
Automated Test Data Generation with SAT 

Robert Seater and Gregory Dennis 

ABSTRACT 
We present a novel technique for automatically generating 
a suite of test inputs to an object­oriented procedure. The 
suite is guaranteed to kill all mutant procedures produced 
from a given catalog of mutation operators, so long as those 
mutants could be detected by some test within user­provided 
bounds. 

Our test input generator constructs a mutation­parameterized 
version of the procedure, whose behavior may differ from 
the original by a single mutation. It encodes the original 
and mutation­parameterized procedures in a first­order rela­
tional formula, a solution to which includes both a mutation 
and a test input that detects it. Our tool iteratively invokes 
a constraint­solver to find such tests and adds them to the 
test suite. After each iteration, it amends the formula to 
ensure the next mutant found was not killed by a previous 
input. This process is repeated until the formula becomes 
unsatisfiable, at which point all mutants have been detected. 

We evaluate an implementation of this technique on a series 
of small benchmarks. 

1. INTRODUCTION 
The degree to which a test suite explores the behavior of a 
program is the suite’s coverage. For a well chosen coverage 
metric, the greater the coverage of a test suite, the more 
likely the suite is to detect bugs in the program. There are 
several metrics for measuring the coverage of a test suite, 
such as the percentage of statements the suite executes or 
the percentage of program paths it exercises. In this paper, 
we concern ourselves with mutation coverage, a measure of 
a test suite’s ability to distinguish a piece of code from small 
variants, or mutants, of that code. 

Mutation testing refers to the process of evaluating the mu­
tation coverage of a test suite. A catalog of mutations oper­
ators is applied to the program to generate a large collection 
of mutants, which are then executed on inputs from the test 
suite. If a mutant behaves differently from the original pro­
gram on at least one of the tests in the suite, the suite is 
said to kill that mutant. The percentage of mutants killed 
is the suite’s rate of mutant killing. 

The central premise of mutation testing is the presence of 
a coupling effect between simple and complex faults in a 
program [4]. The effect says that a test suite that detects 
all simple faults in a program (as represented by a single 
mutation) will detect most complex faults. This claim has 
received experimental and analytical support [15, 14, 26, 
16]. 

Mutation testing can be a long and costly process. The en­
tire test suite must be run on every mutant, of which there 
can be on the order of hundreds to thousands. Furthermore, 
when a suite fails to detect a mutant, there are two possi­
bilities: either the suite is inadequate to cover that mutant, 
or the mutant is equivalent to the original program. De­
termining if a mutant is equivalent usually involves manual 
inspection, although a number of automated heuristics have 
been proposed [19, 10, 17, 22]. Such equivalent mutants be­
have the same as the original program on every input — 
they cannot be killed by any test — and therefore, they do 
not indicate a weakness of the test suite. Equivalent mu­
tants result from irrelevant mutations, such as negating the 
argument to an absolute value function or mutating dead 
code. 

The drawbacks of achieving high coverage with testing can 
be mitigated through the use of automatic test data gen­
eration. Constraint­based automated test data generation 



�

�

�

is a hybrid static­dynamic approach. It statically gener­
ates test inputs guaranteed to desirable property, such as 
high statement, branch, or mutation coverage. These in­
puts can then be dynamically executed and either evaluated 
against an oracle, or, in the case of regression testing, kept 
as an oracle for future executions. Many such techniques 
are constraint based, meaning they use algebraic or logical 
constraint solvers to generate the test inputs. 

We present a constraint­based test data generation tech­
nique for constructing a suite of test inputs that will, by 
construction, kill every non­equivalent mutant that is kill­
able by some input within the user defined bounds on heap 
size and loop unrolling. This is facilitated by the use of a 
SAT­based constraint solver. Our test input generator en­
codes the procedure in a logical formula that allows a single 
mutation of that procedure to be enabled. Which mutation 
is chosen depends on the value of an unconstrained vari­
able in the formula, and additional constraints encode the 
notion of killing a mutant. Our tool invokes a constraint 
solver to solve the formula for test inputs that are guaran­
teed to kill all killable mutants drawn from some catalog. 
Our constraint solver is based on the Alloy Analyzer, which 
encodes our formula in SAT and invokes a SAT­solver to 
find its solutions [11]. 

