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Abstract 

Sharing mutable data (via aliasing) is a powerful program­
ming technique. To facilitate sharing, object­oriented pro­
gramming languages permit the programmer to selectively 
break encapsulation boundaries. However, sharing data 
makes programs harder to understand and reason about, 
because, unlike encapsulated data, shared data cannot be 
reasoned about in a modular fashion. This paper presents 
object control invariants: a set of program properties to help 
programmers understand and reason about shared data. 

1 Introduction 

Sharing mutable data (via aliasing) is a powerful program­
ming technique. For example, the model­view­controller de­
sign pattern [19] captures the essential structure of many 
graphical user interfaces: many controllers and views share 
one model object. 

To facilitate sharing, object­oriented programming lan­
guages permit the programmer to selectively break encap­
sulation boundaries. Visibility keywords such as private 
suggest that some data should be encapsulated, but do not 
prevent public methods from returning aliases to that (sup­
posedly) internal data. 

However, sharing data makes programs harder to under­
stand and reason about, because, unlike encapsulated data, 
shared data cannot be reasoned about in a modular fashion. 

Encapsulating mutable data facilitates modular reasoning 
about object invariants. For example, consider a linked list 
implementation with a sentinel at the head and the invariant 
that the next field of the elements forms a cycle. If we know 
that elements are only manipulated by the list that owns 
them, then we need only examine the code of LinkedList and 
LinkedListElement in order to verify the invariant. The more 
data is encapsulated, the easier it is to reason about the 
program. 
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Previous work has developed various type­theoretic notions 
of object ownership to enable the programmer to specify 
and enforce encapsulation [2, 4, 10, 14, 22, 25, 28, 30]. We 
borrow the notion of ownership from this work, but consider 
it from an analytical rather than a type­theoretic perspec­
tive. Instead of having the programmer specify the data 
that is encapsulated (ie, not shared), our tool shows the pro­
grammer which data is shared (ie, not encapsulated). The 
primary contributions of this work are: 

•	 An analytic approach to characterizing sharing 
and encapsulation. Most ownership type systems 
have the programmer annotate the objects that are en­
capsulated. Our system, on the other hand, visualizes 
the objects that are shared. This approach has five key 
benefits: 

–	 It focuses the programmer’s effort on what should 
be the exceptional case (sharing), rather than 
what should be the normal case (encapsulation). 

–	 It characterizes the sharing that exists. 

–	 It encourages the programmer to reduce unnec­
essary sharing, eliminate erroneous sharing, and 
document essential sharing. 

–	 It requires less up­front effort from the program­
mer, because the program does not need to be 
annotated with ownership type declarations. 

–	 It characterizes sharing so that the program may 
be refactored to use shared objects in a more par­
simonious and orderly fashion. 

•	 A lightweight ownership inference algorithm. 
Most previous work on ownership inference (eg, [1, 2, 
10, 21, 34]) has focused on inferring annotations that 
will typecheck in some type system. We just infer 
the ownership structure, without inferring local anno­
tations, which is both faster and easier. 

We previously developed an imprecise static analysis (based 
on RTA [5, 6]) for the purpose of inferring ownership and 
characterizing shared data [31]. This paper differs from the 
previous work in two important ways: 

•	 We define object control invariants to precisely charac­
terize our notion of ownership and encapsulation. 

•	 We have designed and implemented a brand new dy­
namic analysis to compute object control invariants. 
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2 Object Control Invariants 

2.1 Object Ownership Criteria 

Programmers view object x as owning object y if y is part of 
the abstract state of x. Since it is difficult to mechanically 
determine what is part of the abstract state of an object, a 
number of different analytical criteria have been proposed 
in the literature: 

•	 owner­as­heap­dominator: all paths in the heap to the 
owned object must pass through the owner (eg, [30]) 

•	 owner­as­mutator: whoever mutates an object owns it 
(eg, [28]) 

•	 owner­as­allocator: whoever allocates (or de­allocates) 
an object owns it (eg, [21]) 

We propose a synthesis of these criteria: 

[Defn 1] Ownership. Object x owns object y if x is an im­
mediate dominator of y in the program’s write control 
graph. 

The following definitions clarify what we mean by this: 

[Defn 2] Control. An object is in control when it is the 
receiver of a method on the call stack. 

[Defn 3] Control Chain. A control chain is the list of ob­
jects in control, starting with the entry point. 

