
Analyzing the Static Elaboration of Parameterized
Hardware Descriptions

Michael Pellauer
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Lab

ABSTRACT
High­level synthesis languages allow hardware designers
to describe modules at higher levels of abstraction and
use techniques such as polymorphism to increase source­
code generality and reusability. Abstract descriptions are
concretized into specific hardware structures by the com­
piler during a phase known as static elaboration. Experi­
ence has shown that as hardware designers created in­
creasingly generalized designs, static elaboration can be­
come the most expensive compilation phase. We demon­
strate that for a generalized PowerPC processor the
Bluespec compiler spends 70% of total compilation time
in static elaboration.

Our contribution is to reduce the execution time of the
elaboration phase by applying techniques which have
been previously developed to analyze and optimize soft­
ware programs to the elaboration of hardware. We discuss
the similarities between static elaboration and traditional
software interpretation. We demonstrate that one particu­
lar technique, Higher­Order Abstract Syntax, resulted in
an average improvement in elaboration time of 45% on
five of six designs in our benchmark suite.

1. INTRODUCTION
It is generally accepted that hardware designs have
increased in size and complexity by an order of mag­
nitude since 1995, and are expected to increase by an­
other order of magnitude by 2010. To manage this
complexity designers rely on reusing existing blocks
of intellectual property (IP reuse). A more generalized
hardware description has greater potential to be re­
used in future situations.

In software, developers can use techniques such
as polymorphism to achieve generalized, reusable de­
scriptions. This generality is resolved at runtime
through established techniques such as dynamic dis­
patch. In hardware design the output of the compiler
is a concrete structural hardware description which
may be used as input for a synthesis tool. Thus all ab­
stract modules must be concretized during compila­
tion, during a compiler phase known as static elabora­
tion.

Current register­transfer level (RTL) languages
such as Verilog allow designers to write modules
which accept simple numeric parameters such as
data width, latency, or number of read / write ports. In
this situation the static elaboration step is straightfor­
ward ­ the hardware compiler syntactically duplicates
circuit descriptions and alters the names of calls as
appropriate. However, recent research in high­level
synthesis has pointed to the advantages of a more
powerful notion of elaboration [1]. Bluespec is a high­
level hardware design language which uses the para­
metric polymorphism and generalized typeclass sys­
tem of the functional programming language Haskell
[4].

During static elaboration the Bluespec compiler:
•	 Instantiates modules with specific parameter

values
•	 Applies (possibly­recursive) functions
•	 Resolves polymorphism and dispatching
•	 Executes and optimizes statically­determined

control­flow
•	 Optimizes don't­care values as possible

In fact, a Bluespec description is not a single hard­
ware design, but rather a program that can be ex­
ecuted to generate designs. Static elaboration in the
Bluespec compiler can thus be viewed as the execu­
tion of this program by a software interpreter on a
specific set of input parameters. This allows the de­
signer to describe more generalized modules, such as
sorting buffers parameterized by a sort function, or a
Fast Fourrier Transform applicable to both signed and
unsigned integers.

As we will demonstrate, for designs which make
heavy use of generality the static elaboration phase is
the most expensive phase of the compiler, consuming
more than 70% of total compilation time. Amdahl's
Law thus dictates that we should focus our optimiza­
tion effort on this phase of the compiler.

As static elaboration becomes closer to traditional
software execution, it is natural to explore whether
methods of program analysis and optimization de­
veloped for software can be applied to optimize the
elaboration process.

The specific technique we have chosen is Higher­
Order Abstract Syntax (HOAS), developed by Pfen­
ning and Elliot [5]. In this technique traditional ab­
stract syntax trees (ASTs) are combined with lambda
calculus constructs to improve the correctness and ef­
ficiency of evaluation. We will show that this tech­
nique is also applicable to hardware elaboration, as it
resulted in an average improvement in elaboration
time of 45% on five of six benchmark designs.
However for the sixth testcase, HOAS resulted in an
exponential increase in elaboration time. We analyze
this design in detail and suggest possible resolutions
of this problem.

