerating some errors --> flexibility

� avoiding all errors --> too rigid

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Semantics

‣ Where does the semantics get checked?

‣ no consensus (speech, vision, sketch)

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Our approach
� Command: action and parameters

� error: incompatible action and param

� dogs: sit, run, lick, beg, bark

� cats: sit, run, lick, sleep, purr

� Consider the error: “dog purr”

� if cat is on stage, it purrs

� if dog is on stage, do random action

� random actor does random action

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Considerations

� Really depends on the cost of error

� can action be “undone” easily?

� is the user getting frustrated?

� Rather than selecting at random

� choose the most likely action

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Informing the user

‣ System consisted of lots of components on lots of machines

‣ flash (XP), galaxy (Linux), audio (iPaq)

‣ how to find out about serious errors?

‣ cannot inform user; no output dev

‣ not clear if other apps will forward

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Some Challenges of

“traditional” debugging

approaches

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry 11 Rudolph

Stop/Inspect/Go

‣	 Stepping through the code (e.g. gdb)

‣	 stop and inspect memory & data structures

‣	 hard to get program to stop or break at correct point

‣	 Run backwards

‣	 problem usually occurs just before death, so backup
and check data-structures

‣	 Many ops are reversible (x = x + 1 x = x - 1)

‣	 push on stack control flow and non-reverse ops

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Stop/Inspect/Go
� Logs

� Log all interesting events (I/O ?)

� Need way to organize independent logs

� Need way to see paths in the forest

� visualization tools are helpful

� extensive log event tags

� Log control-flow history

� off-line playback or re-execution

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry
Rudolph

Risk of

Masking Bugs

�	 Shared Memory (lots of experience)

�	 Many things look like share memory

� automatic synchronization; caching; distributed FS

�	 Low-level bugs due to strange timing bugs

�	 set flag; check flag; do operation

�	 Programmers think everything executes at same rate

�	 weird bugs when on process executes a little, pauses,
executes a little more, pauses, etc.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Concurrency
‣ Debuggers don’t deal well with threads.

‣ Conditional Breakpoints:

‣ Break when phone locks DB & camera locks mic

‣ Need deterministic replay

‣ Need to understand all possible parallel executions

‣ race-condition detector

‣ Software Transactions (memory & data-base)

‣ hand time-outs

‣ heart-beat messages

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Distributed

Communication

�	 Central way to control system-
wide parameters

�	 duplicate message detection; non-
idempotent operations

�	 unified interface to debuggers on
different systems & OS’s

�	 start up; switch between
debuggers

�	 Distributed LEDs (one per

process)

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Virtual

Computer

� Start with a set of

� Emulators & Virtual Computers

� Add

� Scheduler (various orderings)

� Fault-Injection

� Instrumentation

� Debug under idealized world

� then move to real world

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Yet another approach

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry 18 Rudolph

Change-point

detections

�	 What do you do when things stop working?

�	 Seek out a friend. Their first question:
“What did you change?”

�	 Your first response: “Nothing”

�	 Your second response: “Oh yea, thanks”

�	 Too hard with pervasive computing env.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

How to support this?
�	 Too hard at the moment to automatically fix all

problems.

�	 Worthwhile to point out potential sources

�	 Monitor everything, learn what’s typical

�	 report what is atypical

�	 monitoring must be on-line and cheap

�	 Use human-level timing

�	 sec, min, hour, day, week, month, year

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Isn’t this like data-

mining?

‣ Data mining for failure indicators?

‣ No long log files; no labeled data

‣ On-line and easier

‣ Finding outliers is expensive

‣ Finding what recently changed is cheap

Outlier

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Use out-of-band

communication

�	 If main application has problems

�	 error messages may not get

forwarded

�	 normal channels of communication
might be the source of difficulties

�	 want separate communication
channel

�	 Use IM & SMS for query

�	 ubiquitous, natural, usually works

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

Wrapping up

� My conclusion is that

� physical world poses new challenges

� user’s must help in fixing problems

� system must help the user in this task

� we’ve only just begun ...

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph

	Debugging Applications in Pervasive Computing
	Outline
	Turning bugs into features
	Voice controlled animation
	Testbed for other ideas
	Controlling Errors
	Semantics
	Our approach
	Considerations
	Informing the user
	Some Challenges of “traditional” debugging approaches
	Stop/Inspect/Go
	Stop/Inspect/Go
	Risk of Masking Bugs
	Concurrency
	Distributed Communication
	Virtual Computer
	Yet another approach
	Change-point detections
	How to support this?
	Isn’t this like data-mining?
	Use out-of-band communication
	Wrapping up