[Defn 4] Write Control Chain. A write control chain is 
a control chain that corresponds to writing a field: ie, 
where the last object in the chain executes a field store 
instruction. 

[Defn 5] Control Chain Link. A link in a control chain 
is a tuple x, y where x immediately preceedes y in the 
chain. 

[Defn 6] Controlled­by. Object y is controlled­by object 
x when x preceeds y in some control chain. 

[Defn 7] Control Graph. A control graph is the union of 
a set of control chains. Consider a control chain as a 
set of links; a graph is the union of these link sets from 
a collection of chains. 

[Defn 8] Write Control Graph. A write control graph is 
a control graph comprised of only write control chains. 

[Defn 9] Dominator. In a directed graph with a distin­
guished root node, node x dominates node y if every 
path from the root to y must pass through x. Each 
node has a set of dominators. 

[Defn 10] Immediate Dominator. Node x is the imme­
diate dominator of y if it is the ‘closest’ dominator. 
More formally, dom(y) − dom(x) = Every node {x}. 
(in a directed graph with a distinguished root element) 
has exactly one immediate dominator. 

Our definition of ownership is based on object control, rather 
than on the heap structure. In this view, it doesn’t matter 
how one got an alias to an object, it just matters what one 
does with that alias. 
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2.2 Object Control Properties 

Each object has one of the following object control proper­
ties that characterizes how it is controlled in the program: 

[Defn 11] Unique Controller. Object x uniquely con­
trols object y if if x immediately preceeds y in every 
control chain. 

[Defn 12] Non­Linear Controller. Object x is a non­
linear controller of y if x controls y both before and 
after some other object z controls y. 

[Defn 13] Shared Control. Object y is said to be shared 
if it has one or more non­linear controllers. 

[Defn 14] Linear Controller. Object y is said to be con­
trolled linearly if it has neither a unique controller nor 
a non­linear controller. 

All of these definitions can be re­phrased in terms of write 
control chains, which is our primary interest in exploring 
our notion of ownership. 

2.3 Sets of Objects 

Thus far our discussion has been in terms of individual ob­
jects. In order speak about the program more generally, we 
must speak of groups of objects. We define the following 
ways to group objects: 

[Defn 15] Field Group. The field group of field f is all 
objects stored into f . 

[Defn 16] Class Group. The class group of class c is all 
instances of class c. 

[Defn 17] Site Group. The site group of instantiation site 
s is all objects instantiated at s. 

There are a variety of criteria that can be used to identify 
sets of objects. For example, Kuncak et al. [24] identify 
sets of objects via reachability and heap referencing rela­
tionships. 

2.4 Object Group Control Properties 

The possible control properties for a set of objects are as 
follows: 

[Defn 18] Master Unique Controller. A set of objects s 
is said to have a master unique controller if some object 
x is the unique controller of every object in the set. 

[Defn 19] Individual Unique Controllers. A set of ob­
jects s is said to have individual unique controllers if 
every object in the set has a unique controller, but not 
the same controller. 

[Defn 20] Linear Individual Controller. A set of ob­
jects s is said to have a linear individual controllers 
if every object in the set controlled linearly. 

[Defn 21] Shared. A set of objects s is said to be shared 
if every object in the set is shared. 

[Defn 22] Inconsistent. A set of objects s is said to have 
inconsistent control if some objects in the group are 
shared and others are not. 

2.5 Messages 

We consider an object to be a message if one of its fields 
is read. Almost all stateful objects will be messages. We 
define the following kinds of messages: 

Msg Kind Readers Writers Note 
Personal 
Simple 
Broadcast 
Blackboard 

1 
1 

> 1 
> 1 

1 
1 
1 

> 1 

reader = writer 
reader �= writer 

[Defn 23] Personal Message. Personal messages are 
fully encapsulated internal state – ie, ‘note to self’. 
These can be reasoned about locally. 

[Defn 24] Simple Message. Simple messages are what 
one would expect in a pipe and filter kind of design: 
the data passes through each component once. 

[Defn 25] Broadcast Message. Broadcast messages have 
many readers and one writer. Immutable objects will 
likely be classified as broadcast messages. 

[Defn 26] Blackboard Message. Blackboard messages 
indicate shared data without any known constraints. 
The programmer should be made aware of these and 
they should be well documented. 

