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ABSTRACT 
High­level synthesis languages allow hardware designers 
to describe modules at higher levels of abstraction and 
use techniques such as polymorphism to increase source­
code generality and reusability. Abstract descriptions are 
concretized into specific hardware structures by the com­
piler during a phase known as static elaboration. Experi­
ence has shown that as hardware designers created in­
creasingly generalized designs, static elaboration can be­
come the most expensive compilation phase. We demon­
strate that for a generalized PowerPC processor the 
Bluespec compiler spends 70% of total compilation time 
in static elaboration. 

Our contribution is to reduce the execution time of the 
elaboration phase by applying techniques which have 
been previously developed to analyze and optimize soft­
ware programs to the elaboration of hardware. We discuss 
the similarities between static elaboration and traditional 
software interpretation. We demonstrate that one particu­
lar technique, Higher­Order Abstract Syntax, resulted in 
an average improvement in elaboration time of 45% on 
five of six designs in our benchmark suite. 

1. INTRODUCTION 
It is generally accepted that hardware designs have 
increased in size and complexity by an order of mag­
nitude since 1995, and are expected to increase by an­
other order of magnitude by 2010. To manage this 
complexity designers rely on reusing existing blocks 
of intellectual property (IP reuse). A more generalized 
hardware description has greater potential to be re­
used in future situations. 

In software, developers can use techniques such 
as polymorphism to achieve generalized, reusable de­
scriptions. This generality is resolved at runtime 
through established techniques such as dynamic dis­
patch. In hardware design the output of the compiler 
is a concrete structural hardware description which 
may be used as input for a synthesis tool. Thus all ab­
stract modules must be concretized during compila­
tion, during a compiler phase known as static elabora­
tion. 

Current register­transfer level (RTL) languages 
such as Verilog allow designers to write modules 
which accept simple numeric parameters such as 
data width, latency, or number of read / write ports. In 
this situation the static elaboration step is straightfor­
ward ­ the hardware compiler syntactically duplicates 
circuit descriptions and alters the names of calls as 
appropriate. However, recent research in high­level 
synthesis has pointed to the advantages of a more 
powerful notion of elaboration [1]. Bluespec is a high­
level hardware design language which uses the para­
metric polymorphism and generalized typeclass sys­
tem of the functional programming language Haskell 
[4]. 

During static elaboration the Bluespec compiler: 
•	 Instantiates modules with specific parameter 

values 
•	 Applies (possibly­recursive) functions 
•	 Resolves polymorphism and dispatching 
•	 Executes and optimizes statically­determined 

control­flow 
•	 Optimizes don't­care values as possible 

In fact, a Bluespec description is not a single hard­
ware design, but rather a program that can be ex­
ecuted to generate designs. Static elaboration in the 
Bluespec compiler can thus be viewed as the execu­
tion of this program by a software interpreter on a 
specific set of input parameters. This allows the de­
signer to describe more generalized modules, such as 
sorting buffers parameterized by a sort function, or a 
Fast Fourrier Transform applicable to both signed and 
unsigned integers. 

As we will demonstrate, for designs which make 
heavy use of generality the static elaboration phase is 
the most expensive phase of the compiler, consuming 
more than 70% of total compilation time. Amdahl's 
Law thus dictates that we should focus our optimiza­
tion effort on this phase of the compiler. 



As static elaboration becomes closer to traditional 
software execution, it is natural to explore whether 
methods of program analysis and optimization de­
veloped for software can be applied to optimize the 
elaboration process. 

The specific technique we have chosen is Higher­
Order Abstract Syntax (HOAS), developed by Pfen­
ning and Elliot [5]. In this technique traditional ab­
stract syntax trees (ASTs) are combined with lambda 
calculus constructs to improve the correctness and ef­
ficiency of evaluation. We will show that this tech­
nique is also applicable to hardware elaboration, as it 
resulted in an average improvement in elaboration 
time of 45% on five of six benchmark designs. 
However for the sixth testcase, HOAS resulted in an 
exponential increase in elaboration time. We analyze 
this design in detail and suggest possible resolutions 
of this problem. 

