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Abstract 
Some objectoriented test cases are inefficient: they per
form computation that is unnecessary for producing the fi
nal, tested result. This is especially true of automatically
generated test cases. Reducing the size of a test case can 
improve test runtime and simplify debugging when an error 
is found. Published techniques for detecting inefficient or 
redundant test cases are unsafe: they rely on assumptions 
about ways the tested code will not change. 

However, developers do intentionally or unintentionally 
break these assumptions: they introduce additional data 
dependencies, or make pure methods impure. We present 
a safe test case reduction technique that produces statically 
verifiable guards which encode the assumptions introduced 
during reduction. If these guards are violated, the original 
test case can be run for a safe result. The guarded tests 
should combine complete soundness with a faster expected 
runtime and reduced debugging effort. 

1. Introduction 
For objectoriented systems, the input for a test is a se

ries of method calls, including arguments, against a set of 
objects, and the oracle is a set of assertions about the ob
jects’ behavior in response. For a given implementation of 
a system, such a test may be inefficient – it may call meth
ods that have no effect on the objects’ tested behavior. The 
same behavior could be tested by a reduced test, which is
sues only a subset of the method calls of the inefficient test. 
For example, one simple reduction technique would be to 
remove all calls to pure methods from a test; by definition, 
they have no effect on the tested outcome. 

There are many benefits to running the reduced test in
stead of the inefficient test. The reduced test may be signifi
cantly faster. It may be easier to determine that the reduced 
test is redundant with a test already in the test suite, ob
viating the need to run the reduced test at all [12]. If the 
reduced test fails, it may be easier for a developer to un
derstand the failure if unimportant method calls have been 
removed. 

However, given any test and a reduction of that test, it is 
always possible to find an implementation of the tested sys
tem on which the two tests produce different results. Thus, 
any reduction of a test implicitly assumes certain ways in 
which the tested system will not change. If all pure method 
calls are removed, this assumes that no pure method will 
ever be changed, intentionally or not, to be impure. Thus, 
the reduced test is unsafe; certain faults that would have 
been caught by the inefficient test will not be caught by the 

reduced test. 
We wish, then, to minimize the time required to safely 

guarantee that a new version of a program still passes a 
given test. We propose to do so by producing both a reduced 
version of the original test, and a set of static guards that 
are sufficient to guarantee that the reduction is safe. We call 
the combination of dynamic test and static guards a guarded 
test. A traditional test case can be seen as a guarded test 
but with no guards. Using guarded reduced tests should 
significantly reduce test case complexity and test running 
time and improve developer understanding with no loss in 
faultfinding capability. 

The paper continues with a motivating example in the fol
lowing section, followed by a discussion of where inefficient 
tests come from (Section 3). We then detail our technique 
(Section 4), and give preliminary results (Section 5) and an 
evaluation plan (Section 6). Finally, we present future work 
(Section 7) and conclude (Section 8). 

2. Example 
For our initial study, we make several simplifying assump

tions about tests throughout: 

1. Tests can be represented as a singlemethod straight
line sequence of statements, without loops, branches, 
or meaningful exceptional control flow (except assert
ing that an exception was thrown or not thrown). This 
is true of all automated test generation techniques we 
know of, and is often true of humangenerated tests 
(eg. JUnit tests [3]) 

2. There is no aliasing between variables within the test. 

3. There is only	 one method call per statement in the 
generated test scenario. This can be achieved by intro
ducing fresh temporary variables for any intermediate 
results. 

4. The last operation in	 each test is the assertion of a 
single equality comparison between an expected value 
supplied by the test, and a value provided by the ob
ject under test. This is not always the case, but our 
techniques are easily generalized to multiple or more 
complex assertions. 