1.1 Comparison to Specification Analysis 
Since our approach uses a constraint solver to search for 
tests that kill mutants, one might decide to instead search 
directly for an input that causes the procedure to violate its 
specification. Although doing so would only cost as much 
as a single iteration of our approach, there are two reasons 
why it may be undesirable in practice. 

First, often no specification is available, either because no 
one is capable of or willing to write it or because it is not 
expressible in the given constraint language. Writing a cor­
rect logical specification is a difficult task that often requires 
skilled abstract thinking. In practice, the average program­
mer may find it easier to manually inspect a series of test 
executions for correctness than to write a correct, general 
specification for all possible executions. Neither our ap­
proach nor mutation testing require existing specifications. 

Second, even in the presence of a specification, the cost of 
statically checking the code against the specification may 
be far greater than running the test suite. If so, it may be 
profitable to invest substantial time up front to generate a 
regression test suite that kills all mutants and that can be 
quickly run in the future. 

2. APPROACH 
We now discuss how to construct a relational first order logic 
formula whose solution is a pair – a mutation (drawn from 
some catalog) and a test input which kills that mutant. A 
mutation m kills an input s if s causes the original program 
p and the mutated program p m to produce different out­
put: if p m(s) = p(s). On successive iterations, that formula 
is amended to exclude any mutation which is killed by a 
previously generated input. The analysis we use requires a 
bounded state space, which corresponds to a bound on the 
size of the heap and the number of loop unrollings. If, on 
some iteration, the formula is unsatisfiable, then the pre­

viously generated inputs kill all mutants killable by inputs 
within the given bound. The analysis is complete. Every 
test added is guaranteed to kill at least one additional mu­
tant. 

2.1 Logical Constraints 
A procedure p can be modeled as a function from pre­ to 
post­states, where p(s) = s� is true if and only if p relates 
input state s to output state s�. Applying mutation m1 to 
procedure p yields the mutant procedure p m1 . An Alloy 
formula can be constructed that is true if and only if there 
exists a mutation m1 and a pre­state s1 such that p and p m1 

behave differently on s1 (s1 kills p m1 ): 

∃m1, s1 . p(s1) = p m1 (s1) 

The solution witnesses the mutation m1 and the pre­state 
s1 that kills p m1 . The input s1 is added to the input suite, 
and the formula is amended to find a new test that kills a 
mutant not killed by the previous test: 

∃m2, s2 . p(s2) = p m2 (s2) ∧ p(s1) = p m2 (s1) 

The pre­state s2 found by this analysis kills a new mutant 
m2 that would not have been killed by s1. We then repeat 
this process. The formula that finds the nth such input is 
as follows: 

n, sn . p(sn) = p mn (sn)∧∃m
p(sn−1

�
) = p mn (s mn (s1)n−1) ∧ · · · ∧ p(s1 ) = p 

This process continues until the formula is unsatisfiable, at 
which point a suite of test inputs has been assembled, each 
of which kills at least one unique mutant. One could instead 
halt the process after it generates a certain number of test 
cases or has run for a certain amount of time, but doing so 
risks dramatically reducing the value of the resulting test 
suite. 

If one is generating a test suite to check the correctness of 
p, the correct output for each input must be determined 
separately. If one is generating a regression test suite (and 
assuming the original procedure p to be correct), each out­
put p(si ) witnessed by the solution is considered to be the 
correct output. 

