
Bluespec Model of a Network Linecard

6.884 Laboratory 3
March 4, 2005 - Version 20050304

In the previous lab assignments you were working with a Verilog hardware description. In the
third lab assignment you will use Bluespec System Verilog to design a simple network linecard.
A linecard processes incoming network packets and determines for each input packet the desired
output port. There are usually several linecards in a real router and since each linecard might want
to send packets to the same output port, there must be some arbitration. The linecards arbitrate
for access to the crossbar, and when a linecard wins arbitration it is then able to send the packet
across the crossbar to the desired output port. Figure 1 illustrates how a linecard fits into an
abstract router. The primary objective of this lab is to introduce you to the Bluespec language
syntax and semantics, as well as to give you some broader intuition on how to approach hardware
design in Bluespec. The lab assignment is due via CVS at the start of class on Friday, March 11.

This lab assignment has three parts and each part involves building a different type of linecard.
Although we will work with several linecard implementations, all of the linecards in this lab will
have the same interface. Figure 2 shows the Bluespec linecard interface we will be using. For this
lab, packets contain two fields: a 16 bit address and a 64 bit payload for a total fixed packet length
of 80 bits. In Part A of the lab, you will work through a simple example linecard which uses source
routing. In Part B, you will implement your own linecard which uses a lookup table for routing.
Finally in Part C, you will implement your own lookup table which implements a longest prefix
match algorithm with a circular pipeline.

Figure 3 illustrates the 6.884 ASIC toolflow we will be using for the third lab. You should already be
familiar with the simulation, synthesis, and place+route toolflow from the previous lab assignments.
In this lab we will be writing our model in Bluespec and then using the Bluespec compiler to generate
Verilog source code. Our test infrastructure will be similar in spirit to the assembly toolchain used
in the previous labs. A packet generator uses packet description files to create Verilog memory
dumps of streams of input packets, linecard lookup tables, and reference output packet streams.
We can then uses these tests to evaluate our linecard model. Although this lab assignment will
focus only on simulation, you should still feel free to experiment with pushing your design all the
way through synthesis and place+route. Be aware that Design Compiler can take quite a while to
synthesize the larger lookup tables used in the later part of this assignment.

For this lab you will almost certainly need to consult the Bluespec documentation to clarify some
of the topics which were only touched on briefly in lecture. The following list identifies what
documentation is available in the course locker (/mit/6.884/doc).

• bluespec-user-guide.pdf - General bluespec user guide

• bluespec-style-guide.pdf - Examples, idioms, and patterns

• bluespec-reference-guide.pdf - Detailed language reference

• bluespec-known-issues.pdf - Some known bugs and problems with Bluespec

• bluespec-timing-closure.pdf - Information on how to improve performance

• bluespec-examples - Directory with several examples from Bluespec Inc.

2 6.884 Lab Assignment 3, Spring 2005

Arbitration

Line Card

Line Card

Line Card

Crossbar

interface ILineCard;

method Action putPacket(Packet packet);

method ActionValue#(Packet) getPacket0();
method ActionValue#(Packet) getPacket1();
method ActionValue#(Packet) getPacket2();
method ActionValue#(Packet) getPacket3();

method Action loadLookupTable(
Bit#(12) entryIndex,
Bit#(12) entryData);

endinterface

Figure 1: Abstract router Figure 2: Interface for a linecard

Timing
Area

Timing
Area

Design Compiler VCS

VirSim Test Scripts

Bluespec Compiler

Bspec
Library
Verilog

Bspec
Source

Encounter

Gate
Level
Netlist

Std
Cell
Lib

Design Vision

Layout

Encouter GUI

Func
Sim

Test
Inputs

Packet

Test
Outputs

Verilog
Source

Packet Generator

Descr

Figure 3: 6.884 Toolflow for Lab 3

3 6.884 Lab Assignment 3, Spring 2005

Setup

For the third lab assignment you will be creating several Bluespec models of network linecards.
You will need to create a new project called linecard in your toplevel CVS directory. You can use
the following commands to checkout your toplevel CVS directory, untar the provided harness for
the lab, and add the new project to CVS.

% cvs checkout 2005-spring/<username>
% cd 2005-spring/<username>
% tar -xzvf /mit/6.884/lab-harnesses/linecard-harness.tgz
% find linecard | xargs cvs add

Let’s spend a moment taking a closer look at what is provided in the lab harness. You will notice
that the lab harness is very similar to the one used in the previous lab assignments. As before,
the Makefile.in and configure.pl scripts found in the project’s root directory can be used to
generate Makefiles for different designs.