As an example of guarded test minimization, consider a 
simple point class: 

class Point { 
private int _x, _y; 



Point(int x, int y) {_x = x; _y = y;} 

int getX() { return _x; }

int getY() { return _y; }

void setX(int x) { _x = x; }

void setY(int y) { _y = y; }

void translate(int x, int y){

_x += x; _y += y; 
} 
public String toString() { 
return _x + "," + _y; 

} 
} 

Next we have a test case which exercises this class. 

Point p = new Point(3, 5);

p.getX();

p.getY();

p.setX(4);

p.setY(6);

p.setX(0);

p.getY();

p.translate(1, 1);

assertEquals("1,7", p.toString());


If a static analysis uncovers the fact that Point.getX() and 
Point.getY() are pure, then the test case could reduce to the 
following shortened test code plus two guard checks: 

Guard: Point.getX writes nothing.

Guard: Point.getY writes nothing.


Point p = new Point(3, 5);

p.setX(4);

p.setY(6);

p.setX(0);

p.translate(1, 1);

assertEquals("1,7", p.toString());


Now, when the guarded test is run, the first step is to 
evaluate if the guards still hold. If so, this reduced test is 
guaranteed to catch any error caught by the original test. If 
not, the original test must be run to maintain safety. See 
Figure 1. 

Analysis of the behavior of the method Point.setX() re
veals that this method affects (mutates) the state of the 
Point. x attribute. Since the terminal statement of the test 
case relies on the value of this attribute, one might assume 
that all places where this method is invoked must remain. 
However, note that in the reduced form above there are two 
locations where Point.setX() is called, but with no interven
ing assert check. Thus, the first invocation is superfluous, 
and may be removed: 

Guard: getX writes nothing.

Guard: getY writes nothing.

Guard: setX reads nothing.

Guard: setX writes at least this._x.

Guard: setY reads nothing.


Point p = new Point(3, 5);

p.setY(6);


Original test

Guarded
reduction

guards
hold?

run original test

run reduced test
yes

no

Figure 1: A schematic of the guarded test reduction proce
dure. The original test is augmented with a faster reduced 
test, and a set of guards that determine if the reduced test 
is safe. 

p.setX(0);

p.translate(1, 1);

assertEquals("1,7", p.toString());


The final result is a test case that is smaller and therefore 
likely to take less time to execute. Furthermore, we have 
acquired some facts about the underlying behavior of the 
code under test, which will be used by the testing framework 
to help determine if and when future code changes invalidate 
the test case reduction that took place. 

3. Sources of Inefficient Test Cases 
Developers may manually create tests that appear ineffi

cient. These may be tests of the purity of some method, or 
they may be actual mistakes. However, it is rare for manu
ally created test to have a significant degree of inefficiency. 
Automaticallygenerated tests are another matter. 

When automatically generating objectoriented regression 
tests, the oracle is formed by recording some subset of the 
behavior of the working system when a method sequence 
is applied. Regressions are found by comparing the behav
ior of a new version of the system against that previously 
recorded. The behavior of a tested object can include both 
return values from method calls and method calls made to 
environmental objects; for simplicity, we focus here on re
turn values. Generation techniques fall into two broad cat
egories, which differ in how input sequences of method calls 
are generated. 

Various test construction techniques, such as Eclat [8], 
JCrasher [5], or the commercial tool Agitator [2], gener
ate method sequences one call at a time, using a search 
algorithm that attempts to produce a suite that maximizes 
coverage of code, or corner cases, or bugs found. In most 
cases, the search algorithm is guided by static features of 
the classes being tested; for example, tests that inefficiently 
call a currentlypure method will simply not be generated. 
An implicit assumption of this guided search is that these 
features are stable. 

A capture/replay technique, such as test factoring [9], 
SCARPE [7], or DejaVu [4], captures each input method 



sequence from an execution of the system, whether manu
ally or automatically driven. Existing capture/replay tech
niques capture every call made to the tested objects during 
an execution, and replay them all. The advantage of this 
completeness is that generated tests are guaranteed to be 
safe – any breaking change in the implementation of any 
method in the tested classes will be detected by these tests. 
However, these tests can be inefficient, consisting of millions 
of method calls, and failures can be difficult to debug. 