1.1 Paper Organization 

In Section 2 we review the Guarded Atomic Action 
model of hardware description and discuss alternat­
ive approaches to hardware elaboration. Then in Sec­
tion 3 we describe our experimental methodology in­
cluding our modeling language, reference interpreter, 
and benchmark suite. Section 4 contains details of the 
HOAS transformation and explores experimental res­
ults, including analysis problem it created with one of 
the benchmark designs. We conclude and present fu­
ture work in Section 5. 

2. BACKGROUND 

In this section we discuss static elaboration, and mo­
tivate its benefits using a shifter circuit. We explore 
the cost this generality can incur on compilation times 
and demonstrate that there is a need to improve the 
elaboration process. Finally, we review alternative ap­
proaches to static elaboration, and discuss the applic­
ability of our approach to these projects. 

2.1 Static Elaboration of Parameterized 
Hardware 

As the complexity of hardware designs has increased, 
the trend in hardware description languages has been 
to increase the level of abstraction, first from schemat­

ic capture to RTL languages such as VHDL or Verilog, 
and more recently to high­level synthesis languages 
and techniques. The Guarded Atomic Action (GAA) 
model of hardware synthesis [4] is an abstraction de­
veloped to give the designer a semantic model to 
reason about the concurrent behavior of a complex 
hardware system. Bluespec SystemVerilog is a high­
level synthesis language that is based around the 
GAA model. In this paper, rather than working with 
the full Bluespec language we will work with a re­
stricted subset which we have named FSpec. 

FSpec resembles the intermediate syntax used by 
the Bluespec compiler, and retains important features 
such as modularity and polymorphism. Details of the 
abstract syntax are given in the Appendix. FSpec al­
lows the user to define modules in GAA style with 
rules (internal behavior) and methods (external inter­
faces). It includes support for functions, recursion, 
higher­order datatypes such as arrays, and paramet­
erization both in the value domain (via module para­
meters) and the type domain (parametric polymorph­
ism). 

To motivate the need for parameterized descrip­
tions, consider the case of a Shifter module which can 
left­shift a bit vector v by n, where n=0..7. Such a cir­
cuit can be implemented using log2(8)=3 multiplexors 
and shifters: 

n 

<< 1 

<< 2 

<< 4 

So if n is 5, or 3'b101, v will be shifted by 1, then 
this value will be again shifted 4, for a total of 5. Note 
that the width of v itself is unimportant to this circuit 
(although it will generally not be less than 8 bits). 
Thus when we describe our shifter in FSpec we can 
make it parametrically polymorphic on the width of 
v: 



module shifter3<v_width> {

method v_width shift(v_width v,


bit[3] n) {

      v_width v1, v2, v3;

      v2 = (n[0] == 0) ? v : v << 1;

      v3 = (n[1] == 0) ? v2 : v2 << 2;

      v4 = (n[2] == 0) ? v3 : v3 << 4;


return v4;

 }


}


During static elaboration the user will specify a con­
crete value for v_width and the elaborator will add 
the appropriate number of input /output ports and in­
stantiate shifters and mux circuits of that width. 

We can also conceive of generalizing this circuit to 
any n: add a mux and a shifter for each bit in the rep­
resentation of n. This generalized shifter can be de­
scribed in FSpec using a while­loop: 

module shifterN<v_width, n_width> {

method v_width shift(v_width v,


   n_width n) {

v_width tmpv;

int k = 0;

while (k < n_width) {

   tmpv = (n[k] == 0) ? 


tmpv 

: tmpv << (2^k);


 k++;

}

return tmpv;


 }

}


What is the meaning of the while­loop and the index 
variable k in the above code? It does not directly cor­
respond to hardware in that there is no single circuit 
implementing the loop, as there is for the << operator. 
Instead, the loop is executed by the elaborator. Each 
execution of the loop will result in the creation of one 
mux /shifter pair. 

The variable k is entirely statically determined, 
and thus does not survive the elaboration process. 
This means that the k++ and 2^k expressions are stat­
ically calculated – no circuitry is necessary. This is in 
contrast to the variable v, which is an input port to 
the module, and thus whose values are unknown at 
elaboration time. If v were hard­wired to a certain 
value the elaborator could also execute the left­shift. 

evalStmt :: FStmt -> Result ()

...

evalStmt(FWhile cond body) =

do

     b <- evalExpr cond


case b of

       Static True -> do


   evalStmts body

   evalStmt (FWhile cond body)


       Static False -> return ()

       Dynamic -> error

...

evalExpr :: FExpr -> Result FExpr

...

evalExpr (FTri b tn el) =

do

    b' <- evalExpr b 

    --type-checking guarantees a bool


case b' of

(Static True) -> evalExpr tn

(Static False) -> evalExpr el

Dynamic -> do

    tn' <- evalExpr tn

    el' <- evalExpr el


return (FTri b' tn' el')


Figure 1: Sample evaluator code in Haskell 

Similarly if n were hard­wired then the control flow 
could be statically determined and muxes would not 
be created. Static elaboration thus bears some re­
semblance to partial evaluation, or to other static op­
timizations such as loop­unrolling. 