The tests directory contains tests for each of the three parts, and the config directory contains
makefile fragments and synthesis/place+route scripts. Each part has its own makefile fragment.
If you plan on pushing your design through synthesis and place+route, you must ensure that the
bluespec extra synth srcs variable in your makefile fragments lists any Bluespec primitives and
any Verilog generated by the Bluespec compiler (excluding the file containing the toplevel Bluespec
module).

The src directory contains Bluespec and Verilog source code. You will notice that we have provided
you with quite a bit of code. The following list briefly outlines what is provided; we will go into
more detail about these files when they are required for a given part of the lab.

• ILineCard.bsv - Interface for linecards

• ILookupTable.bsv - Interface for lookup tables used in linecards (used in Parts B & C)

• ILpmCompletionBuf.bsv - Interface for a completion buffer (used in Part C)

• ILpmRam.bsv - Interface for a synchronous RAM (used in Part C)

• PacketTypes.bsv - Types which describe a packet

• LpmTypes.bsv - Types useful for implementing longest prefix match (used in Part C)

• mkLineCardSimple.bsv - Very simple linecard module (used in Part A)

• mkLookupTableScycle.bsv - Lookup table with single-cycle latency (used in Part B)

• mkLookupTableMcycle.bsv - Lookup table with multi-cycle latency (used in Part B)

• mkLpmCompletionBuf.bsv - Implementation of completion buffer (used in Part C)

• mkLpmRam.bsv - Implementation of synchronous RAM (used in Part C)

• LineCardTH nofiles.v - Verilog test harness where packets are explicitly specified

• LineCardTH.v - Verilog test harness where packets are specified in files

You will notice some important file naming conventions which you should follow. Bluespec System
Verilog files use the extension .bsv while standard Verilog files use the extension .v. It is more

4 6.884 Lab Assignment 3, Spring 2005

CamelCaseStyleNaming underscore style namingcommon to use as opposed to when working
in Bluespec System Verilog. Interfaces begin with a capital I and modules use the prefix mk. It

is usually cleaner to keep interfaces and modules in separate files. Do not confuse the mk prefix

used for Bluespec modules with the .mk extension used for makefile fragments. It is often useful to

group type definitions into a single file, and these files usually have a Types suffix. We use the TH

suffix to denote files which are only involved in the test harness.

The Bluespec compiler is very resource intensive and runs particularly slowly on the machines in
the computer lab.We recommend that you make use of the more powerful MIT server/Linux machines
located in the public MIT server/Linux clusters.More specifically there are IBM-S50 MIT server/Linux
machines in lab1 (4 machines) and lab2 (12 machines) which should be adequate for this assignment.
As an example, compiling the design in Part A takes almost 5 minutes on the machines in lab and takes
only 16 seconds on the IBM-S50 machines.

Part A: Linecard with Source Routing

Source routing means that all routing decisions are made in advance by the host which is injecting

the packet into the network. The host prepends routing information to the packet, and then the

routers in the network simply use this information to quickly steer the packet to its destination.

In the lab harness, we have provided you with a Bluespec module (called mkLineCardSimple) for

a very basic linecard which assumes that the incoming packets are source routed. In this section,

we will examine the mkLineCardSimple module and go through the steps involved in using the

Bluespec compiler, creating a simulator executable, and testing the implementation.

Figure 4 shows the design for the mkLineCardSimple module which implements the ILineCard

interface shown in Figure 2. Figure 5 shows the corresponding Bluespec source code found in

mkLineCardSimple.bsv. At the top of the file we declare a package. Usually each of your Bluespec

files contains a single package which has the same name as the filename. We use several import

commands to make various interfaces and modules available for use in this package. See the Bluespec

route

inputQ

outputQ

getPacket0()

getPacket3()

getPacket1()

getPacket2()

mkLineCardSimple

putPacket()

Figure 4: Design for mkLineCardSimple Bluespec module

5 6.884 Lab Assignment 3, Spring 2005

Reference Guide for a list of the interfaces and modules available in the standard Bluespec library.
The design for mkLineCardSimple includes a single input packet queue and four output packet
queues (one for each output port). Note that the mkFIFO module implements a two element FIFO
- if you want to set the size of the FIFO yourself you should use the mkSizedFIFO module (see the
Bluespec Reference Guide for more information).