1.1 Paper Organization

In Section 2 we review the Guarded Atomic Action
model of hardware description and discuss alternat­
ive approaches to hardware elaboration. Then in Sec­
tion 3 we describe our experimental methodology in­
cluding our modeling language, reference interpreter,
and benchmark suite. Section 4 contains details of the
HOAS transformation and explores experimental res­
ults, including analysis problem it created with one of
the benchmark designs. We conclude and present fu­
ture work in Section 5.

2. BACKGROUND

In this section we discuss static elaboration, and mo­
tivate its benefits using a shifter circuit. We explore
the cost this generality can incur on compilation times
and demonstrate that there is a need to improve the
elaboration process. Finally, we review alternative ap­
proaches to static elaboration, and discuss the applic­
ability of our approach to these projects.

2.1 Static Elaboration of Parameterized
Hardware

As the complexity of hardware designs has increased,
the trend in hardware description languages has been
to increase the level of abstraction, first from schemat­

ic capture to RTL languages such as VHDL or Verilog,
and more recently to high­level synthesis languages
and techniques. The Guarded Atomic Action (GAA)
model of hardware synthesis [4] is an abstraction de­
veloped to give the designer a semantic model to
reason about the concurrent behavior of a complex
hardware system. Bluespec SystemVerilog is a high­
level synthesis language that is based around the
GAA model. In this paper, rather than working with
the full Bluespec language we will work with a re­
stricted subset which we have named FSpec.

FSpec resembles the intermediate syntax used by
the Bluespec compiler, and retains important features
such as modularity and polymorphism. Details of the
abstract syntax are given in the Appendix. FSpec al­
lows the user to define modules in GAA style with
rules (internal behavior) and methods (external inter­
faces). It includes support for functions, recursion,
higher­order datatypes such as arrays, and paramet­
erization both in the value domain (via module para­
meters) and the type domain (parametric polymorph­
ism).

To motivate the need for parameterized descrip­
tions, consider the case of a Shifter module which can
left­shift a bit vector v by n, where n=0..7. Such a cir­
cuit can be implemented using log2(8)=3 multiplexors
and shifters:

n

<< 1

<< 2

<< 4

So if n is 5, or 3'b101, v will be shifted by 1, then
this value will be again shifted 4, for a total of 5. Note
that the width of v itself is unimportant to this circuit
(although it will generally not be less than 8 bits).
Thus when we describe our shifter in FSpec we can
make it parametrically polymorphic on the width of
v:

module shifter3<v_width> {

method v_width shift(v_width v,

bit[3] n) {

 v_width v1, v2, v3;

 v2 = (n[0] == 0) ? v : v << 1;

 v3 = (n[1] == 0) ? v2 : v2 << 2;

 v4 = (n[2] == 0) ? v3 : v3 << 4;

return v4;

 }

}

During static elaboration the user will specify a con­
crete value for v_width and the elaborator will add
the appropriate number of input /output ports and in­
stantiate shifters and mux circuits of that width.

We can also conceive of generalizing this circuit to
any n: add a mux and a shifter for each bit in the rep­
resentation of n. This generalized shifter can be de­
scribed in FSpec using a while­loop:

module shifterN<v_width, n_width> {

method v_width shift(v_width v,

 n_width n) {

v_width tmpv;

int k = 0;

while (k < n_width) {

 tmpv = (n[k] == 0) ?

tmpv

: tmpv << (2^k);

 k++;

}

return tmpv;

 }

}

What is the meaning of the while­loop and the index
variable k in the above code? It does not directly cor­
respond to hardware in that there is no single circuit
implementing the loop, as there is for the << operator.
Instead, the loop is executed by the elaborator. Each
execution of the loop will result in the creation of one
mux /shifter pair.