2.2 Parameterizing Mutations 
The procedure p m is the original procedure p parameterized 
by the choice of a single mutation m. Thus, there are as 
many values m can assume as there are mutants. To con­
struct the body of p m, we instrument each statement in p 
with additional conditionals that test the value of m and 
that either execute the mutation to which m corresponds, 
or that execute the original statement if m does not corre­
spond to a mutation. To illustrate, consider the following 
two program statements: 

x = y + z; 
b = x > 10; 

Consider two mutation operators: 1) replacing an addition 
or subtraction sign with the other (the “ASR” mutation 



�
�

Operator Description 
ASR addition subtraction replacement 
COR comparison operator replacement 
IAR invocation argument reordering 
NEG boolean negation 
OBO 
VIR 

off­by­one errors (±1) 
variable identifier replacement 

Table 1: Mutation Operators 

operation); and 2) swapping one comparison operator with 
another (COR). If the prior two statements appeared in the 
original procedure p, applying ASR to the first statement 
and COR to the second would yield the following statements 
in p m: 

if (m == m1)

x = y ­ z;


else

x = y + z;


if (m == m2)

b = x >= 10;


else if (m == m3)

b = x < 10;


else if (m == m4)

b = x <= 10;


else if (m == m5)

b = x == 10;


else if (m == m6)

b = x != 10;


else

b = x > 10;


Given a particular value of m, p m simulates p varied by 
a single mutation. Table 1 gives the full list of mutation 
operators our implementation considers. 

ASR swaps + and − operators in arithmetic expressions. 
COR changes one inequality comparison (>, ≥, <, ≤) into 
another inequality or into an equality comparison (=, =). 
COR can also toggle = and = operators. IAR reorders ar­
guments in a procedure call if their types are compatible. 
NEG negates a boolean expression. OBO adds or subtracts 
1 from an arithmetic expression. VIR replaces one variable 
identifier with another in­scope variable of the same time. 

Offutt, Rothermel, Untch, and Zapf propose 22 operators for 
C programs, which is often used as a standard [18]. 6 cor­
respond to our 6 (although not one­to­one). 6 more involve 
array references and thus would not affect the programs we 
have examined so far. 4 are specific to language features 
(e.g. GOTO). Our technique could be extended to handle 
the remaining 6, which include mutantions such as state­
ment deletion and constant­for­constant replacement. 

2.3 Constraint Solving 
Our implementation encodes the original and mutation­ pa­
rameterized procedures and the formulas presented in Sec­
tion 2.1 into a relational first order logic based on Alloy [11]. 

It uses the encoding formalized by Dennis et al. [6], and 
solves it using a new tool based on the Alloy Analyzer. A 
solution to the formula indicates a mutant that is not killed 
by any previous test input, and a test input that kills that 
mutant. If the formula is not satisfiable, then no additional 
test inputs are necessary to kill all killable mutants. 

The Alloy Analyzer does not symbolically prove the exis­
tence of a solution. Instead, it exhaustively searches the 
entire state space of scenarios within finite, user­defined 
bounds. It is able to analyze millions of scenarios in a mat­
ter of seconds. Consequently, failure to produce a solution 
does not constitute proof that one does not exist, but ev­
ery solution reported is guaranteed to be correct. Failure to 
produce a solution does, however, guarantee that there is no 
solution within the chosen bounds. 

Thus, the resulting test suite depends on bounds we place on 
the analysis. Those bounds are limitations on the number of 
instances of each type, in effect a limitation on the size of the 
heap. If a mutant can only be killed by inputs that exceed 
those bounds, then it will not be killed by the resulting suite. 

2.4 Jimple Representation and Limitations 
The programming language accepted by our tool is a sub­
set of Java. The subset we use does not yet include arrays, 
iterators, constructors, exceptions, or threads. To render 
Java bytecode amenable to analysis we first convert it to 
the Jimple intermediate representation using the Soot com­
piler optimization framework [23, 25]. Unlike Java source 
code, Jimple is a typed 3­address representation in which 
each subexpression is assigned to a unique local variable. 
Other differences in Jimple include the presence of gotos in 
place of loop constructs, the representation of booleans as 
integers, the desugaring of short­circuiting boolean opera­
tors into nested if­branches, and the expanded scope of each 
local variable to the entirety of the method body. 

