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Outline


� Video of Speech Controlled Animation 

� Survey of approaches to debugging 
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Turning bugs 

into features


�	 Speech recognition is not 100% 

�	 Who likes it when its wrong? 

�	 Children 

�	 Example: story telling (easy reading) 

�	 Computer recognizes the words that the child is
reading and animates it 
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Voice controlled 

animation


‣ A very fertile domain: room for improvement 

‣ mouse is very limited 

‣ hard to specify parameters 

‣ choose from list -- awkward when long


‣ one action and one parameter


‣	 speech allows multiple parameters (and sub-parameters) 

‣ objects are parameters; adjectives are params of params 

‣ Unfortunately, no good models of children’s voices 

‣ so we have to act like children :) 
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Testbed for other 

ideas


�	 Naming 

�	 give basic object a name 

�	 give composite object a name (macro) 

�	 many parameters come from context (environment) 

�	 differentiate between base object and instantiated 
object 
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Controlling Errors 

� Two types of consequences to errors: 

� something useful (or interesting) 

� something destructive (or boring) 

� Who gets to decide? 

� tolerating some errors --> flexibility 

� avoiding all errors --> too rigid 
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Semantics


‣ Where does the semantics get checked? 

‣ no consensus (speech, vision, sketch) 
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Our approach 
� Command: action and parameters 

� error: incompatible action and param 

� dogs: sit, run, lick, beg, bark 

� cats: sit, run, lick, sleep, purr 

� Consider the error: “dog purr” 

� if cat is on stage, it purrs 

� if dog is on stage, do random action 

� random actor does random action 

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry

Rudolph




Considerations


� Really depends on the cost of error 

� can action be “undone” easily? 

� is the user getting frustrated? 

� Rather than selecting at random 

� choose the most likely action 
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Informing the user


‣ System consisted of lots of components on lots of machines 

‣ flash (XP), galaxy (Linux), audio (iPaq) 

‣ how to find out about serious errors? 

‣ cannot inform user; no output dev 

‣ not clear if other apps will forward 
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Some Challenges of 

“traditional” debugging 


approaches 
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Stop/Inspect/Go 

‣	 Stepping through the code (e.g. gdb) 

‣	 stop and inspect memory & data structures 

‣	 hard to get program to stop or break at correct point 

‣	 Run backwards 

‣	 problem usually occurs just before death, so backup
and check data-structures 

‣	 Many ops are reversible ( x = x + 1  x = x - 1) 

‣	 push on stack control flow and non-reverse ops 
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Stop/Inspect/Go 
� Logs 

� Log all interesting events ( I/O ?) 

� Need way to organize independent logs 

� Need way to see paths in the forest 

� visualization tools are helpful 

� extensive log event tags 

� Log control-flow history 

� off-line playback or re-execution 
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Risk of 

Masking Bugs 

�	 Shared Memory (lots of experience) 

�	 Many things look like share memory 

� automatic synchronization; caching; distributed FS 

�	 Low-level bugs due to strange timing bugs 

�	 set flag; check flag; do operation 

�	 Programmers think everything executes at same rate 

�	 weird bugs when on process executes a little, pauses,
executes a little more, pauses, etc. 
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Concurrency 
‣ Debuggers don’t deal well with threads. 

‣ Conditional Breakpoints: 

‣ Break when phone locks DB & camera locks mic 

‣ Need deterministic replay 

‣ Need to understand all possible parallel executions 

‣ race-condition detector 

‣ Software Transactions (memory & data-base) 

‣ hand time-outs 

‣ heart-beat messages 
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Distributed 

Communication


�	 Central way to control system-
wide parameters 

�	 duplicate message detection; non-
idempotent operations 

�	 unified interface to debuggers on 
different systems & OS’s 

�	 start up; switch between 
debuggers 

�	 Distributed LEDs (one per 

process)
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Virtual 

Computer


� Start with a set of 

� Emulators & Virtual Computers 

� Add 

� Scheduler (various orderings) 

� Fault-Injection 

� Instrumentation 

� Debug under idealized world 

� then move to real world 
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Yet another approach
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Change-point 

detections


�	 What do you do when things stop working? 

�	 Seek out a friend. Their first question: 
“What did you change?” 

�	 Your first response: “Nothing” 

�	 Your second response: “Oh yea, thanks” 

�	 Too hard with pervasive computing env. 
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How to support this? 
�	 Too hard at the moment to automatically fix all

problems. 

�	 Worthwhile to point out potential sources 

�	 Monitor everything, learn what’s typical 

�	 report what is atypical 

�	 monitoring must be on-line and cheap 

�	 Use human-level timing 

�	 sec, min, hour, day, week, month, year 
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Isn’t this like data-

mining?


‣ Data mining for failure indicators? 

‣ No long log files; no labeled data 

‣ On-line and easier 

‣ Finding outliers is expensive 

‣ Finding what recently changed is cheap 

Outlier 
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Use out-of-band 

communication


�	 If main application has problems 

�	 error messages may not get 

forwarded


�	 normal channels of communication 
might be the source of difficulties 

�	 want separate communication 
channel 

�	 Use IM & SMS for query 

�	 ubiquitous, natural, usually works 
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Wrapping up 

� My conclusion is that 

� physical world poses new challenges 

� user’s must help in fixing problems 

� system must help the user in this task 

� we’ve only just begun ... 
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