Figure 1 shows sample code for the FSpec evalu­
ator for while­loops and trinary ? : operators. 

2.2 The Cost of Static Elaboration 

The amount of compiler time required to perform 
elaboration increases as descriptions become more 
generalized. For complex designs, experience has 
shown that elaboration is the most costly compiler 
phase. For example, the UNUM project is a frame­
work written in Bluespec to model microprocessors 
[3]. To maximize code reuse it consists of a library of 
generalized CPU components such as Fetch units, 
ALUs, etc. 

To use UNUM an architect constructs a processor 
via the “tinker toy” approach. For example, the archi­
tect may wish to measure the impact of a new branch 



Num 
Slots 

Compile Time (seconds) Dominating Function (% of execution time) 

typecheck elaborate bool opt schedule ... total 1st 2nd 3rd 

2 7.95 105.59 26.44 2.54 ... 318.64 getIdQual(8.85%) getIdBase (7.1%) checkUse (6.3%) 

3 7.93 214.49 36.64 5.15 ... 607.00 getIdQual (9.5%) cmpE (8.5%) getIdBase (8.3%) 

4 7.91 823.45 72.34 9.64 ... 1557.18 cmpE (10.8%) getIdQual (8.7%) getIdBase (8.2%) 

5 8.04 2410.27 96.19 18.80 ... 3479.86 cmpE (12.8%) getIdQual (8.8%) getIdBase (7.9%) 

6 8.01 DNF ­ ­ ... ­ ­ ­ ­

Figure 2: Profiling information from the Bluespec compiler synthesizing a complex processor reorder buffer with a given 
number of slots. As expected the typechecking phase remains constant, whereas the boolean optimization phase and 
scheduling phases grow linearly. Elaboration, on the other hand quickly dominates the execution. At a low number of 
slots the majority of execution time is spent in the functions getIdQual and getIdBase, which are identifier­manipula­
tion functions used throughout the compiler, including elaboration. As we increase the number of slots the cmpE func­
tion, which the evaluator uses to compare expressions for equality during control­flow optimization, becomes dominant. 
At six slots elaboration did not finish due to running out of memory. It should be noted that typical modern micropro­
cessors use ROBs with 64 slots or more. 

predictor algorithm. They would construct a new 
module to represent their algorithm, and instantiate 
library elements to represent the remainder of the 
processor, say a 32­bit PowerPC Decoder, a 64­ele­
ment Re­Order Buffer, a Register File with 3 read 
ports and two write ports, etc. This allows the archi­
tect to leverage existing code, but means that 95% or 
more of the system will be generated via static elabor­
ation. 

Figure 2 shows the results of profiling the 
Bluespec compiler on a generalized UNUM reorder 
buffer (ROB). These results were created using the 
standard profiling features of the Haskell compiler 
GHC 6.4.1 on Bluespec compiler version 3.8.60. 
Clearly, the elaboration phase dominates, even bey­
ond the boolean optimization phase. Overall, the 
function cmpE, which compares expressions for 
equality during control­flow optimization in elabora­
tion, accounts for nearly 13% of the execution time of 
the entire compiler. 

Our goal is to demonstrate that the application of 
techniques developed for the analysis of software can 
be used to improve elaborator performance. In this 
work we will not directly consider techniques to op­
timize the hardware which the elaborator produces, 
although such techniques could be added in the fu­
ture. 

2.3  Other Approaches to Static Elaboration 

In this section we compare our approach to static 
elaboration to other existing projects. The elaboration 
approach we present is based on the Bluespec hard­
ware description language and the Guarded Atomic 
Action semantic model. Rosenband [6] showed how 
static elaboration can be used to transform hardware 
designs to ensure that they meet user­defined per­
formance specifications. To model these transforma­
tions he developed the languages MRL and FRL. 
These languages are predecessors to the FSpec lan­
guage we used for this work ­ specifically FSpec can 
be seen as MRL extended with polymorphism, and 
thus requiring static elaboration. 