3	 Dynamic Detection of Likely Object Control In­

variants 

It is possible to produce object control graphs from a static 
analysis or a dynamic analysis. In this paper we present a 
dynamic analysis along the lines of Ernst [18]: 

1.	 Capture trace data during program execution. 

2.	 Compute properties for individual objects. 

3.	 Compute properties for sets of objects by looking for 
the strongest property that holds for every object in 
the set. 

We record the read and write control chains observed during 
execution, as well as the values written into and read out of 
fields. We use the latter points­to information for identifying 
the set of objects stored in each field. 

We implemented our instrumenter with AspectJ. In com­
prises two aspects: one that actually instruments the code, 
and one that controls the initialization, threading, and I/O 
behaviour of the instrumenter. 

The latter two steps are implemented with the Crocopat 
relational calculator by Beyer et al. [8]. As discussed in the 
scalability section below, these scripts are surprisingly not 
scaling to real world examples, and we are re­implementing 
them in other languages, which take longer to code but are 
faster to execute. 

Our tool reports results back to the programmer as Eclipse 
bookmarks. 
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4 Toy Examples 

We discuss the results of running our analysis on four toy 
example programs. The observer design pattern example is 
from our previous work [31]. The two ArchJava examples 
are from the current ArchJava distribution. 

For the ArchJava examples we analyzed the Java files pro­
duced by the ArchJava compiler, and we also manually 
translated the ArchJava code into equivalent Java code. The 
manually translated code has fewer mechanical artefacts in 
it, as one would expect. 

The graphs in this section were mechanically produced by 
our tool. For some of them we renamed the nodes or re­
moved the distinguished unnamed root node our analysis 
produces. In the case of cycles we have also manually given 
dot some hints on the layout. 

4.1 Linked List 

Figure 8 presents a simple program that adds two strings 
from a list, iterates over the list, prints the strings, and 
removes them from the list. 

Figure 3 lists the write control chains collected from the 
execution of this program. Figure 1 shows the write control 
graph formed by merging the chains from Figure 3. Note 
that there is no Main object in the graph because one is 
never constructed by the program. There is a Thread object 
t that is in control and invokes the main method. 

fooLink barLink

t

list it

Figure 1 Write control graph for linked list example 

For this example our analysis infers that: 

•	 all of the objects are owned by the Thread t; 
•	 the two Link objects are controlled linearly (ie, control 

passes from the list to the iterator) 

4.2 Observer Design Pattern 

Figure 2 shows the write control graph for the observer ex­
ample in our previous paper [31]. In this program a subject 
holds a date that it notifies an observer about changes to. 
Our previous (static) analysis [31] reported that the sub­
ject’s representation (a Date) was exposed to the observer. 
Our current analysis reports that the date is controlled lin­
early. The difference is that our previous analysis considered 
the allocator to be the owner, and so reported mutations by 
non­owners. Our current analysis does not use allocation 
as a special ownership criteria (allocation is a form of muta­
tion); rather, it reports that the date is owned by the thread 
object. 
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Thread

ConcreteSubject

ConcreteObserver

Date

Figure 2 Observer design pattern write control graph 

Figure 3 Write control chains from linked list example 

Time Source Code Control Chain 

1 
instantiating the list 
head = null; t list 

2 
3 

adding ‘foo’ to the list 
data = d; 
next = n; 

t 
t 

→ 

→ list → fooLink 
list fooLink 

4 
5 

adding ‘bar’ to the list 
data = d; 
next = n; 

t 
t 

→ 

→ 

→ 

list → barLink 
list barLink 

6 
7 

creating the iterator 
list = l; 
current = l.head; 

t 
t 

→ 

→ 
→ 

→ 

list → it 
list it→ 

8 

9 
10 

getting the first element 
current = current.next; 
removing the first element 
... 
... 

t 

t 
t 

→ 

→ 

it 

it → fooLink 
it list 

11 

12 
13 

getting the second element 
current = current.next; 
removing the second element 
... 
... 

t 

t 
t 

→ 

→ 

→ 
→ 

→ 

it 

it → barLink 
it list→ 

4.3 ArchJava Pipeline (Pipeline.archj) 

Pipeline.archj is a simple pipe­and­filter style program: 
data is constructed by a source, read an modified by a filter, 
and finally sent to a sink. Pipeline.archj is annotated to 
statically guarantee this behaviour. Our analysis discovers 
this behaviour dynamically: ie, that the data is controlled 
linearly, and owned by the pipline. 