A single route rule moves packets from the input queue to the output queues. The rule pops a
packet off the input queue and then uses the bottom two bits of the packet’s address to choose
the correct output queue. Whenever writing a rule in Bluespec it is important to remember how
implicit conditions will influence that rule’s firing. The route rule has implicit conditions from
the inputQ.first() and inputQ.deq() method calls (i.e. the route rule will not fire if the input
queue is empty) as well as implicit conditions from the four outputQ.enq() method calls (i.e. the
route rule will not fire if any of the output queues are full).

The mkLineCardSimple module includes methods to insert and extract packets. Since this simple
linecard does not use a lookup table the loadLookupTable() is implemented with a noAction which
does nothing. We cannot just leave the loadLookupTable() method empty, since the method needs
to return something of type Action.

We will now go through the steps required to build a simulator for this module. The following
commands create a build directory and use the Bluespec compiler to generate Verilog from the
Bluespec source code for mkLineCardSimple.bsv.

% pwd
.../2005-spring/<username>/linecard
% mkdir build
% cd build
% cp ../src/ILineCard.bsv ../src/PacketTypes.bsv ../src/mkLineCardSimple.bsv .
% bsc -u -verilog -g mkLineCardSimple mkLineCardSimple.bsv

Unfortunately, the Bluespec compiler does not currently support compiling in a directory which is
different than the source directory. So we must first copy the source into the build directory. Never
edit the Bluespec files directly in the build directory - always edit them in the source directory and
then copy them into the build directory. Later we will use the makefiles to take care of this for us, but
remember that we only want generated product in the build directory. After copying the source files,
we run the Bluespec compiler (called bsc). The -u flag indicates that the compiler should manage
dependency tracking - this means that the compiler will determine when it needs to recompile a
module and when it is okay to use a previously compiled module. The -verilog flag indicates that
we want to generate Verilog from the Bluespec code and the -g argument indicates which module
the bsc should compile. Take a look at the generated Verilog in mkLineCardSimple.v. Notice
that the Bluespec compiler has implemented the methods using RDY and EN signals and that the
route rule has turned into combinational logic. The FIFOs are implemented with Bluespec Verilog
primitives. Find the WILL FIRE RL route signal in the generated Verilog. This signal will be high
during clock cycles when the route rule fires and low during clock cycles when the route rule does
not fire. We will use the RDY, EN, and WILL FIRE RL signals to help debug our Bluespec designs.

6 6.884 Lab Assignment 3, Spring 2005

package mkLineCardSimple;
import PacketTypes::*;
import ILineCard::*;
import FIFO::*;

module mkLineCardSimple(ILineCard);

//-- State --

FIFO#(Packet) inputQ <- mkFIFO(); // Input packet FIFO

FIFO#(Packet) outputQ0 <- mkFIFO(); // Output packet FIFO 0

FIFO#(Packet) outputQ1 <- mkFIFO(); // Output packet FIFO 1

FIFO#(Packet) outputQ2 <- mkFIFO(); // Output packet FIFO 2

FIFO#(Packet) outputQ3 <- mkFIFO(); // Output packet FIFO 3

//-- Rules ---

rule route;

Packet packet = inputQ.first();

inputQ.deq();

case (packet.m_addr[1:0])

2’d0 : outputQ0.enq(packet);

2’d1 : outputQ1.enq(packet);

2’d2 : outputQ2.enq(packet);

2’d3 : outputQ3.enq(packet);

endcase

endrule

//-- Methods ---

method Action putPacket(Packet packet);

inputQ.enq(packet);

endmethod

method ActionValue#(Packet) getPacket0();

outputQ0.deq();

return outputQ0.first();

endmethod

// ... other getPacket() implementations are analagous to getPacket0() ...

method Action loadLookupTable(Bit#(12) entryIndex, Bit#(12) entryData);

noAction;

endmethod

endmodule
endpackage

Figure 5: Bluespec System Verilog source code for the mkLineCardSimple module

7 6.884 Lab Assignment 3, Spring 2005

Although we have generated Verilog for the mkLineCardSimple module, we still need a test harness
to drive the module. We have provided two Verilog test harnesses which wrap around modules

ILineCard LineCardTH nofiles.v
mips simple test.v
that implement the interface. The test harness is analogous to

used in the previous labs since the harness explicitly writes the test packets in
the verilog code. Take a look at the code and find where four test packets are written into the test

LineCardTH.v mips test harness.v
LineCardTH nofiles.v

packet buffer. The test harness is analogous to since it loads
an input packet stream from an external file. Let’s use VCS to compile
and mkLineCardSimple.v into a functional simulator.