An alternative approach to static elaboration is 
Lava [2], which advocates strong elaboration through 
a library of reusable circuit patterns. Lava is a Do­
main­Specific Embedded Language implemented in 
Haskell. As such the user can take advantage of the 
parameterization and polymorphism available in 
Haskell directly. IE in Lava, a module with a paramet­
er is a Haskell function which takes a parameter and 
returns a module. This is in contrast to our language 
FSpec, which is intended to represent an Abstract 
Syntax Tree after parsing. Thus parameters and func­
tions are modeled in the FSpec syntax tree, rather 
than in Haskell directly. 



Design Parameters Description Uses 

RegFile data and address width, number of registers A polymorphic register file arrays, recursive functions 

FIFO data width, buffer length Queue of any datatype, any length arrays, while loops 

Shifter data width, shift range barrel­shifter of any width arrays, recursive functions 

FIR Filter data width, coefficient width, number of taps A generalized linear FIR filter array of submodules, while loops 

Hamming data width, buffer lengths, Generates the first k Hamming 
numbers (numbers like 2p3q5r) 

arrays, FIFO submodules 

Cache data,address, and tag widths, cache size A blocking, write­through, direct­
mapped cache 

arrays, RegFile and FIFO as 
submodules 

Figure 3: Overview of Benchmark Designs 

Recent research has developed a novel elabora­
tion technique known as "shadow wires" to improve 
Lava's handling of irregular circuits [8]. Under this 
technique wires are threaded throughout the design 
which carry statically­determined high­level know­
ledge. This knowledge can be used to make decisions 
e.g. for boolean or low­power optimization. This fits 
under our notion of static elaboration as it can be 
viewed as statically determined data which influences 
evaluator decisions but which does not translate dir­
ectly into hardware. 

SAFL [7] is a functional language where memory 
is statically allocated, and thus is well­suited to hard­
ware description, or hardware­software co­design. On 
the surface, SAFL's abstract syntax is quite close to 
that of FSpec which we present here. The major differ­
ence is that SAFL does hardware resource sharing 
through source code identifiers. Thus in SAFL if the 
user wants two copies of a multiplier, the user must 
textually duplicate and rename the multiply function 
in the source code. Static elaboration is one method 
that could be used to overcome this limitation, as the 
elaborator would essentially perform this duplication 
for the user. 

It should be noted that there have been numerous 
approaches to synthesizing hardware from high­level 
software languages such as C. Although these trans­
formations are static and performed by a compiler, we 
view this approach as distinct from static elaboration. 
In these cases the goal is to take a possibly­unsynthes­
izable imperative description and attempt to synthes­
ize it while finding an optimal amount of paralleliza­
tion, whereas in static elaboration the goal is to take a 

program which describes how to synthesize a hard­
ware block over many possible values and perform 
the synthesis for a set of concrete parameters. We do 
not expect that analysis techniques to improve static 
elaboration will be applicable to sequential synthesis. 

3. METHODOLOGY 

To measure the performance of the FSpec evaluator 
we created a suite of simple benchmark designs, as 
described in Figure 3. These designs can be described 
concisely in FSpec, yet are generalized along various 
parameters. This allows us to measure the perform­
ance of our elaborator across a range of data points by 
varying parameter values. 

The results of running these benchmarks through 
the initial reference elaborator across a range of para­
meter values are shown in Figure 4. Performance was 
measured using the standard code profiler included 
in the GHC Haskell compiler version 6.4.1, which al­
lowed us to obtain results about specific function calls 
without the need for instrumentation. The FSpec eval­
uator is dominated by heap references and variable 
lookups, as shown in Figure 5. 