Figure 4 shows the write control graph for the Java source 
code produced by the ArchJava compiler. Figure 5 shows 
the write control graph for the Java source code produced by 
manually translating Pipline.archj into Java. Our analy­
sis infers the same results for each variant. 

4.4 ArchJava Repository (Repository.archj) 

Repository.archj has a DataStore that is ‘shared’ by two Mod­
ules. Our analysis discovered that the objects stored into 
DataStore.data are owned by the first module. This initially 
surprised us, and caused us to read the source code more 
carefully. We had expected that the RepData objects owned 
by each Module object would be stored in that field. 

Figure 6 shows the write control graph for the Java source 
code produced by the ArchJava compiler. Figure 7 shows 
the write control graph for the Java source code produced 
by manually translating Repository.archj into Java. 



Figure 7 Write control graph for manually generated 

Pipeline.java generated 

javalangThread

stylesPipeline

stylesFilter

archjavaruntimeParent

stylesPipelineCONNECT0

stylesPipelineCONNECT1 stylesSink stylesSource

stylesData

Repository.java

Module DataStore

RepData

Module

RepData

Repository

Thread

Figure 4 Write control graph for 
by the ArchJava compiler. 

Figure 8 LinkedList example source code 
public class Main { 

public static void main(String[] args) { 
List l = new LinkedList();

l.add("foo");

l.add("bar"):

for (Iterator i = l.iterator(); i.hasNext(); ) {


Object x = i.next(); 
i.remove(); 
System.out.println(x); 

Figure 

Thread

Pipeline

Filter Source Sink

Data

5 Write control graph for manually generated } 

Pipeline.java } 
} 

public class LinkedList { 
private Link head; 

public LinkedList() { 
head = null; 

} 

public add(Object d) { 
... 
new Link(d); 
... 

} 

public iterator() { 
return new ListIterator(head); 

} 

javalangThread

stylesRepository

stylesDataStore

stylesRepositoryCONNECT0

stylesModule

archjavaruntimeParent

stylesMessage

stylesRepData stylesSpec

ated by the ArchJava compiler. 

private static class Link { 
Figure 6 Write control graph for Repository.java gener­ final Object data; 

Link next; 
Link(Object d, Link n) { 

data = d; 
next = n; 

} 
} 

private static class ListIterator implements Iterator { 
private List list; 
private Link current; 
ListIterator(List l) { 

list = l; 
current = l.head; 

} 
public boolean hasNext() { ... } 
public Object next() { 

Object d = current.data; 
current = current.next; 
return d; 

} 
public void remove() { ... mutate a link ... } 

} 
} 
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5 Scalability: TSafe Case Study 

Once we were happy that the basic analysis was working, we 
tried to run it on TSafe [16]. TSafe is a program that reads 
a feed describing aircraft positions, plots their trajectories, 
and warns of airplanes that are too close to each other. The 
TSafe code comprises 227 classes. Typical inputs to TSafe 
are hundreds of megabytes. We ran TSafe on a small 450kb 
input file and noticed some scalability issues. 

5.1 Reducing Trace Size and Overhead 

Our original instrumenter produced a 550mb trace from the 
450kb sample input. The second column of the table in 
Figure 9 characterizes this trace. From these figures we see 
that reads are approximately three times more frequent than 
writes, and that the largest parts of the trace are the chains. 

Figure 9 Characterizing the trace. Size of relations mea­
sured in tuples. 

Relation Original Size New Size Change 
Root 1 1 — 
Thread 6 6 — 
New 137,751 129,758 — 
Constructor 155,344 149,404 — 
Write 273,812 259,471 — 
Read 805,179 717,174 — 
WriteChain 1,401,755 443,404 31.63% 
ReadChain 4,903,825 1,552,408 31.65% 
Trace (bytes) 554,019,011 252,282,913 31.66% 

5.2 Object Control Dominators 

Even with the reduced trace size and refactored analysis 
code, our Crocopat [8] script still could not compute dom­
inators for the captured object control graph from TSafe. 
Our script implemented a conventional worklist algorithm 
for computing dominators. 

Figure 10 characterizes the steps of the dominator algorithm 
before it runs out of memory. It took two hours of com­
putation on a 2GHz G5, with 1gb of memory allocated to 
the process, to produce this table. It shouldn’t be that 
computationally demanding to compute a dominators for 
a graph of only 80,000 nodes (Figure 11), so we decided to 
re­implement the dominator computation in Java. 