The variable k is entirely statically determined,
and thus does not survive the elaboration process.
This means that the k++ and 2^k expressions are stat­
ically calculated – no circuitry is necessary. This is in
contrast to the variable v, which is an input port to
the module, and thus whose values are unknown at
elaboration time. If v were hard­wired to a certain
value the elaborator could also execute the left­shift.

evalStmt :: FStmt -> Result ()

...

evalStmt(FWhile cond body) =

do

 b <- evalExpr cond

case b of

 Static True -> do

 evalStmts body

 evalStmt (FWhile cond body)

 Static False -> return ()

 Dynamic -> error

...

evalExpr :: FExpr -> Result FExpr

...

evalExpr (FTri b tn el) =

do

 b' <- evalExpr b

 --type-checking guarantees a bool

case b' of

(Static True) -> evalExpr tn

(Static False) -> evalExpr el

Dynamic -> do

 tn' <- evalExpr tn

 el' <- evalExpr el

return (FTri b' tn' el')

Figure 1: Sample evaluator code in Haskell

Similarly if n were hard­wired then the control flow
could be statically determined and muxes would not
be created. Static elaboration thus bears some re­
semblance to partial evaluation, or to other static op­
timizations such as loop­unrolling.

Figure 1 shows sample code for the FSpec evalu­
ator for while­loops and trinary ? : operators.

2.2 The Cost of Static Elaboration

The amount of compiler time required to perform
elaboration increases as descriptions become more
generalized. For complex designs, experience has
shown that elaboration is the most costly compiler
phase. For example, the UNUM project is a frame­
work written in Bluespec to model microprocessors
[3]. To maximize code reuse it consists of a library of
generalized CPU components such as Fetch units,
ALUs, etc.

To use UNUM an architect constructs a processor
via the “tinker toy” approach. For example, the archi­
tect may wish to measure the impact of a new branch

Num
Slots

Compile Time (seconds) Dominating Function (% of execution time)

typecheck elaborate bool opt schedule ... total 1st 2nd 3rd

2 7.95 105.59 26.44 2.54 ... 318.64 getIdQual(8.85%) getIdBase (7.1%) checkUse (6.3%)

3 7.93 214.49 36.64 5.15 ... 607.00 getIdQual (9.5%) cmpE (8.5%) getIdBase (8.3%)

4 7.91 823.45 72.34 9.64 ... 1557.18 cmpE (10.8%) getIdQual (8.7%) getIdBase (8.2%)

5 8.04 2410.27 96.19 18.80 ... 3479.86 cmpE (12.8%) getIdQual (8.8%) getIdBase (7.9%)

6 8.01 DNF ­ ­ ... ­ ­ ­ ­

Figure 2: Profiling information from the Bluespec compiler synthesizing a complex processor reorder buffer with a given
number of slots. As expected the typechecking phase remains constant, whereas the boolean optimization phase and
scheduling phases grow linearly. Elaboration, on the other hand quickly dominates the execution. At a low number of
slots the majority of execution time is spent in the functions getIdQual and getIdBase, which are identifier­manipula­
tion functions used throughout the compiler, including elaboration. As we increase the number of slots the cmpE func­
tion, which the evaluator uses to compare expressions for equality during control­flow optimization, becomes dominant.
At six slots elaboration did not finish due to running out of memory. It should be noted that typical modern micropro­
cessors use ROBs with 64 slots or more.

predictor algorithm. They would construct a new
module to represent their algorithm, and instantiate
library elements to represent the remainder of the
processor, say a 32­bit PowerPC Decoder, a 64­ele­
ment Re­Order Buffer, a Register File with 3 read
ports and two write ports, etc. This allows the archi­
tect to leverage existing code, but means that 95% or
more of the system will be generated via static elabor­
ation.

Figure 2 shows the results of profiling the
Bluespec compiler on a generalized UNUM reorder
buffer (ROB). These results were created using the
standard profiling features of the Haskell compiler
GHC 6.4.1 on Bluespec compiler version 3.8.60.
Clearly, the elaboration phase dominates, even bey­
ond the boolean optimization phase. Overall, the
function cmpE, which compares expressions for
equality during control­flow optimization in elabora­
tion, accounts for nearly 13% of the execution time of
the entire compiler.