The results demonstrate that our reference evalu­
ator can exhibit hyper­linear growth, similar to the ac­
tual Bluespec compiler. In contrast to the Bluespec 
compiler however, heap accesses are often the bottle­
neck in our language. For example, in the Hamming 
benchmark heap accesses consumed 98% of the aver­
age execution time. Of concern is the dominance of 
the lookupVar function in the RegFile, Shifter and 
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Figure 4: The results of running our benchmark designs on the reference evaluator. The parameter values of the designs 
were increased to measure the growth in evaluation time. The parameters were as follows: RegFile (num regs), FIFO (buf­
fer length), Shifter (shift amount), FIR Filter (num taps), Hamming (buffer length), Cache (cache size). These results 
demonstrate that the elaborator can exhibit hyper­linear growth times. Although in practice there is not much need for a 
register file with 5000 registers, or a FIR Filter with 5000 taps, we view large values for these parameters as analogous to 
more complex systems composed of many generalized submodules. 

Design Dominating Functions (percent of elaboration time) 

RegFile deHeap (32%) lookupVar (31%) addHeap (30%) 

FIFO deHeap (48%) addHeap (45%) evalStmt (2%) 

Shifter lookupVar (37%) deHeap (32%) addHeap (30%) 

FIR Filter addHeap (44%) deHeap (39%) updateHeap (13%) 

Hamming addHeap (49%) deHeap (47%) updateHeap (1%) 

Cache lookupVar (34%) deHeap (32%) addHeap (32%) 

Figure 5: This table shows the three most dominating functions for the FSpec evaluator on the benchmark designs run at 
n = 5000. deHeap removes a variable from the heap cell after it has left scope. addHeap adds a new variable to the heap. 
updateHeap updates the value of a heap cell. lookupVar searches the environment for a variable and de­references it 
from the heap. evalStmt is a central evaluation function. 



Cache (which uses RegFile as a submodule). This in­
formation indicates that any transformation that saves 
us from unnecessarily altering the state of the heap or 
looking up variables should result in an improvement 
in performance. 

Given the properties of the reference evaluator we 
now attempt to use traditional software analysis tech­
niques to improve its performance. The technique we 
have chosen is Pfenning's Higher­Order Abstract Syn­
tax (HOAS) transformation, which should improve 
performance by decreasing the number of variable 
lookups and heap operations. 

4. HIGHER­ORDER ABSTRACT SYNTAX 
FOR FSPEC 
Higher­Order Abstract Syntax refers to the technique 
augmenting a standard abstract syntax tree with 
lambda calculus constructs. Practically, this means us­
ing implementation language features such as 
lambda­functions, to model similar constructs in the 
target language. For example, our abstract syntax for 
FSpec expressions contains the following productions 
to represent function definition and application: 

data FExpr =
 ... 

   | FELam Id FExpr        -- \x -> e
   | FEFuncApp FExpr FExpr   -- e1 e2 

Thus we will parse the application: 

(\x -> x + 5) (2 + 3)


into the following abstract syntax (simplified for read­
ability):

  FEFuncApp (FELam 'x'

    (FEAdd (FEVar 'x') 5)) (FEAdd 2 3)


Note that when executing the above statement, the 
elaborator must explicitly bind the variable, and re­
name free variables to avoid capture: 

evalExpr (FEFuncApp e1 e2) =

do

    -- type checking guarantees this:

    (FELam v f) <- evalExpr e1

    e2' <- evalExpr e2

    newVar v e2'

    res <- evalExpr f

    delVar v


return res


If we use HOAS the user­defined function will be 
stored in the AST as an actual lambda function: 

data FExpr =

 ...

  | FELam (FExpr -> FExpr)   -- \x -> e

  | FEFuncApp FExpr FExpr    -- e1 e2


(\x -> x + 5) (2 + 3) ==>


  FEFuncApp (FELam (\x -> EAdd x 5))

     (EAdd 2 3)


Note that the variable x has changed from a con­
structor in the abstract syntax to a direct Haskell vari­
able. Performing the application at elaboration time is 
now equivalent to performing an actual Haskell ap­
plication: 

evalExpr (FEFuncApp e1 e2) =

do

    -- type checking guarantees this:

    (FELam f) <- evalExpr e1

    e2' <- evalExpr e2

    res <- evalExpr (f e2')


return res


The variable x must still be defined and bound, but 
this binding will be handled by the Haskell runtime 
system, which we expect to be more efficient than be­
ing performed by the elaborator. References to x will 
be use the heap of the Haskell run­time environment, 
instead of our user­defined heap structure, which 
should improve performance. 