As a consequence of the Jimple representation, a single mu­
tation to the Jimple does not always correspond to the same 
mutation in the original source code. For example, testing 
whether a boolean expression is true is represented in Jim­
ple as testing whether an integer expression is not equal to 
zero. Thus, using the COR mutation on Jimple to invert 
this equality test actually subsumes the NEG mutation at 
the source code level. There are also some simple source 
mutations that cannot be readily accomplished via Jimple, 
such as replacing one short­circuiting boolean operator with 
another. Also, because Jimple assigns each subexpression 
to a new local variable, applying VIR to Jimple could be 
equivalent to a source mutation that replaces one subex­
pression with another. Due to the absence of scopes on 
local variables, VIR can occasionally cause mutations that 
would have prevented the original source code for compiling 
successfully. 

2.5 Preprocessing 
Once a Java method is converted to Jimple, some additional 
pre­processing is required before it can be encoded as a re­
lational model. First loops are unrolled for a finite number 
of iterations. At the end of the unwinding, an “assume” 
statement that contains the negation of the loop condition 
is inserted. These assume statements are recognized by our 



�

�

1 int abs (int x) { 
2 if(x >= 0) 
3 return x; 
4 else 
5 return ­x; 
6 } 

Figure 1: Absolute Value Method 

encoding and constrained to be true in the resulting formula. 
The effect is to exclude all executions of the procedure if it 
would exceed the fixed number of loop iterations. Thus, if 
a mutant could only be killed by a test that exceeded that 
limit, it would not be killed by this analysis. 

Lastly, dynamic dispatch is resolved into a series of tests 
on the type of the receiver argument, each test of which is 
followed by an invocation of the concrete method provided 
by that type. A simple class hierarchy analysis is currently 
used to determine the potential target methods of an invo­
cation, though more sophisticated analyses could be easily 
plugged in. 

2.6 Small Example 
Consider the absolute value algorithm shown in Figure 1. 
Our mutation­parameterization instruments this code with 
10 possible mutations. COR spawns five mutants on line 
2: the ≥ can be replaced with either >, <, =, or =.≤, 
The return statement on line 3 spawns two OBO mutants: 
return x+1 or return x­1. Due to the Jimple intermediate 
representation of the procedure, the single Java statement 
return ­x (line 5) is represented as two statements: int 
x’ = ­x; and then return x’;. As a result, there are two 
local variables in scope (x and x’), and OBO and VIR create 
three mutant return values for line 5: return x’+1, return 
x’­1, and return x. 

The test input generator produces 2 test inputs to kill the 
10 possible mutants: 4 and −2. On this tiny example, our 
implementation runs nearly instantaneously. The tool first 
finds that the test input “x = 4” kills the mutant in which 
≥ is replaced by <. It then amends the constraint problem 
to disallow any mutant killed by that input. Solving the 
amended formula produces the input “x = −2” to kill the 
mutant where ≥ is replaced by =. Amending the constraint 
problem a second time produces an unsatisfiable formula, 
indicating that no additional test inputs with scope would 
kill mutants which haven’t already been killed. 

3. RESULTS 
3.1 Evaluation On Benchmarks 
We evaluate our technique on several small examples, record­
ing the execution time and number of test inputs generates. 
The primary factor determining the technique’s run time 
appears to be that number of paths in the program, not the 
number of lines or eventual size of the test input. Since each 
mutation adds a conditional to the program, the number of 
mutations is a good estimate of the number of paths and 
thus of the time it takes our technique to operate. 

Absolute Value 

1 boolean contains(int value) {

2 Bucket current = this.getHead();

3 while (current != null) {

4 if (value == current.getValue()) {

5 return true;

6 }

7 current = current.getNext();

8 }

9 return false;

10 }


Figure 2: List Containment 

In Figure 1 of Section 2.6, we saw a java procedure for com­
puting absolute value. 