It is possible to trade safety for efficiency in capture/replay 
tests by eliminating method calls that can be proven to have 
no effect on the final, tested behavior of the tested compo
nent: statically determined pure methods, or method calls 
that can be dynamically shown not to change the tested 
state. This is the approach taken by Xie, Marinov, and 
Notkin in Rostra [12]. However, the safety tradeoff is un
necessary – it is possible to have both efficiency and safety, 
using the technique presented here, which remembers the 
static guards required for safe reduction, and verifies them 
incrementally and quickly in new versions. 

Our technique focuses on safe reduction of tests generated 
through capture/replay techniques. However, it may be pos
sible to apply similar techniques to tests generated through 
test construction, by remembering the static guards that 
guided the initial test search, and recommending a repeat 
search if these are violated. 

4. Approach 
In order to safely reduce a test case, we need to know 

what method calls are extraneous to the tested result, and 
we must be able to recognize when a reduction no longer ap
plies due to code changes. To satisfy these needs, we propose 
a technique that augments a test case with guards, which are 
statically evaluated prior to running the reduced test case to 
verify that the conditions under which the reduction origi
nally took place still hold. To produce the reduced test and 
the guards, we use a simplified slicing algorithm that makes 
explicit which properties of which methods are necessary to 
justify each statement that is removed. 

We perform a static analysis of the code under test in 
order to obtain the set of data elements (class fields and 
method arguments) that a method reads from and writes to 
when it executes. Collectively, these data sets are known 
as method summaries. The elements of the summary sets 
uniquely name the field or argument used or manipulated 
within the method or within any call chain started from the 
method. Section 4.1 discusses in detail how we generate 
method summaries and manage name conflicts. 

Once we have the method summaries for the code under 
test, we can then proceed to reduce the test case. Our ap
proach is to use a backwards static slicing of the test case 
in order to determine whether a method has the potential 
to influence the outcome of the test case. If the method 
summaries of a method call indicate that it cannot affect 
any of the data elements used by subsequent method calls, 
including the terminating test assertion, then the method is 
removed from the test case. Section 4.2 describes the slicing 
and reduction steps in detail. 

Regardless whether the method call is kept or not, we 
annotate the test case with a set of static guards gener
ated from the call’s method summary. For removed method 
calls, the guards determine when the removal is potentially 
no longer safe, while guards for kept calls identify potential 

added dependencies on earlier statements. Details of guard 
generation are covered in Section 4.3. 

4.1 Generating Method Summaries 
Method summaries are the result of a static analysis per

formed on the code under test. The analysis determines 
which fields and method arguments the method reads from 
or writes to. This information will be used during the slic
ing of the test case (Section 4.2) and during static guard 
generation (Section 4.3). 

Our approach for generating the summaries is to execute 
a pointsto analysis over the code under test to precisely 
identify the set of objects a method method may encounter 
during its execution. We next execute a intraprocedural 
sideeffect analysis of the method using the pointsto graph, 
and statically evaluate each statement in the method to see 
if it reads from or writes to an object field or method argu
ment. If the statement is a method invocation (callsite), the 
analysis will proceed to analyze the called method, with any 
attributes found within the callchain for the callsite propa
gated back up to the calling method. Finally, the individual 
statement read/write attributes are collected together to be
come the method summary. 

For example, given the Point class show in Section 2, 
the extracted method summaries for the class methods are 
shown in Table 1. 