Our goal is to demonstrate that the application of
techniques developed for the analysis of software can
be used to improve elaborator performance. In this
work we will not directly consider techniques to op­
timize the hardware which the elaborator produces,
although such techniques could be added in the fu­
ture.

2.3 Other Approaches to Static Elaboration

In this section we compare our approach to static
elaboration to other existing projects. The elaboration
approach we present is based on the Bluespec hard­
ware description language and the Guarded Atomic
Action semantic model. Rosenband [6] showed how
static elaboration can be used to transform hardware
designs to ensure that they meet user­defined per­
formance specifications. To model these transforma­
tions he developed the languages MRL and FRL.
These languages are predecessors to the FSpec lan­
guage we used for this work ­ specifically FSpec can
be seen as MRL extended with polymorphism, and
thus requiring static elaboration.

An alternative approach to static elaboration is
Lava [2], which advocates strong elaboration through
a library of reusable circuit patterns. Lava is a Do­
main­Specific Embedded Language implemented in
Haskell. As such the user can take advantage of the
parameterization and polymorphism available in
Haskell directly. IE in Lava, a module with a paramet­
er is a Haskell function which takes a parameter and
returns a module. This is in contrast to our language
FSpec, which is intended to represent an Abstract
Syntax Tree after parsing. Thus parameters and func­
tions are modeled in the FSpec syntax tree, rather
than in Haskell directly.

Design Parameters Description Uses

RegFile data and address width, number of registers A polymorphic register file arrays, recursive functions

FIFO data width, buffer length Queue of any datatype, any length arrays, while loops

Shifter data width, shift range barrel­shifter of any width arrays, recursive functions

FIR Filter data width, coefficient width, number of taps A generalized linear FIR filter array of submodules, while loops

Hamming data width, buffer lengths, Generates the first k Hamming
numbers (numbers like 2p3q5r)

arrays, FIFO submodules

Cache data,address, and tag widths, cache size A blocking, write­through, direct­
mapped cache

arrays, RegFile and FIFO as
submodules

Figure 3: Overview of Benchmark Designs

Recent research has developed a novel elabora­
tion technique known as "shadow wires" to improve
Lava's handling of irregular circuits [8]. Under this
technique wires are threaded throughout the design
which carry statically­determined high­level know­
ledge. This knowledge can be used to make decisions
e.g. for boolean or low­power optimization. This fits
under our notion of static elaboration as it can be
viewed as statically determined data which influences
evaluator decisions but which does not translate dir­
ectly into hardware.

SAFL [7] is a functional language where memory
is statically allocated, and thus is well­suited to hard­
ware description, or hardware­software co­design. On
the surface, SAFL's abstract syntax is quite close to
that of FSpec which we present here. The major differ­
ence is that SAFL does hardware resource sharing
through source code identifiers. Thus in SAFL if the
user wants two copies of a multiplier, the user must
textually duplicate and rename the multiply function
in the source code. Static elaboration is one method
that could be used to overcome this limitation, as the
elaborator would essentially perform this duplication
for the user.

It should be noted that there have been numerous
approaches to synthesizing hardware from high­level
software languages such as C. Although these trans­
formations are static and performed by a compiler, we
view this approach as distinct from static elaboration.
In these cases the goal is to take a possibly­unsynthes­
izable imperative description and attempt to synthes­
ize it while finding an optimal amount of paralleliza­
tion, whereas in static elaboration the goal is to take a

program which describes how to synthesize a hard­
ware block over many possible values and perform
the synthesis for a set of concrete parameters. We do
not expect that analysis techniques to improve static
elaboration will be applicable to sequential synthesis.

3. METHODOLOGY

To measure the performance of the FSpec evaluator
we created a suite of simple benchmark designs, as
described in Figure 3. These designs can be described
concisely in FSpec, yet are generalized along various
parameters. This allows us to measure the perform­
ance of our elaborator across a range of data points by
varying parameter values.