6 lines of code 
8 single mutants 
integers range −10 to +10 
2 inputs generated 
1.5 seconds to compute those inputs 

List Containment 
Figure 2 gives Java code for determining whether or not an 
integer list contains a given value. 

10 lines of code 
8 single mutants 
3 loop unrollings, 3 element lists, integers range −1 to +2 
3 inputs generated 
1.5 seconds to compute those inputs 

Tree Node Insertion 
The Appendix gives Java code for inserting a node into a 
binary search tree of integers. 

21 lines of code 
40 single mutants 
3 loop unrollings, 3 node trees, integers range −2 to +2 
5 inputs generated 
30 minutes to compute those inputs 

Tree Node Removal 
The Appendix gives Java code for removing a node from a 
binary search tree of integers. 

50 lines of code 
242 single mutants 
1 loop unrolling, 3 node trees, integers range −2 to +2 
timed out after 10 hours, at which point it had generated 8 
inputs 

3.2 Compound Mutant Coverage 
The coupling effect is the hypothesis that a suite killing most 
simple mutants will kill most complex ones. We evaluate 
this hypothesis by evaluating the input suites we generate, 
which kill all single mutants, against compound mutants, 
programs in which several of our mutation operators have 
been applied. The 2 inputs generated for absolute value 
killed all 97 possible compound mutants. The 3 inputs gen­
erated for list containment killed all 136 possible compound 



mutants. These are encouraging, but far from definitive, 
results. 

3.3 Locally Minimal Test Suites 
While our technique guarantees that no two inputs will kill 
the same set of mutants, it makes no guarantee that the 
suite will be globally minimal, or even locally minimal. It 
is guaranteed only that no two inputs in the suite kill ex­
actly the same set of mutants. However, in the limited cases 
we have examined so far, the suites generated are locally 
minimal. 

For the list containment procedure, our technique generated 
3 inputs which killed all 8 possible single mutants. There are 
136 compound mutants – 26 double, 44 triple, 41 quadruple, 
20 quintuple, and 4 sextuple. Only 11 of those compound 
mutants are killed by only one of the three test inputs. 8 
of those cases only killed by input #2, 2 were only killed by 
input #3, and 1 was only killed by input #3. Thus, of the 
3 possible reduced suites and of the 136 possible compound 
mutants, the reduced suite will fail to catch a mutant which 

11could have been caught by the full suite 
136(3) = 2.7% of 

the time. 

If one somehow knew to leave out just input #1, the least 
important input, the reduced suite would only fall short of 
the full suite 1 = 0.7% of the time. However, if one

136(1) 

eliminated just input #2, the most important input, the 
reduced suite would fall short of the full suite 8 = 5.9%

136(1) 

of the time. 

4. RELATED WORK 
Mutation Testing and Coverage 
Our approach is unique in that it is guaranteed to generate 
a suite of test inputs with 100% mutation coverage (of mu­
tants killable by small inputs); other techniques rarely go 
above 90% coverage and are often much lower. With other 
techniques, generating a suite with a higher rate of muta­
tion coverage means generating a larger suite, and achieving 
100% coverage would require effectively infinite cost (detect­
ing equivalent mutants is undecidable, and many algorithms 
involve a random component). With our approach, 100% of 
killable mutants are always killed at finite (but high) cost. 
Future work includes more thoroughly evaluating the com­
pound mutant killing capabilities of suites with 100% muta­
tion coverage and those with high but imperfect coverage. 

Mutation coverage is just an estimate of error coverage, and 
a suite that kills many mutants could be poor at detecting 
real errors. It is still an open question as to just how ef­
fective mutation coverage is as a metric for evaluating test 
suite. While practicioners often reflect positively on muta­
tion testing, there have been only few studies to directly 
support its value, and they cannot be considered definitive. 