Table 1: Point Method Summaries 
Key Reads Writes 
Point x, y 
setX x 
getX x 
setY y 
getY y 
move x, y 
xlate x, y x, y 

toString x, y 

The propagation of read/write attributes presents a nam
ing issue. Consider the following class: 

class PointPair { 
private Point _a; 
private Point _b; 
PointPair( Point a, Point b ) { 

_a = a, _b = b;

}

void setX( int x ) {

_a.setX( x ); 
_b.setX( x ); 

} 
} 

Within the method PointPair.setX, there are two invoca
tions of Point.setX applied to two different objects. The 
analysis of Point.setX reveals that it writes to Point. x, 
but when this fact is propagated up to the callsites in 
PointPair.setX, they appear the same. Our solution is to 
transform, if possible, the names of propagated attributes 
with the class and field the attribute actually refers to. For 
the example above, the write attribute Point. x becomes 



Figure 2: Datadependency graph for test case from Section 
2. The root of the graph is toStriing(). 

PointPair. a. x and PointPair. b. x for the respective call
sites, resulting in two distinct write attributes in the method 
summary for PointPair.setX. 

4.2 Test Case Slicing and Reduction 
To identify which statements may be removed from a test 

case, we need to understand which statements are required 
to satisfy the data needs of the test’s final assertion. Intu
itively, one needs to build a datadependency graph starting 
with the method call in the assertion statement of the test 
case, where the graph nodes are the method calls in the test 
case, and the presence of a directed edge between two nodes 
indicates that a child writes to one or more fields used by 
the parent it is connected to. Once the graph is complete, 
any nodes that do not have a path from the root (the asser
tion statement) by definition have no effect on the behavior 
of the method in the assertion statement, and thus no affect 
on the assertion itself. 

Figure 2 shows a datadependency graph for the exam
ple test case in Section 2. Note that the topdown graph 
flow is opposite of the topdown linear flow of the test case. 
There is no directed path from the root of the graph to the 
routines Point.getX() and Point.getY(), indicating no data
dependencies between them. 

Because we have restricted our approach to linear test 
cases, we can do the datadependency analysis and method 
culling in one iteration over the test case, starting at the 
final assertion and working backwards. We manage a set of 
active reads (A) that reflect the unconnected or unsatisfied 
data elements forward of the current analysis point. If the 
method summary of the method call at the current analysis 
point does not match any of the elements in A, then the 
method will not have any affect on the behavior of succeed
ing methods, and it may be removed from the test case. In 
short, we perform a backwards static slice of the test case, 
and our abstract state is the contents of A. 

A brief outline of the steps involved in our test case slicing 
and reduction is as follows: 

1. Obtain the method summary of the current method. 

2. Determine whether the method satisfies any data de
pendencies 

3. Update propagated data dependency set A 

4. Install any guards for the method 

5. Move to previous method call, or stop when done 

Again, the method summaries tell us whether a method 
may read (R), may write (M), or must write (W) zero or 
more fields. For the slicing algorithm, we are interested in 
the contents of R and W, and whether the set M is empty. 

We start the slicing with the A set containing the may 
read R values from the method call in the assertion state
ment: 

A0 := Rn (1) 

where n is the number of method calls executed within 
the test case. For each preceding method call Cn−i | i ∈ 
{1,...,n}, we calculate the intersection of the method’s W 
attribute set and the A set: 

Ai−1 ∩ (Wn−i ∪ Mn−i) (2) 

To determine whether a W attriibute satisfies an entry 
in A, we iterate over the values of A, looking for an exact 
match in W, or an element in W that is an effective match: 
the effect of the write is the same as if the attribute had 
completely matched the read attribute in A. For instance, 
in the PointPair example of Section 4.1, a W attribute of 
PointPair. a would satisfy the attribute PointPair. a. x. 

If the resulting intersection set is empty and the method 
has an empty M set, then we may safely remove the method 
call from the test case. Otherwise, we keep the method call, 
and update the A set by first removing from it the result of 
the intersection calculated above, followed by a union of A 
with the method’s R set: 

Ai := Rn−i ∪ (Ai−1 − (Ai−1 ∩ Wn−i)) (3) 

In other words, we remove all fields guaranteed to be sat
isfied by the method call and add in any fields the method 
itself may be dependent on. Note that the contents of M 
has no affect on A; it only inhibits a method from being 
removed when it is not empty. 