The results of running these benchmarks through
the initial reference elaborator across a range of para­
meter values are shown in Figure 4. Performance was
measured using the standard code profiler included
in the GHC Haskell compiler version 6.4.1, which al­
lowed us to obtain results about specific function calls
without the need for instrumentation. The FSpec eval­
uator is dominated by heap references and variable
lookups, as shown in Figure 5.

The results demonstrate that our reference evalu­
ator can exhibit hyper­linear growth, similar to the ac­
tual Bluespec compiler. In contrast to the Bluespec
compiler however, heap accesses are often the bottle­
neck in our language. For example, in the Hamming
benchmark heap accesses consumed 98% of the aver­
age execution time. Of concern is the dominance of
the lookupVar function in the RegFile, Shifter and

0

ile

i

il

i

(
)

100 500 1000 2500 5000

25

50

75

100

125

150

175

200

225

250

275

300

325

350

RegF
FIFO

Sh fter

FIR F ter

Hamm ng

Cache

Parameter Value

E
la

bo
ra

tio
n

Ti
m

e
se

co
nd

s

Figure 4: The results of running our benchmark designs on the reference evaluator. The parameter values of the designs
were increased to measure the growth in evaluation time. The parameters were as follows: RegFile (num regs), FIFO (buf­
fer length), Shifter (shift amount), FIR Filter (num taps), Hamming (buffer length), Cache (cache size). These results
demonstrate that the elaborator can exhibit hyper­linear growth times. Although in practice there is not much need for a
register file with 5000 registers, or a FIR Filter with 5000 taps, we view large values for these parameters as analogous to
more complex systems composed of many generalized submodules.

Design Dominating Functions (percent of elaboration time)

RegFile deHeap (32%) lookupVar (31%) addHeap (30%)

FIFO deHeap (48%) addHeap (45%) evalStmt (2%)

Shifter lookupVar (37%) deHeap (32%) addHeap (30%)

FIR Filter addHeap (44%) deHeap (39%) updateHeap (13%)

Hamming addHeap (49%) deHeap (47%) updateHeap (1%)

Cache lookupVar (34%) deHeap (32%) addHeap (32%)

Figure 5: This table shows the three most dominating functions for the FSpec evaluator on the benchmark designs run at
n = 5000. deHeap removes a variable from the heap cell after it has left scope. addHeap adds a new variable to the heap.
updateHeap updates the value of a heap cell. lookupVar searches the environment for a variable and de­references it
from the heap. evalStmt is a central evaluation function.

Cache (which uses RegFile as a submodule). This in­
formation indicates that any transformation that saves
us from unnecessarily altering the state of the heap or
looking up variables should result in an improvement
in performance.

Given the properties of the reference evaluator we
now attempt to use traditional software analysis tech­
niques to improve its performance. The technique we
have chosen is Pfenning's Higher­Order Abstract Syn­
tax (HOAS) transformation, which should improve
performance by decreasing the number of variable
lookups and heap operations.

4. HIGHER­ORDER ABSTRACT SYNTAX
FOR FSPEC
Higher­Order Abstract Syntax refers to the technique
augmenting a standard abstract syntax tree with
lambda calculus constructs. Practically, this means us­
ing implementation language features such as
lambda­functions, to model similar constructs in the
target language. For example, our abstract syntax for
FSpec expressions contains the following productions
to represent function definition and application:

data FExpr =
 ...

 | FELam Id FExpr -- \x -> e
 | FEFuncApp FExpr FExpr -- e1 e2

Thus we will parse the application:

(\x -> x + 5) (2 + 3)

into the following abstract syntax (simplified for read­
ability):

 FEFuncApp (FELam 'x'

 (FEAdd (FEVar 'x') 5)) (FEAdd 2 3)

Note that when executing the above statement, the
elaborator must explicitly bind the variable, and re­
name free variables to avoid capture:

evalExpr (FEFuncApp e1 e2) =

do

 -- type checking guarantees this:

 (FELam v f) <- evalExpr e1

 e2' <- evalExpr e2

 newVar v e2'

 res <- evalExpr f

 delVar v

return res

If we use HOAS the user­defined function will be
stored in the AST as an actual lambda function:

data FExpr =

 ...

 | FELam (FExpr -> FExpr) -- \x -> e

 | FEFuncApp FExpr FExpr -- e1 e2

(\x -> x + 5) (2 + 3) ==>

 FEFuncApp (FELam (\x -> EAdd x 5))

 (EAdd 2 3)

Note that the variable x has changed from a con­
structor in the abstract syntax to a direct Haskell vari­
able. Performing the application at elaboration time is
now equivalent to performing an actual Haskell ap­
plication:

evalExpr (FEFuncApp e1 e2) =

do

 -- type checking guarantees this:

 (FELam f) <- evalExpr e1

 e2' <- evalExpr e2

 res <- evalExpr (f e2')

return res

The variable x must still be defined and bound, but
this binding will be handled by the Haskell runtime
system, which we expect to be more efficient than be­
ing performed by the elaborator. References to x will
be use the heap of the Haskell run­time environment,
instead of our user­defined heap structure, which
should improve performance.

The results of running our benchmark suite after
transformation are shown in Figure 6. These results
show an improvement on five of the six benchmark
designs. The RegFile shows the largest improvement
percentage, as it uses recursive functions which
greatly benefit from the HOAS. The Cache design
uses the RegFile as a submodule, and thus benefits
similarly. The FIFO, FIR Filter, Hamming designs use
while­loops instead of recursive functions, and thus
do not benefit as much. One possible experiment
would be to transform the while­loops into recursive
functions to see if the benefit can be increased.

The sixth design, the shifter, also uses recursive
functions, even more so than the RegFile. We would
therefore expect that it would show the largest im­

0

ile

i

i
i

(
)

100 500 1000 2500 5000

25

50

75

100

125

150

175

200

225

250

275

300

325

350

RegF

FIFO
Sh fter*

FIR F lter
Hamm ng
Cache

Parameter Value

E
la

bo
ra

tio
n

Ti
m

e
se

co
nd

s

Figure 6: Evaluator performance results after implementing Higher­Order Abstract Syntax. Original evaluation times
from Figure 4 are listed in white. The transformation resulted in an average improvement of 45.4% on 5 of the 6 designs,
including improvements of greater than 70% on the RegFile and Cache (which uses both the RegFile and FIFO as sub ­
modules, so we would expect to show the largest improvement). For the shifter design, however, performance signific­
antly degraded to the point where evaluation could only complete with parameter values of less than 20. For analysis onto
the cause of this degradation see Section 4.1.

Design

RegFile

FIFO

Shifter

FIR Filter

Hamming

Cache

Dominating Functions (percent of elaboration time)

addHeap (49%)

deHeap (48%)

­

addHeap (43%)

deHeap (48%)

addHeap (48%)

deHeap (46%)

addHeap (47%)

­

deHeap (39%)

addHeap (47%)

deHeap (46%)

evalExpr (2%)

evalExpr (1%)

­

updateHeap (15%)

evalExpr (1%)

evalExpr 32%)

Figure 7: The three most dominating functions for the HOAS evaluator on the benchmark designs for n=5000. In the pre­
vious results (Figure 5) lookupVar was a dominant function for the RegFile, Shifter, and Cache designs. After the
HOAS transformation this call is eliminated completely. Although total execution time has decreased, heap manipula­
tions for values not affected by the HOAS transformation (such as incoming wire ports to methods) remain the majority
of the execution time. Future work should focus on improving the representation of the heap data structure to speed
these operations.

provement from the transformation. Contrary to our
expectations, the HOAS version of the Shifter design
had its performance degraded. Previously the com­
piler could elaborate an 5000­bit wide shifter in 147
seconds. After the HOAS transformation the compiler
takes 213 seconds to elaborate a 19­bit wide shifter.
Larger values than 19 cause the elaborator to run out
of memory after over an hour of execution. We now
analyze this case in detail.