The DeMillo [2] published the first analytical and empirical 
evaluation of mutation coverage as a metric, which was later 
expanded upon by Offutt [21]. Wah [26] and Offutt [16] 
have worked on directly evaluating the coupling effect, the 
hypothesis that a suite with detects all small errors (single 
mutants) will be effective at detecting most complex bugs. 
We have added to that work by evaluating the ability of 

suites that kill all single mutants at killing compound errors 
(multiple­mutants). 

For background on mutation testing, beyond what is neces­
sary for this paper, we recommend Offutt and Untch’s 2000 
survey paper [22], which provides a clear and thorough dis­
cussion of the the practical obstacles and recent innovations 
of mutation testing. 

Constraint­Based Test Data Generation 
DeMillo and Offutt coined the term “constraint­based auto­
matic test data generation” (CBT) [5] Most such techniques 
involve constructing a set of algebraic constraints to encode 
a both well­formedness and a goal (such as covering a partic­
ular statement or path) as an objective function. A minimal 
solution to those constraints corresponds to finding a well­
formed input that achieves the goal. A much smaller set of 
techniques instead use logical constraints. We discuss both 
types below. 

Test Data Generation with Algebraic Constraints 
DeMillo and Offutt [5, 4, 19, 17] propose a particular CBT 
technique that, given a mutant, uses an algebraic constraint 
solver to attempt to generate a test case to kill that mu­
tant. It tries to generate test input with the following three 
properties: Reachability condition – the program reaches 
the mutated statement; Necessary condition – the mutated 
statement causes the program to enter a different (presum­
ably erroneous) state; Sufficient condition – that difference 
propagates to the output of the program. They solve alge­
braic constraints on the test input to meet the reachability 
and necessary conditions. In contrast, we directly solve the 
sufficient condition, implicitly satisfying both the reachabil­
ity and necessary conditions. Unlike our approach, their 
technique attempts to kill a mutant even if that mutant 
could be killed by a prior test case. 

In follow­up work, Offutt and Pan [19] present a technique 
for detecting that two mutants are equivalent. Like DeMillo 
and Offutt’s automatic test case generation, it is a heuristic­
based method for solving algebraic constraints that is un­
sound. Because our technique searches for a test case that 
causes the mutant to behave differently than the original, 
each mutant found is non­equivalent by construction. 

Ferguson and Korel propose chaining, a method to generate 
tests by observing the execution of the program under an ex­
isting test [7]. They bias the algorithm towards generating 
tests that provide coverage of particular lines of code – either 
lines of particular interest or lines that are not covered by the 
existing tests. To that end, they use data dependence analy­
sis to guide the search process by identifying statements that 
affect the execution of the target statement. They evaluate 
it in terms of the likelihood of finding well formed inputs 
that exercise the target line. 

Tracey, Clark, and Mander introduce a technique which 
solves algebraic constraints to automatically generate well 
formed test data [24]. They theorize that, while solving 
general constraints is intractable, constraints resulting from 
real software are a much easier subset. They solve the con­
straints with the help of simulated annealing, a probabilistic 
algorithm for global optimization of some objective function 



inspired by metallurgy models of cooling. They construct an 
objective function which represents how close a given solu­
tion is to satisfying the algebraic constraints (e.g. x = 49 
is closer to satisfying X > 50 than is x = 2). Randomiza­
tion in the algorithm causes it to (usually) produce different 
results on different iterations. They evaluate their work in 
terms of the time taken by their implementation to gener­
ate 50 well formed test inputs for small examples. Their 
approach is focused on generating well formed inputs given 
a set of algebraic constrains, not inputs with any particular 
feature (e.g. mutation coverage). 