If at any time the A set becomes empty, we stop the slic
ing, since there is no possibility that any preceding method 
calls would affect the test case assertion. This constraint 
should be satisfied even if we work through the entire test 
case (i = n), since the test case begins by creating the ob
ject under test, and the constructor for the test object would 
have initialized the field, even if only to a default value. 

4.3 Guard Generation 
As our algorithm visits each method call in the test case, 

we annotate the call with one or more guards. The set of 
guards for the test case is the union of the guards for each 
of the method calls in the unreduced test case. Prior to 
executing the test case, the test case’s guards are evaluated 
to see if the property they represent still holds. If all guards 
pass, then the reduced test case is executed; otherwise, the 
original, unreduced, test case runs. In short, guards protect 
the test case from future code changes, signaling the fact 
that the conditions under which a test case was previously 
reduced no longer apply. 



We have identified the following set of guards in our ap
proach: 

1.	 reads at most  the contents of the R set from the 
method summary 

2.	 writes at least  the contents of the W set from the 
method summary 

3. writes at most  the contents of the M + W sets 

The first guard states that the method does not rely on 
any more data than found in the R set. If a code change 
were to result in an R� ⊂ R, then the reduced test case is still 
safe and should be run. The next time the test is reduced, 
it may now prove possible to reduce it even further. 

The second and third guards state the minimum and max
imum set of fields that the method may change. The mini
mum set contains the fields that the method always writes 
to when it is invoked, whereas the latter is the set of fields 
that the method may write to. If either or both of these 
bounds change, then the dependency graph generated for 
test case is no longer valid and the original test case is run. 

Intuitively, the relative sizes of the Mi and Wi sets for 
method call Ci may provide a measure of how likely the 
call would be removed. The more elements there are in Mi , 
the greater the likelihood that one of the elements will be 
a member of the propagated A set, in which case the call 
must remain in the test case since the M set only indicates 
potential writes, and not the guaranteed writes of W. Fur
thermore, for each method Ci kept in a test case, one could 
reasonably expect A to grow as it is joined with the call’s 
Ri set, thus increasing the potential to keep methods Cj |
j ∈ {0,...,i}. 

5. Preliminary Results 
We have created a simple test bed to exercise the indi

vidual components of our approach. The test scenario uses 
class Point: 

public class Point { 
private int _x; 
private int _y; 

public Point( int x, int y ) { 
_x = x; _y = y;


}

public int getX() {


return _x;

}

public int getY() {


return _y;

}

public void moveBy( int x, int y ) {


_x += x; 
_y += y; 

} 
public void moveHorizontally( int x ) { 

_x += x;

}

public void moveVertically( int y ) {


_y += y;

}

public String toString() {


return "(" + _x + "," + _y + ")"; 
} 

} 

There exist two handcrafted driver programs, one for 
each of the above classes. These driver programs exist to 
simulate the running of a test scenario, but outside of a 
testing infrastructure. First, the driver for testing the Point 
class: 

public class TestPoint { 
static public void


assertEqual( boolean condition ) {

System.out.println(


"test case returned " + condition ); 
} 
public static void main(String[] args) { 

Point p = 
new Point( 10, 20 ); 

p.moveBy( 4, 4 ); 
p.getX(); 
p.getY(); 
p.moveBy( 3, 8 ); 
p.getX(); 
p.getY(); 
p.setX( 5 ); 
p.getY(); 
p.getX(); 
p.setY( 10 ); 
p.moveHorizontally( 1 ); 
p.moveVertically( 2 ); 
p.getX(); 
p.getY(); 
System.out.println( p.toString() ); 
assertEqual( 

p.toString().equals( "(6,12)" ) ); 
} 

} 

The test case simply exercises the Point API, with a final 
assertEqual to check that the previous calls produced the 
expected final state of the Point object. 