% pwd
.../2005-spring/<username>/linecard/build
% vcs +v2k -I +define+LINECARD_IMPL="mkLineCardSimple" \

-y ${BLUESPECDIR}/Verilog +libext+.v \

../src/LineCardTH_nofiles.v mkLineCardSimple.v

% ./simv

The +v2k flag tells VCS to use Verilog-2001 and the -I flag tells VCS to compile a simulator with
support for VCD plus. The +define+ flag is used to tell the test harness which implementation
of the ILineCard interface we would like to test. By using a macro definition we avoid requiring
a different test harness for each linecard implementation. The -y lets VCS know the location of
the source code corresponding to the built-in Bluespec Verilog modules. Finally, we list the Verilog
source we wish to compile. After running VCS we will have a simulator with the default name
simv. Running the simulator produces some debug output which shows four packets being inserted
into the linecard and four packets exiting the linecard. Verify that the packets are going to the
correct output ports. The test harness also outputs the total number of packets in the test, how
many cycles the test took, and the linecard rate in packets per cycle. We will use the linecard rate
as our performance metric for this lab. Ideally, we would like to sustain a linecard rate of 1 packet
per cycle, but this may not always be possible due to architectural bottlenecks in our design. It is
important to also note that the total cycle count includes some start up overhead and also includes
the cycles when the packets are draining out of the linecard so for short tests these fixed overheads
will be significant. That is why for just four packets the mkLineCardSimple module achieves 0.667
packets per cycle - to get a more representative performance number we would want to use a test
with many more packets.

Let’s take a look at the operation of the linecard using the VirSim waveform viewer (vcs -RPP). Fig-
EN putPacket, RDY putPacket putPacket packeture 6 shows several signals in the design. The , and

signals can be used to observe what packets are going into the putPacket() method of the module.
Similarly we can use the EN and RDY signals corresponding to the getPacket() methods to observe
what packets are leaving the module. You can see the A, B, C, and D packets enter the linecard
and then come out of the linecard at the appropriate output port.

D OUTAt the bottom of the trace we see a signal for the input queue and the four output queues.
This is a very useful way to observe what data is coming out of which queues. Finally, at the very

WILL FIRE RL route routebottom of the trace you can see the signal; this signal is high when the
rule is firing - notice on the trace that when this signal is high the packets are being routed from

the input queue to the output queues.

critical when you start debugging your Bluespec designs.

Using EN, RDY, D OUT WILL FIRE RL, and signals will be

8 6.884 Lab Assignment 3, Spring 2005

Now we are going to use the LineCardTH.v test harness so that we can load input packet streams
from files. Use the following commands to build a new functional simulator.

% pwd
.../2005-spring/<username>/linecard/build
% vcs +v2k -I +define+LINECARD_IMPL="mkLineCardSimple" \

-y ${BLUESPECDIR}/Verilog +libext+.v \
../src/LineCardTH.v mkLineCardSimple.v

You must provide an input packet stream to the simulator using the +file-in command line
option. The following commands use the packet-generator.pl script to create the appropriate
Verilog memory dump file and then runs the simulator.

% pwd
.../2005-spring/<username>/linecard/build
% packet-generator.pl ../tests/simple_explicit_nodelay.pgen
% ./simv +file-in=simple_explicit_nodelay.pgen.in-vmh

In addition to just running the test we also want to verify that it is correct. The packet generator
can produce a reference output file which contains the correct output packet streams. We can
then use the packet-verify.pl script to compare the reference output to the test output. The
following commands run the test and then verify that the results are correct.

% pwd
.../2005-spring/<username>/linecard/build
% packet-generator.pl ../tests/simple_explicit_nodelay.pgen
% ./simv +file-in=simple_explicit_nodelay.pgen.in-vmh \

+file-out=simple_explicit_nodelay.pgen.res

% packet-verify.pl simple_explicit_nodelay.pgen.res

[PASSED] simple_explicit_nodelay.pgen.res

The packet-verify.pl script takes into account that the ordering between output ports is not
important, but that the order of packets from the same output port must be correct. The lab
harness includes several tests in the tests directory. The infrastructure has support for specifying
a delay with each packet - this means that each packet can be delayed a certain number of cycles
before being inserted into the linecard. The tests with the delayed suffix include delays, while
those with the nodelay suffix do not.