We think that the reason the Crocopat script is so inefficient 
at computing dominators is that each iteration requires two 
existential quantifiers, which are > O(n 2) [7]. The existen­
tial quantifiers are used to compute the intersection of the 
dominator sets for the predecessors of a node. 

Figure 10 Computing object control dominators for TSafe 

Size of 
Size of Iteration Dominator
Worklist 

Relation 
1 1 0 
2 5 1 
3 8 11 
4 72,269 31 
5 12,206 289,046 
6 75,491 324,647 

Caching a hash of the last chain. It dawned on us that it’s 
very common for a method to read or write multiple fields of 
an object. Each of these consecutive reads or writes would 
produce essentially the same control chain, just at a differ­
ent time. Our analysis is only concerned with the temporal 
interleavings of control chains, not with the times they actu­
ally occur at. So we lose no information by dropping control 
chains that are identical to the last control chain recorded. 

We now only record a chain in the trace if it differs from 
the last chain recorded for the target object. To accomplish 
this, we cache an integer hash of the last chain recorded for 
each object. Since we need to keep this information for every 
object created by the analysand, using the standard Java map 
implementations would be too much overhead. The GNU 
Trove library provides an int to int hash map that uses open 
addressing for collision resolution. 

The third column of the table in Figure 9 shows the size 
of the trace collected with the new cache. The size of the 
chains, and the trace, is one third the size of the original. 

Instrumentation overhead. Our original instrumenter 
slowed TSafe down from about 1 minute to around 20 min­
utes. With the cache and improved I/O code, we trimmed 
this time to about 3 minutes. 

Since TSafe is an interactive program it is not possible to 
take precise timing measurements. 

We found Figure 10 very surprising, and it caused us to 
investigate the topology of the graph (Figure 11). 

Figure 11 characterizes the topology of the object control 
graph for TSafe running the 450kb sample input. There is 
one node, the TSafe ConfigConsole, with a fan­out of almost 
70,000. 98% of the nodes are leaf nodes (have no successors; 
fan­out is zero). 

Figure 11 Topology characteristics of object control graph 
for 450kb TSafe example. 81,809 edges. 80,259 nodes. 

Fan­In Count Fan­Out Count 
1 78,734 0 78,777 
2 1,508 1 893 
3 12 1 < f ≤ 10 569 
4 3 10 < f ≤ 100 15 
5 1 100 < f < 69, 270 4 
6 1 69,270 1 

Figure 11 informed the design decisions for our Java re­
implementation of the dominator computation. The vast 
majority of nodes have a single predecessor and no succes­
sors. We name these tree­leaf nodes. Similarly, we refer 
to nodes with a single predecessor as tree­nodes. The set of 
tree­leaf nodes is a subset of the tree­nodes. We name nodes 
with multiple predecessors join­nodes. 

Tree­nodes require only a single pointer to represent their 
predecessor relation — there is no need to allocate a dynamic 
data structure. Also, tree­nodes do not need to explicitly 
represent their dominator sets: it is simply the dominator 
set of the predecessor plus self. The immediate dominator of 
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a tree­node is simply the predecessor. Figure 10 shows that 
the explicit representation of the global dominator relation 
can grow quite large; implicitly representing this information 
for 98% of the nodes should save a substantial amount of 
space. 

Computing dominators is a well studied problem. Cooper 
et al. [15] provide a recent survey, and argue that a care­
full implementation of an iterative algorithm can be prac­
tically competitive with more sophisticated algorithms that 
have lower asymptotic bounds (eg, Lengauer­Tarjan). Geor­
giadis et al. [20] provide a more recent study that shows the 
Lengauer­Tarjan is competitive with the Cooper et al. [15] 
algorithm for common control­flow graphs. 

Cooper et al. [15] note the following problems with näıve 
implementations of the iterative algorithm: 

•	 Bit vectors are space efficient but are too slow to com­
pute intersections. (Computing the intersections is es­
sentially where Crocopat is failing.) 

•	 Sparse sets compute intersections quickly, but take up 
too much space. 

They note that using properly ordered lists to represent the 
dominator sets enables efficient intersection: the intersec­
tion of two lists is their common prefix. This ordering of 
the dominator sets also allows trivial computation of the 
immediate dominator: it’s the penultimate element in the 
list. 