Gupta, Mathur, and Soffa show how iterative relaxation an 
be used to generate test inputs that cover a specified path, 
as a step in a building a test suite with path coverage. An 
input is iteratively refined until all branch predicates along 
a given path evaluate to the desired outcome. In each it­
eration, the current input is executed and used to derive a 
set of linear constraints. Those constraints are solved (us­
ing Gausian elimination) to obtain the input for the next 
iteration. If the branch conditions on the given path are 
linear, the the algorithm will terminate with either an in­
put which takes that path, or a guarantee that the path is 
infeasible. The complexity of the problem grows with the 
number and complexity of the branch predicates, not the 
length of the trace, so the authors are optimistic about the 
practical scalability of the algorithm. [8] 

Michael and McGraw developed the the GADGET system 
which uses a form of dynamic test data generation [13]. It 
treats parts of the program as functions which can be evalu­
ated by executing the program, and whose value is minimal 
for inputs that satisfy some desirable property (in their pa­
per, the use condition coverage). Because of that correspon­
dence between test data generation and function minimiza­
tion, they can instead solve the latter, better­understood 
problem using techniques such as simulated annealing, ge­
netic search, and gradient descent. A randomized compo­
nent encourages the solutions to be different on different 
runs. The authors evaluate the different methods of solving 
the algebraic constraints generated by GADGET in terms 
of condition coverage of a 2000 line C program, with re­
spect to the number of tests generated. The curves flatten 
out at about 10,000 test inputs, with the leaders being sim­
ulated annealing (91%) and gradient descent (83%). The 
time taken to generate these tests is not reported. 

Logical Constraint Solving 
Marinov and Khurshid introduced TestEra [12] and Boya­
pati, Khurshid, and Marinov introduced Korat [1] – tools 
that use logical constraint solving to generate inputs to a 
program based on a well­formedness predicate on the in­
put. Symmetry breaking constraints added to the constraint 
problem prevent the generation of isomorphic input. Inputs 
are not filtered according to any particular metric. In con­
trast, our approach examines the program body to select a 
much smaller subset of the inputs that still achieves muta­
tion coverage. Korat, like our tool, uses Alloy technology to 
solve logical constraints. 



5. REFERENCES 
[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat:


Automated testing based on Java predicates.

Submitted for publication, February 2002.


[2] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. 
Sayward. Theoretical and empirical studies on using 
program mutation to test the functional correctness of 
programs. In POPL ’80: Proceedings of the 7th ACM 
SIGPLAN­SIGACT symposium on Principles of 
programming languages, pages 220–233, New York, 
NY, USA, 1980. ACM Press. 

[3] W. H. Deason, D. B. Brown, K. H. Chang, and J. H. 
Cross II. A rule­based software test data generator. 
IEEE Transactions on Knowledge and Data

Engineering, 3(1):108–117, 1991.


[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints 
on test data selection: Help for the practical 
programmer. 11(4):34–41, April 1978. 

[5] R. A. DeMillo and A. J. Offutt. Constraint­based

automatic test data generation. IEEE Trans. Softw.

Eng., 17(9):900–910, September 1991.


[6] G. Dennis, F. Chang, and D. Jackson. Checking

refactorings with SAT. Submitted for publication,

September 2005.


[7] R. Ferguson and B. Korel. The chaining approach for 
software test data generation. ACM Trans. Softw. 
Eng. Methodol., 5(1):63–86, 1996. 

[8] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated 
test data generation using an iterative relaxation 
method. In SIGSOFT ’98/FSE­6: Proceedings of the 
6th ACM SIGSOFT international symposium on 
Foundations of software engineering, pages 231–244, 
New York, NY, USA, 1998. ACM Press. 

[9] R. G. Hamlet. Testing programs with the aid of a

compiler. IEEE Transactions on Software

Engineering, 3(4):279–290, July 1977.


[10] R. M. Hierons, M. Harman, and S. Danicic. Using 
program slicing to assist in the detection of equivalent 
mutants. Software Testing, Verification & Reliability, 
9(4):233–262, 1999. 

[11] D. Jackson. Automating first­order relational logic. In 
Proc. ACM SIGSOFT Conf. Foundations of Software 
Engineering (FSE), November 2000. 

[12] D. Marinov and S. Khurshid. Testera: A novel 
framework for automated testing of Java programs. In 
Proc. 16th International Conference on Automated 
Software Engineering (ASE), November 2001. 