4.1 The Effect of HOAS on the Shifter
Design

The Shifter benchmark design is similar to the one de­
scribed in Section 2.1, except that it uses recursive
functions rather than while­loops to describe the
shift / mux pairs. For a shift amount of n, we would
expect n function calls or loop iterations. If each itera­
tion contains k program expressions, we would expect
kn calls to the evalExpr function. Profiling informa­
tion revealed the following behavior:

time evalExpr
calls

Memory use

Original
(n=19)

0.24s 543 51MB

Original
(n=20)

0.22s 571 51MB

HOAS
(n=19)

17.64s 23,068,544 3.9GB

HOAS
(n=20)

60.86s 46,137,211 7.9GB

HOAS
(n=21)

DNF

> 1 hour

­ Out of Memory

The original version clearly demonstrates linear beha­
vior, whereas the HOAS version results in an expo­
nential number of calls to evalExpr (23 million is ap­
proximately 43 x 219), and exponential memory use.
The other benchmarks in our suite exhibit no such be­
havior, nor increased memory use.

Investigation revealed that the HOAS shifter was
generating unexpected, but functionally correct cir­
cuitry. For n=3 we would expect elaboration to gener­
ate the circuit diagrammed in Section 2.1. Instead it

turned out that the HOAS evaluator generated the
following structure:

n

<< 1

<< 2

<< 4

<< 1

<< 2

<< 1 << 1

Note that this circuit is functionally equivalent to
the circuit we had intended to describe. Thus the test­
bench for this design identified it as a correctly func­
tioning shifter circuit, and we did not examine the
hardware structure in detail until we investigated the
elaboration time. Although functionally equivalent,
this circuit has the same critical path as the intended
circuit, but exponentially larger area, and therefore is
strictly worse and would not be desired by the de­
signer under any circumstances.

But why was this circuit being generated? Con­
sider the original n=3 shifter description:

method v_width shift(v_width v,

bit[3] n) {

 v_width v1, v2, v3;

 v2 = (n[0] == 0) ? v : v << 1;

 v3 = (n[1] == 0) ? v2 : v2 << 2;

 v4 = (n[2] == 0) ? v3 : v3 << 4;

return v4;

 }

If we naively substitute the variable v2 into the defin­
ition of v3:

 v3 = (n[1] == 0) ?

 ((n[0] == 0) ? v : v << 1)

 : ((n[0] == 0) ? v : v << 1)

 << 2;

then we have duplicated hardware. This is an ex­
ample where a transformation that is safe to perform
in software is undesirable for a hardware compiler.

We are currently investigating how to reconcile
this behavior with Haskell's non­strict semantics. Giv­
en a function such as:

 \v -> (b) ? v : (f v)

we would expect the argument v to be to be evaluated
only once, and the result to be re­used when needed.
Therefore our elaborator should not exhibit exponen­
tial behavior, although it clearly does. We are cur­
rently investigating whether some of the GHC
Haskell compiler's eagerness optimizations could
cause a bad interaction in this case. In the meanwhile
we are attempting to implement explicit sharing via
memoization as a stopgap solution.

5. CONCLUSIONS

As hardware designs become more and more com­
plex, hardware description languages are continually
adding new features to compensate. We believe that
hardware description languages should not reinvent
the wheel, but rather leverage techniques that have
been developed in the mature field of software pro­
gramming languages. In this paper we demonstrated
that the Higher­Order Abstract Syntax technique can
be used to speed up the static elaboration phase of a
hardware compiler. Additionally we demonstrated
that HOAS can be used as a framework to transmit in­
formation from static analyses to the elaborator. In the
future we hope to apply this work to the actual
Bluespec compiler, and to expand our framework to
include analyses which perform optimizations of the
generated circuit structures rather than improving
compiler performance.

6. ACKNOWLEDGEMENTS

We would like to thank Ravi Nanavati and the rest of
Bluespec, Inc. for their ideas and support.

REFERENCES
[1] Arvind, R. S. Nikhil, D. L. Rosenband and N.