When processing is done, the following attributes are re
vealed: 

Point: int getY() 
<Read Point:_y> 

Point: void setX(int) 
<Write Point:_x> 

Point: int getX() 
<Read Point:_x> 

java.lang.String: boolean equals(java.lang.Object) 
<Read java.lang.String:offset> 
<Read java.lang.String:value> 
<Read java.lang.String:count> 

Point: void setY(int) 
<Write Point:_y> 

Point: void moveHorizontally(int) 
<Read Point:_x> 
<Write Point:_x> 

Point: void moveBy(int,int) 
<Write Point:_y> 
<Read Point:_y> 
<Read Point:_x> 



<Write Point:_x> 
Point: void moveVertically(int) 

<Write Point:_y> 
<Read Point:_y> 

5.1 Performance 
Rather discouragingly, our implementation of summariza

tion takes 2.25 minutes to run on an Apple PowerBook 
1.5GHz with 1GB of RAM (the Java VM is limited to a 
maximum 400MB heap with the Xmx400m option). En
abling verbose logging reveals that a majority of the time 
is spent generating Soot Jimple representations for the Java 
runtime and support classes. Using a combination of Soot 
options, we were able to obtain a set of Jimple files for all 
of the runtime classes reached by the call graph rooted by 
our TestPoint class. We then tried to have Soot use these 
files instead of dynamic Jimple generation, we encountered 
errors in the Jimple processing. Apparently, there are dis
crepancies (bugs) between what Soot writes out in its Jimple 
representation and what it reads in. 

We also submitted the TestPoint class to a Purity Analysis 
Kit [10]. Interestingly, we obtained similar timing results. 

We have briefly investigated generating the call graph it
eratively. Previous work by Souter, Pollock [11] showed 
promising results using enhancements to the Flex Compiler 
Infrastructure [6]. Their call graph generation algorithm is 
based on the Cartisian Product Algorithm of Agesen [1], 
with modifications to support reanalysis of only the code 
that changed. 

6. Evaluation 
Our evaluation is based on monitoring actual developer 

activity without the benefit of automatically generated and 
reduced tests, and then simulating the impact of introducing 
test reduction into the development process. This allows us 
to get an idea of the benefits of our approach before a full
fledged tool has been built. We can also simulate scenarios 
that real developers would not stand for, such as using an 
inefficient test generation technique without reduction. 

We have monitored a single developer performing devel
opment and maintenance on fdanalysis, a Java program of 
about 9000 lines of code. fdanalysis is a package for an
alyzing data collected during development and debugging 
sessions. It performs mainly text processing and time calcu
lation. We have captured 1600 snapshots of the state of the 
program during development, which include the introduc
tion and fixing of 12 regression errors. Most of the running 
time of the existing test suite operates on the highlevel API 
of the package, sending in text files and making assertions 
on text output. 

In our simulated scenario, the developer would like to gen
erate unit tests for the edited component of the program by 
using a capture/replay test generation technique, test fac
toring [9], on the current suite of system tests, most of which 
operate on the highlevel API of the package, sending in text 
files and making assertions on text output. However, the 
unit tests generated by test factoring are inefficient, and not 
a significant improvement on the current tests. We would 
like to evaluate whether our safe test reduction technique, 
in combination with test factoring, would produce a safe, 
efficient unit regression test suite. 

In our simulated scenario, test factoring is run each night 
overnight to produce inefficient unit tests, which are then 

reduced by safe test reduction into guarded reduced tests. 
For each snapshot that we have of development during the 
next day, we can compare running the guarded reduced tests 
with the unreduced generated tests, and the original system 
tests. Our hypotheses are: 

•	 The guarded reduced tests are an order of magnitude 
smaller (in number of method calls against the tested 
component) and faster than either the unreduced gen
erated tests. 