The results of running our benchmark suite after 
transformation are shown in Figure 6. These results 
show an improvement on five of the six benchmark 
designs. The RegFile shows the largest improvement 
percentage, as it uses recursive functions which 
greatly benefit from the HOAS. The Cache design 
uses the RegFile as a submodule, and thus benefits 
similarly. The FIFO, FIR Filter, Hamming designs use 
while­loops instead of recursive functions, and thus 
do not benefit as much. One possible experiment 
would be to transform the while­loops into recursive 
functions to see if the benefit can be increased. 

The sixth design, the shifter, also uses recursive 
functions, even more so than the RegFile. We would 
therefore expect that it would show the largest im­
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Figure 6: Evaluator performance results after implementing Higher­Order Abstract Syntax. Original evaluation times 
from Figure 4 are listed in white. The transformation resulted in an average improvement of 45.4% on 5 of the 6 designs, 
including improvements of greater than 70% on the RegFile and Cache (which uses both the RegFile and FIFO as sub ­
modules, so we would expect to show the largest improvement). For the shifter design, however, performance signific­
antly degraded to the point where evaluation could only complete with parameter values of less than 20. For analysis onto 
the cause of this degradation see Section 4.1. 

Design 

RegFile 

FIFO 

Shifter 

FIR Filter 

Hamming 

Cache 

Dominating Functions (percent of elaboration time) 

addHeap (49%) 

deHeap (48%) 

­

addHeap (43%) 

deHeap (48%) 

addHeap (48%) 

deHeap (46%) 

addHeap (47%) 

­

deHeap (39%) 

addHeap (47%) 

deHeap (46%) 

evalExpr (2%) 

evalExpr (1%) 

­

updateHeap (15%) 

evalExpr (1%) 

evalExpr 32%) 

Figure 7: The three most dominating functions for the HOAS evaluator on the benchmark designs for n=5000. In the pre­
vious results (Figure 5) lookupVar was a dominant function for the RegFile, Shifter, and Cache designs. After the 
HOAS transformation this call is eliminated completely. Although total execution time has decreased, heap manipula­
tions for values not affected by the HOAS transformation (such as incoming wire ports to methods) remain the majority 
of the execution time. Future work should focus on improving the representation of the heap data structure to speed 
these operations. 



provement from the transformation. Contrary to our 
expectations, the HOAS version of the Shifter design 
had its performance degraded. Previously the com­
piler could elaborate an 5000­bit wide shifter in 147 
seconds. After the HOAS transformation the compiler 
takes 213 seconds to elaborate a 19­bit wide shifter. 
Larger values than 19 cause the elaborator to run out 
of memory after over an hour of execution. We now 
analyze this case in detail. 

4.1 The Effect of HOAS on the Shifter 
Design 

The Shifter benchmark design is similar to the one de­
scribed in Section 2.1, except that it uses recursive 
functions rather than while­loops to describe the 
shift / mux pairs. For a shift amount of n, we would 
expect n function calls or loop iterations. If each itera­
tion contains k program expressions, we would expect 
kn calls to the evalExpr function. Profiling informa­
tion revealed the following behavior: 

time evalExpr 
calls 

Memory use 

Original 
(n=19) 

0.24s 543 51MB 

Original 
(n=20) 

0.22s 571 51MB 

HOAS 
(n=19) 

17.64s 23,068,544 3.9GB 

HOAS 
(n=20) 

60.86s 46,137,211 7.9GB 

HOAS 
(n=21) 

DNF 

> 1 hour 

­ Out of Memory 

The original version clearly demonstrates linear beha­
vior, whereas the HOAS version results in an expo­
nential number of calls to evalExpr (23 million is ap­
proximately 43 x 219), and exponential memory use. 
The other benchmarks in our suite exhibit no such be­
havior, nor increased memory use. 

Investigation revealed that the HOAS shifter was 
generating unexpected, but functionally correct cir­
cuitry. For n=3 we would expect elaboration to gener­
ate the circuit diagrammed in Section 2.1. Instead it 

turned out that the HOAS evaluator generated the 
following structure: 

n 

<< 1 

<< 2 

<< 4 

<< 1 

<< 2 

<< 1 << 1 

Note that this circuit is functionally equivalent to 
the circuit we had intended to describe. Thus the test­
bench for this design identified it as a correctly func­
tioning shifter circuit, and we did not examine the 
hardware structure in detail until we investigated the 
elaboration time. Although functionally equivalent, 
this circuit has the same critical path as the intended 
circuit, but exponentially larger area, and therefore is 
strictly worse and would not be desired by the de­
signer under any circumstances. 