However, the näıve representation of a list, like sparse sets, 
takes too much space. They note that these lists form a tree 
(the dominator tree), and this tree exploits the redundancy 
in the lists. 

We think we can get adequate space savings by simply not 
explicitly representing the dominator set for the tree­nodes, 
which are about 98% of the nodes. Our conjecture is that 
explicitly storing lists of dominators for the remaining 2% of 
the nodes (the join­nodes) will not consume an overwhelm­
ing amount of space. It is easier to simply keep a list for each 
of these join­nodes than to construct the tree that Cooper 
et al. [15] suggest to exploit the common structure of the 
lists. 

With both the Cooper et al. [15] tree representation and our 
implicit representation for tree­leaf nodes, it is much easier 
to iterate dominator sets from the node backwards to the 
root, rather than forwards from the root to the node. This 
means that the intersection computation iterates backwards 
over the two lists being intersected and stops when they are 
the same. As Cooper et al. [15] describe, this requires a 
‘two­finger’ approach, and knowing the preorder number of 
the nodes (or, in our case, the shortest depth from the root). 

The Cooper et al. [15] iterative algorithm initializes the dom­
inator set of each node to be the entire graph, and then starts 
from the leaves and works backwards, computing intersec­
tions that reduce the size of the sets. This only makes sense 
when using the tree to exploit sharing. Since we are not us­
ing this data structure, we start with empty sets and work 
forwards from the root (as the idea of dominators is often 
described pedagogically). 

Cooper et al. [15] compare their algorithm empirically 
against the almost linear time Lengauer­Tarjan algorithm, 
and find that their iterative algorithm performs 2.5 times 
better for realistic control flow graphs (this figure has been 

disputed by Georgiadis et al. [20], who claim the approaches 
are equal). They also construct ‘unrealistically large graphs’ 
of around 30,000 nodes, and note that the iterative algo­
rithm is still competitive at this size. They suspect that 
the asymptotic lower bound of the Lengauer­Tarjan algo­
rithm will start to come into play for larger graphs. While 
our graphs are larger, if we subtract the 98% of nodes that 
are tree­nodes, we are left with a tractable graph of a few 
thousand nodes. 

It is possible that this TSafe object control graph is not 
topologically representative of the object control graphs that 
will be generated from other programs. However, we suspect 
that having many leaf objects with single predecessors will 
be common. 

Our Java re­implementation computes dominators and im­
mediate dominators for this TSafe object control graph in 
under 7 seconds. 

5.3 Object Control Properties 

Computing the control property (eg, unique, linear, shared) 
of each object with our Crocopat implementation was also 
not scaling to TSafe. We now believe this is because the 
computation of non­linear parents requires three existential 
quantifiers (there exists a time2 between time1 and time3). 
As discussed above, existential quantifiers cost > O(n 2) in 
Crocopat. 

We have augmented our dominator computation to also 
compute the control property of each object as it constructs 
the graph. Construction follows the trace: edges that occur 
earlier in the trace are added sooner. We store the predeces­
sors of each node in the order that they are added. When a 
new predecessor is added, we check if it is already in the list 
of predecessors for that node. If it is already in the list, and 
not the last element of that list, then we know the node is 
shared. Tree­nodes (ie, only one predecessor) have a unique 
controller. Join­nodes (ie, multiple predecessors) are con­
trolled linearly if we do not detect while constructing the 
graph that they are shared. 

5.4 Messages 

The Crocopat script that computes the message properties 
of each object completed the 450kb TSafe example in 57 
minutes. This is a simple analysis that basically just counts 
the number of readers and writers for each object: it should 
take no more than linear time, and could be implemented 
with gawk. 

Again, we think it is the (necessary) use of existential quan­
tifiers in the Crocopat formulation that is causing the prob­
lems. 

5.5 Groups 

The Crocopat script that generalizes properties of objects to 
properties of groups of objects cannot complete the 450kb 
TSafe example. The BDD package runs out of memory. This 
script contains snippets such as the following, that identifies 
all fields that refer to only shared objects: 
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FieldGroupShared(c) := EX(o, FieldGroup(c,o) & Shared(o)) &

!EX(o, FieldGroup(c,o) & !Shared(o));

PRINT ["FieldGroupShared"] FieldGroupShared(c) TO "out.rsf";


This should be a fairly fast and easy computation, but ex­
pressing it in Crocopat requires these existential quantifiers. 
We will re­implement this computation as well. 