We have provided you with makefiles which help automate building and testing your Bluespec
designs. The makefiles include simv and run-tests targets just as they did in the previous lab
assignments. Try the following commands after deleting the build directory you have been using
so far.

50.0

9 6.884 Lab Assignment 3, Spring 2005

% pwd

.../2005-spring/<username>/linecard

% mkdir build
% cd build
% ../configure.pl ../config/mkLineCardSimpl.mk
% make simv
% make run-tests

You are now done with Part A of this lab assignment. In the next part you will be implementing
a linecard which uses a lookup table to do the routing instead of relying on source routing. Delete
your build directory and start with a fresh build directory for the next part.

Time (1 s)

55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0 115.0

Virtual Simulator Environment
Copyright 1993-2002
Synopsys, Inc.
All Rights Reserved.

User : cbatten@cagfarm-43
Date : Fri Mar 4 02:19:06 2005

Signal Slice : 1 of 1; signals 1-24 of 24 Page : 1 of 1
Time Range : [53, 116]
Time Slice : 1 of 1; time [53, 116]

C1

C2

Delta

NA

NA

NA

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

CLK

EN_putPacket

RDY_putPacket

putPacket_packet[79:0]

CLK

EN_getPacket0_avAction

RDY_getPacket0_avValue

getPacket0_avValue[79:0]

EN_getPacket1_avAction

RDY_getPacket1_avValue

getPacket1_avValue[79:0]

EN_getPacket2_avAction

RDY_getPacket2_avValue

getPacket2_avValue[79:0]

EN_getPacket3_avAction

RDY_getPacket3_avValue

getPacket3_avValue[79:0]

CLK

D_OUT[79:0]

D_OUT[79:0]

D_OUT[79:0]

D_OUT[79:0]

D_OUT[79:0]

WILL_FIRE_RL_route

*000000000000a *000000000000b *000000000000c 0003000000000000000d

aaaaaaaaaaaaaaaaaaaa *000000000000a aaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaa *000000000000b aaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaa *000000000000c *aaaaaaaaaaaaaa

aa *000000000000d

*aaaaaaaaaaaaaaaa *000000000000a *000000000000b *000000000000c *000000000000d *aaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaa *000000000000a aaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaa *000000000000b aaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaa *000000000000c *aaaaaaaaaaaaaa

aa *000000000000d

Figure 6: Waveform trace for mkLineCardSimple module using LineCardTH nofiles.v

10 6.884 Lab Assignment 3, Spring 2005

Part B: Linecard with Basic Lookup

In Part B of this lab assignment you will be writing your own linecard. We want to build a linecard
which is suitable for networks where routing information is distributed amongst the various routers.
Instead of using source routing, the linecard in Part B will use a lookup table to map packet
addresses to output ports. Your linecard must implement the linecard interface shown in Figure 2.
Because it will have the same interface, the test harness is exactly the same in Part B as it was in
Part A.

Figure 7 shows the design for the mkLineCardLookup module you are to write. You will be
making use of lookup tables through a ILookupTable interface. To use the lookup table, call
lookupRequest() to start a lookup request, and then call lookupResponse() to retrieve the re
sults. Note that the ILookupTable interface makes no guarantees about the number of cycles it
takes to actually complete a request. The interface does, however, guarantee that responses are
returned in the same order in which the corresponding requests were made. For Part B of the lab
we have provided you with two basic lookup tables which implement the ILookupTable interface.
The mkLookupTableScycle module is a single-cycle lookup table, and you should be able to achieve
greater than 90% linecard rate with this module. A fixed latency lookup is rather unrealistic. In
IPv4 there is an address space of 232, meaning that a flat lookup table would require a Gigabyte
of storage. To help reduce the storage requirements, designers turn to sparse table descriptions.
Although such descriptions are much smaller, they no longer have a fixed latency for a complete
lookup. The mkLookupTableMcycle module is a multi-cycle lookup table which randomly delays
responses by 0 to 4 cycles to emulate the behavior of lookups in a sparse table. This means that
the rate of responses out of the lookup table is less than the rate at which you can make requests.
This will be an architectural bottleneck and will make it difficult to achieve the full linecard rate.