But why was this circuit being generated? Con­
sider the original n=3 shifter description: 

method v_width shift(v_width v,

bit[3] n) {


      v_width v1, v2, v3;

      v2 = (n[0] == 0) ? v : v << 1;

      v3 = (n[1] == 0) ? v2 : v2 << 2;

      v4 = (n[2] == 0) ? v3 : v3 << 4;


return v4;

 }


If we naively substitute the variable v2 into the defin­
ition of v3:

      v3 = (n[1] == 0) ? 

     ((n[0] == 0) ? v : v << 1)

   : ((n[0] == 0) ? v : v << 1)

     << 2;


then we have duplicated hardware. This is an ex­
ample where a transformation that is safe to perform 
in software is undesirable for a hardware compiler. 



We are currently investigating how to reconcile 
this behavior with Haskell's non­strict semantics. Giv­
en a function such as:

  \v -> (b) ? v : (f v)


we would expect the argument v to be to be evaluated 
only once, and the result to be re­used when needed. 
Therefore our elaborator should not exhibit exponen­
tial behavior, although it clearly does. We are cur­
rently investigating whether some of the GHC 
Haskell compiler's eagerness optimizations could 
cause a bad interaction in this case. In the meanwhile 
we are attempting to implement explicit sharing via 
memoization as a stopgap solution. 

5. CONCLUSIONS 

As hardware designs become more and more com­
plex, hardware description languages are continually 
adding new features to compensate. We believe that 
hardware description languages should not reinvent 
the wheel, but rather leverage techniques that have 
been developed in the mature field of software pro­
gramming languages. In this paper we demonstrated 
that the Higher­Order Abstract Syntax technique can 
be used to speed up the static elaboration phase of a 
hardware compiler. Additionally we demonstrated 
that HOAS can be used as a framework to transmit in­
formation from static analyses to the elaborator. In the 
future we hope to apply this work to the actual 
Bluespec compiler, and to expand our framework to 
include analyses which perform optimizations of the 
generated circuit structures rather than improving 
compiler performance. 
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7. APPENDIX 

Abstract Syntax Tree for FSpec in Haskell, and ex­
amples of concrete syntax. 

data FModule = FModule

 {

     modname :: Id,

     modtype :: FType,

     params :: [(FType, Id)],

     decls :: [FStmt],

     act_methods :: [FActionMethod],

     val_methods :: [FValueMethod],


 rules   :: [FRule]

 }


data FRule = FRule Id FExpr [FStmt]


data FActionMethod = FActionMethod

     FType Id FExpr [Id] [FStmt]


data FValueMethod = FValueMethod

     FType Id FExpr [Id] FExpr


data FStmt =

   FSRegUpdate FExpr FExpr

   | FSDecl FType Id FExpr

   | FSArrayUpdate Id FExpr FExpr

   | FSVarUpdate Id FExpr

   | FSIf FExpr [FStmt]

   | FSMethodCall FExpr Id [FExpr]

   | FSWhile FExpr [FStmt]


data FExpr =

   FERegRead FExpr

   | FEConst Value

   | FEInt Int 

   | FEVar Id

   | FELam FType Id FExpr

   | FEFuncApp FExpr FExpr

   | FETri FExpr FExpr FExpr

   | FEArrayRead FExpr FExpr

   | FEArray (Array Int FExpr)

   | FEMethodCall FExpr Id [FExpr]


-- module nm < Types > { stmts }


-- rule nm when (p) { stmts }


-- method Action nm ( params )

  when ( expr ) { stmts }


-- method Type nm ( params )

  when ( expr ) expr


-- r <= expr ;

-- Type var = expr ;

-- var[expr] = expr ;

-- var = expr ;

-- if ( expr ) { stmts } ;

-- m.actmeth ( params ) ;

-- while ( expr ) { stmts };


-- r

-- 1'b0, 1'b1, ...

-- 0, 1, 2, ...

-- var

-- \ x -> expr

-- f expr

-- ( expr ) ? expr : expr

-- var[expr]

-- { expr, expr,... }

-- m.valmeth( params )
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