6 Related Work 

The problem of non­local mutation of shared data making 
programs difficult to understand and reason about has been 
addressed in many ways. At one extreme, ‘pure’ functional 
programmers disallow it entirely. Most people most of the 
time find that shared mutable data is useful, and much 
research has gone into finding ways to control and reason 
about it. In the words of Noble et al. [30]: 

Any attempt to address the aliasing problem for 
practical object­oriented programming must be 
evaluated as an engineering compromise: how 
much safety does it provide, at what cost, and, 
most importantly, how usable are the mechanisms 
by typical programmers doing general purpose 
programming. The crucial question is how nat­
ural (or how contrived) a programming style is 
required by the proposed aliasing mode checking. 

The most common approach is to develop a type sys­
tem where the programmer provides annotations that are 
checked in a modular fashion. These type systems are gener­
ally designed around either a notion of encapsulation, often 
called ‘ownership’, or around alias control. 

All of these static systems emphasize safety and strive for 
usability. By contrast, our dynamic system emphasizes us­
ability (we place no extra restrictions on the programmer), 
and stives for safety. Which produces higher quality software 
is an empirical question that has as of yet to be answered. 

6.1 Static Specification and Verification 

Uniqueness. A unique object may have at most one in­
coming reference at a time [11, 22, 23]. Uniqueness type 
systems achieve encapsulation by ensuring that the whole 
is the only object with a reference to its part. Thus, the 
object that references a unique type fully encalsulates that 
type. By preventing data sharing, one can reason modu­
larly about unique types. However, unique types make data 
communication much more difficult. 

Alias transfer occurs via destructive reads, in which a ref­
erence becomes null at the same time it is read [22]. In 
addition to requiring modified assignment statements, these 
systems require a programming style that trades aliases back 
and forth. Invoking a purely functional method on a unique 
variable requires returning that parameter alias in addition 
to the normal return value of the method. Furthermore, it 
is unclear how programmers should handle unique objects 
that have fields that sometimes may be null. In this case, 
reducing complexity with a uniqueness invariant increases 
the complexity of the representation invariant, even though 
uniqueness can identify an object’s representation. 

The problem with most approaches to unique types is that 
they are too restrictive. More advanced research has tried 
to make these systems less restrictive while still retaining 
some control. 

[22, 26] weaken the uniqueness invariant to permit short­
term borrowing, or dynamic aliases (ie, local variables), that 
are never assigned to fields. Dynamic aliases make it more 
difficult to reason about sharing. Weakening an impractical 
invariant is less desirable than finding the right invariant. 

Instead of mandatory destructive reads, alias burying per­
mits non­destructive reads in cases where destruction is “un­
necessary” [11]. A conservative use of unnecessary means 
that a unique reference may be read if the original reference 
is never used after the read. If the behavior is the same 
as doing a destructive read, then there is no need to ac­
tually do one. Alias burying can therefore capture control 
transfer (factories and listeners), but not borrowing (itera­
tors, containers, intentionally shared data). The necessarily 
conservative type system results rely on an expensive static 
analysis. 

One way in which our work differs from much of the work 
just described is that we focus on the objects that are in 
control rather than on the aliasing in the program. We 
are not concerned with who has a reference or how they 
got it, only with what happens in the program execution 
on account of them having it. So, for example, we do not 
distinguish between aliases attained through local variables 
or through fields – which is an important distinction for 
much of the above work. 

Ownership. Ownership type systems explicitly encapsulate 
owned objects. In the most conservative approach, owner 
as dominator, an object may only be referenced through its 
owner [14]. The owner is said to dominate because all paths 
in the heap go through the owner. Only the owned objects 
are encapsulated; the owner may be aliased by any object. 
Because no object necessarily has one alias, control transfer 
is non­local; thus, an object’s owner is typically invariant 
across execution. 

External uniqueness relaxes uniqueness such that internal 
objects may alias the unique type [13], much like how owned 
objects may alias their parents. To determine the unique 
object’s internal state, external uniqueness uses an owner as 
dominator type system. 

Dominator ownership systems prevent useful program id­
ioms, some of which use readonly aliasing, eg, iterators, fac­
tories, containers, observers. Modifier as owner type sys­
tems enforce that only mutating paths in the heap must go 
through the owner, which permits modular verification and 
more implementations than owner as dominator. [17, 28, 29] 
have a static notion of owner as mutator using the Uni­
verses type system and JML. However, modifier as owner as 
a program invariant prevents intentional sharing, eg, itera­
tors that remove elements. 