[13] C. C. Michael and G. McGraw. Automated software 
test data generation for complex programs. In 
Automated Software Engineering, pages 136–146, 1998. 

[14] L. J. Morell. A theory of fault­based testing. IEEE 
Trans. Softw. Eng., 16(8):844–857, 1990. 

[15] A. J. Offutt. Investigations of the software testing 
coupling effect. ACM Trans. Softw. Eng. Methodol., 
1(1):5–20, 1992. 

[16] A. J. Offutt. Investigations of the software testing 
coupling effect. ACM Transactions on Software 
Engineering and Methodology, 1(1):5–20, 1992. 

[17] A. J. Offutt and W. M. Craft. Using compiler 
optimization techniques to detect equivalent mutants. 
Software Testing, Verification & Reliability, 
4(3):131–154, 1994. 

[18] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and 
C. Zapf. An experimental determination of sufficient 
mutant operators. ACM Transactions on Software 
Engineering and Methodology, 5(2):99–118, 1996. 

[19] A. J. Offutt and J. Pan. Automatically detecting 
equivalent mutants and infeasible paths. Softw. Test., 
Verif. Reliab., 7(3):165–192, September 1997. 

[20] A. J. Offutt, J. Voas, and J. Payne. Mutation 
operators for Ada, 1996. 

[21] J. Offutt, A. Lee, G. Rothermel, R. Untch, and 
Author:. An experimental determination of sufficient 
mutation operators. Technical report, Fairfax, VA, 
USA, 1994. 

[22] J. Offutt and R. H. Untch. Mutation 2000: Uniting 
the orthogonal. In Mutation 2000: Mutation Testing 
in the Twentieth and the Twenty First Centuries, 
pages 45–55, October 2000. 

[23] V. S. P. L. E. G. Raja Vallée­Rai, Laurie Hendren and 
P. Co. Soot ­ a Java optimization framework. In 
Proceedings of CASCON 1999, pages 125–135, 1999. 

[24] N. Tracey, J. Clark, and K. Mander. Automated 
program flaw finding using simulated annealing. In 
ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT 
international symposium on Software testing and 
analysis, pages 73–81, New York, NY, USA, 1998. 
ACM Press. 

[25] R. Vallee­Rai. The Jimple framework. 1998. 

[26] K. S. H. T. Wah. An analysis of the coupling effect I: 
single test data. Sci. Comput. Program., 
48(2­3):119–161, 2003. 



Appendix parent.right = change; 
Java code for a binary search tree of integers with insert and } 
remove methods. return true; 

} 

package test; 
static Node removeNode(Node current) { 

class Node { Node left = current.left, right = current.right; 

int value; 
Node left, right; if (left == null) 

return right; 

} if (right == null) 
return left; 

class Tree { 
Node root; 

if (left.right == null) { 
current.value = left.value; 
current.left = left.left; 

void insert(Node n) { 
Node x = this.root; } 

return current; 

Node parent = null; 
Node temp = left; 

while (x != null) { 
parent = x; 
if (n.value < x.value) { 

while (temp.right.right != null) { 
temp = temp.right; 

} 

} 

x = x.left; 
} else { 

x = x.right; 
} 

} 
} 

current.value = temp.right.value; 
temp.right = temp.right.left; 
return current; 

if (parent == null) { 
this.root = n; 

} else { 
if (n.value < parent.value) { 

parent.left = n; 
} else { 

parent.right = n; 
} 

} 
} 

boolean remove(int info) { 
Node parent = null; 
Node current = root; 

while (current != null) { 
if (info == current.value) 

break; 
if (info < current.value) { 

parent = current; 
current = current.left; 

} else /* (info > current.value) */ { 
parent = current; 
current = current.right; 

} 
} 

if (current == null) return false; 
Node change = removeNode(current); 

if (parent == null) { 
root = change; 

} else if (parent.left == current) { 
parent.left = change; 

} else { 