•	 In about 1% of the captured snapshots, a static guard 
is violated. When a static guard is violated, the re
duced test is useless, and an unreduced test must be 
run to guarantee the system is correct. If this happens 
very often, the overhead of evaluating the guards will 
eliminate any gains from test reduction. However, if 
it happens very seldom, we may have to conclude that 
the danger of using unguarded reduced tests is not 
very great, which reduces the value of the overhead of 
generating and evaluating guards. 

Unfortunately, in the time allotted for this course, we have 
not been able to produce an implementation of our approach 
that correctly handles all of the generated unit tests, so this 
evaluation remains as future work. 

7. Future Work 
There are several ways that this work can be expanded 

upon. 

1. Our implementation must be made robust enough to 
be evaluated against realworld test cases. 

2. The basic slicing algorithm should be enhanced to work 
correctly in the presence of aliasing. 

3. A usable implementation of our technique requires an 
incremental mechanism for evaluating guards. We be
lieve that this is easily achieved, by caching in memory 
or on disk the call graph required for guard genera
tion, and propogating changes in place. However, our 
current implementation must rerun the entire sum
marization, a time requirement that overwhelms the 
runtime benefits of reduction. 

8. Conclusion 
Automated test generation appears poised to become a 

much more common development tool. It can provide a 
“second opinion” on code, considering cases that the devel
opers’ own assumptions and biases may cause them to over
look. It can also dramatically reduce the effort and improve 
the effectiveness of testing code. 

We have introduced a technique for reducing the aver
age runtime of inefficient test cases, whether automatically 
or manually generated, without making any unsafe assump
tions about the ways in which the tested code may change. 
These properties should be an essential guarantee of future 
test generation techniques. 

References 
[1]	 O. Agesen. The Cartesian Product Algorithm. In


ECOOP’95 Conference Proceedings, 1995.




[2] Agitar software. http://www.agitar.com, 2005. 
[3]	 M. Albrecht. Testing Java with JUnit. 

http://www.ddj.com/documents/s=1679/ddj0302b/, 2003. 
[4]	 J.D. Choi and H. Srinivasan. Deterministic replay of java 

multithreaded applications. In SPDT ’98: Proceedings of 
the SIGMETRICS symposium on Parallel and distributed 
tools, pages 48–59, New York, NY, USA, 1998. ACM Press. 

[5]	 C. Csallner and Y. Smaragdakis. JCrasher: an automatic

robustness tester for Java. Softw. Pract. Exper.,

34(11):1025–1050, 2004.


[6]	 Flex compiler infrastructure.

http://www.flexcompiler.lcs.mit.edu/.


[7]	 A. Orso and B. Kennedy. Selective Capture and Replay of 
Program Executions. In Proceedings of the Third 
International ICSE Workshop on Dynamic Analysis 
(WODA 2005), pages 29–35, St. Louis, MO, USA, may 
2005. 

[8]	 C. Pacheco and M. D. Ernst. Eclat: Automatic generation 
and classification of test inputs. In ECOOP 2005 — 
ObjectOriented Programming, 19th European Conference, 
pages 504–527, Glasgow, Scotland, July 25–29, 2005. 

[9]	 D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst.

Automatic test factoring for Java. In ASE 2005:

Proceedings of the 21st Annual International Conference

on Automated Software Engineering, Long Beach, CA,

USA, November 9–11, 2005.


[10]	 A. Salcianu and M. Rinard. Purity and side effect analysis 
for Java programs. In Proceedings of the 6th International 
Conference on Verification, Model Checking and Abstract 
Interpretation (VMCAI’05), 2005. 

[11]	 A. Souter and L. Pollock. Incremental call graph reanalysis 
for objectoriented software maintenance. In Proceedings 
International Conference on Software Maintenance, pages 
682–691, 2001. 

[12]	 T. Xie, D. Marinov, and D. Notkin. Rostra: A framework 
for detecting redundant objectoriented unit tests. In 
Proceedings of the 19th IEEE International Conference on 
Automated Software Engineering (ASE 04), pages 196–205, 
September 2004. 


	Anonymous: Anonymous