Read­only annotations. Read­only annotations on pointer 
variables provide some control over where data is mutated 
from. This idea exists in some form in C/C++ in the const 
keyword. Recent proposals have described adding this func­
tionality to Java [9, 33]. The primary difference between this 
approach and approaches based on uniqueness and owner­
ship is that reference immutability is not centred on a notion 
of encapsulation. While reference immutability helps the 
programmer manage mutable data, it does not help with 
modular reasoning. 

8 



6.2 Inference 

There has been relatively little work on ownership inference, 
compared with the work on static specification and verifica­
tion. 

Static. The most elaborate static inference system is that 
of Heine and Lam [21]. They define owner as allocator/de­
allocator, and consider that the variables that allocate and 
de­allocate an object own it. They do a static analysis that 
attempts to push the ownership bit through all the assign­
ment statements between the allocator and the de­allocator. 
If their system can connect the dots, it proves that the object 
is disposed of exactly once. They use their system to detect 
potential memory leaks, and do not communicate the own­
ership information to the programmer, nor do they attempt 
to address the matter of encapsulation. 

Boyapati [10] has an intra­procedural inference system to 
accompany his type system. 

Aldrich et al. [3] has an inference system that the author’s 
web­page seems to claim is not quite as satisfactory as one 
may be led to believe from reading the paper. 

Dynamic. Wren [34] provides a theoretical foundation for 
inferring Clarke/Noble [14] ownership types by finding in­
variant dominators in runtime samples and then relaxing 
owners to contruct consistent ownership type annotations. 
This is a theoretical framework that was never implemented. 

Wren [34] is similar to our work in that it describes an anal­
ysis that looks for dominators in graphs that are captured 
dynamically. The difference is in the graphs: Wren [34] 
proposes to capture entire heap graphs, wheres we capture 
mutation chains. Mutation chains have the practical ad­
vantage of being much smaller than heap graphs, and we 
argue that object control invariants get more at the core of 
encapsulation than ownership does. 

7	 Discussion 

7.1 Scalability 

Crocopat. Much to our surprise, in this project Crocopat 
proved to be very slow and memory intensive. This was 
not our experience in previous work [31]. Crocopat is based 
on BDDs so that it can scale [8]. In this work, all of the 
analyses that we originally implemented in Crocopat and 
then re­implemented in another (imperative) language were 
much faster in the imperative incarnations. We think this 
is because of the cost of existential quantifiers in Crocopat, 
and their necessity for the properties we are computing. 

Dominators. We have implemented an iterative graph 
dominator algorithm customized for the kinds of graphs that 
we expect to be analyzing. These differ significantly from 
common control flow graphs, because they have many tree­
leaf nodes (ie, nodes with one predecessor and no succes­
sors), and because a small minority of nodes have a massive 
number of successors. 

Trace compression. We will need to store traces more effi­
ciently to do real case studies. We are currently generating 
traces that are hundreds of megabytes for TSafe, which is 
not that large of a program. 

7.2 Evaluation 

Our aspiration is that this technique will help programmers 
understand and reason about sharing in their programs. Ide­
ally this will reduce unnecessary and erroneous sharing, and 
provide better ways to think about the essential sharing. 

7.3 Future Work 

Simple annotations. Our tool generates a large list of 
Eclipse bookmarks, even for toy programs. We currently 
prioritize those bookmarks that reveal sharing. Allowing 
the user to write simple annotations would give us a good 
prioritization mechanism: highlight those bookmarks where 
the program’s behaviour deviated from the programmer’s 
intent. 

Static analysis. We are interested in developing a static 
analysis to compute this same information, possibly using 
the new context­sensitive points­to analysis of Sridharan and 
Bodik [32]. We have a hunch that the static and dynamic 
analyses will compute similar values — unlike, for exam­
ple, in points­to analysis where the static and dynamic ap­
proaches tend to produce very different results [27]. 

Multi­threaded programs. In this paper we have only con­
sidered single­threaded programs. However, our instru­
menter collects information about threads, and we believe 
the instrumenter is thread­safe. So we just need to think 
about what to do with this data about threading that we 
are collecting. 

Program evolution. We think that the evolution of the 
ownership structure of a program may reveal design vio­
lations introduced during maintenance activities. 
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