Dave, High­Level Synthesis: An Essential In­
gredient for Designing Complex ASICs. In
Proceedings of ICCAD '04, pages 775­782,
2004.

[2] P.	 Bjesse, K. Claessen, M. Sheeran, and S.
Singh. Lava: Hardware Design in Haskell. In
Proceedings of International Conference on
Functional Programming (ICFP) '98, pages
174­184, 1998.

[3] N.	 Dave, M. Pellauer and Arvind. The
UNUM Microprocessor Framework. Unpub­
lished.

[4] J.C. Hoe and Arvind. Synthesis of Operation­
Centric Hardware Descriptions. In Proceed­
ings of ICCAD '00, pages 511­518, 2000.

[5] F. Pfenning and C. Elliot. Higher­Order Ab­
stract Syntax. In Proceedings of the Conference
on Programming Language Design and Imple­
mentation (PLDI) '88, pages 199­208, 1988.

[6] D.	 Rosenband. A Performance­Driven Ap­
proach to Hardware Synthesis of Guarded
Atomic Actions. PhD Thesis, MIT, 2005.

[7] R.	 Sharp and A. Mycroft. A Higher­Level
Language for Hardware Synthesis. Lecture
Notes on Computer Science, 2144:228­240, 2001

[8] M.	 Sheeran. Finding Regularity: Describing
and Analyzing Circuits that are not Quite
Regular. In Proceedings of the Conference on
Correct Hardware Design and Verification Meth­
ods (CHARME) '03, pages 4­18, 2003.

7. APPENDIX

Abstract Syntax Tree for FSpec in Haskell, and ex­
amples of concrete syntax.

data FModule = FModule

 {

 modname :: Id,

 modtype :: FType,

 params :: [(FType, Id)],

 decls :: [FStmt],

 act_methods :: [FActionMethod],

 val_methods :: [FValueMethod],

 rules :: [FRule]

 }

data FRule = FRule Id FExpr [FStmt]

data FActionMethod = FActionMethod

 FType Id FExpr [Id] [FStmt]

data FValueMethod = FValueMethod

 FType Id FExpr [Id] FExpr

data FStmt =

 FSRegUpdate FExpr FExpr

 | FSDecl FType Id FExpr

 | FSArrayUpdate Id FExpr FExpr

 | FSVarUpdate Id FExpr

 | FSIf FExpr [FStmt]

 | FSMethodCall FExpr Id [FExpr]

 | FSWhile FExpr [FStmt]

data FExpr =

 FERegRead FExpr

 | FEConst Value

 | FEInt Int

 | FEVar Id

 | FELam FType Id FExpr

 | FEFuncApp FExpr FExpr

 | FETri FExpr FExpr FExpr

 | FEArrayRead FExpr FExpr

 | FEArray (Array Int FExpr)

 | FEMethodCall FExpr Id [FExpr]

-- module nm < Types > { stmts }

-- rule nm when (p) { stmts }

-- method Action nm (params)

 when (expr) { stmts }

-- method Type nm (params)

 when (expr) expr

-- r <= expr ;

-- Type var = expr ;

-- var[expr] = expr ;

-- var = expr ;

-- if (expr) { stmts } ;

-- m.actmeth (params) ;

-- while (expr) { stmts };

-- r

-- 1'b0, 1'b1, ...

-- 0, 1, 2, ...

-- var

-- \ x -> expr

-- f expr

-- (expr) ? expr : expr

-- var[expr]

-- { expr, expr,... }

-- m.valmeth(params)

	REFERENCES
	1. INTRODUCTION
	1.1 Paper Organization

	2. BACKGROUND
	2.1 Static Elaboration of Parameterized Hardware
	2.2 The Cost of Static Elaboration
	2.3 Other Approaches to Static Elaboration

	3. METHODOLOGY
	4. HIGHER-ORDER ABSTRACT SYNTAX FOR FSPEC
	4.1 The Effect of HOAS on the Shifter Design

	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. APPENDIX