For this part of the lab, you need to write mkLineCardLookup.bsv which contains the implemen
tation for mkLineCardLookup. You should begin by using the mkLookupTableScycle lookup table.

start
lookup

finish
lookup

outputQ

getPacket0()

getPacket3()

getPacket1()

getPacket2()
putPacket()

lookupRequest() lookupResponse()

ILookupTable
loadLookupTable()

inputQ pendingQ

mkLineCardLookup

Figure 7: Design for mkLineCardLookup module

6.884 Lab Assignment 3, Spring 2005 11

You should use the mkLineCardLookup.mk makefile fragment for building your design, and use
lookup explicit delayed.pgen and lookup explicit nodelay.pgen to help test your design.
You should be able to achieve a linecard rate of more than 90% when using lookup explicit nodelay.pgen.
Once you have your design working, change the lookup table to mkLookupTableMcycle and observe
the change in linecard rate. Although the throughput of the lookup table is limiting the overall
throughput of your linecard, you can still increase performance by increasing the size of some of your
FIFOs. If you are using the default mkFIFO for your pendingQ try using a mkSizedFIFO instead. Set
the size of your pendingQ to better match the lookup table latency. A larger pendingQ means you
can overlap more requests in the lookup table. Of course, larger queues mean more area. You should
be able to achieve a linecard rate greater than 43% when using lookup explicit nodelay.pgen
and mkLookupTableMcycle.

The following list shows which files you will be using in this part of the lab. You should check
mkLineCardLookup.bsv into CVS along with any other changes you make.

• ILineCard.bsv - Interface for linecards

• ILookupTable.bsv - Interface for lookup tables used in linecards

• PacketTypes.bsv - Types which describe a packet

• mkLineCardLookup.bsv - You write this ...

• mkLookupTableScycle.bsv - Lookup table with a single-cycle latency

• mkLookupTableMcycle.bsv - Lookup table with a multi-cycle latency

• LineCardTH nofiles.v - Verilog test harness where packets are explicitly specified

• LineCardTH.v - Verilog test harness where packets are specified in files

In this part of the assignment you implemented your own linecard and you used interfaces to try
different lookup table implementations without changing your linecard code. In Part C, you will
implement your own lookup table which performs a longest prefix match for the lookup. Because
this new lookup table will also implement the ILookupTable interface you should not need to
change your linecard code when you start using your new lookup table.

Part C: Linecard with Longest Prefix Match Lookup

In the previous section you designed a linecard which was able to handle responses from a lookup
table which took a variable number of cycles. We supplied the lookup table for you. Now you will
be building a realistic lookup table based around a single RAM. We will base this design off of the
longest prefix match algorithm which is commonly used in IPv4 network routers. IPv4 uses a 32
bit address, but in this lab we will only be using 16 bit addresses.

The longest prefix match algorithm works as follows. When given a 16-bit address to lookup, the
algorithm will take the 8 most significant bits. This will be zero extended to 11-bits and used as
the effective address for a lookup into the RAM. The RAM will return a either a pointer or a leaf.
If the RAM returns a pointer, you will add as an offset the next 4 most significant bits. You will
then lookup this new pointer in the RAM. If the RAM again returns a pointer you will add the

12 6.884 Lab Assignment 3, Spring 2005

function LuResponse doLookup(LuRequest req)
{
Address addr1 = zeroExtend(req[15:8]);
Result res1 = ram_lookup(addr1);

if (isLeaf(res1))

return(leafvalue(res1));

// First request was a pointer

Address addr2 = pointervalue(res1) + req[7:4];

Result res2 = ram_lookup(addr2);

if (isLeaf(res2))

return(leafvalue(res2));

// Second request was a pointer

Address addr3 = pointervalue(res2) + req[3:0];

Result res3 = ram_lookup(addr3);

// This has to be a leaf node

return(leafvalue(res3));

}

Figure 8: Pseudo-code for longest prefix match algorithm

last 4 bits to the new pointer and lookup this new value. If at any point, the RAM returns a leaf,
you can simply return the corresponding value (this is the output port corresponding to the lookup
request). Figure 8 shows pseudo-code for the longest prefix match algorithm.

We provide you a synchronous RAM (ILpmRam and mkLpmRam) which has a four cycle latency and
is fully pipelined. We also provide you some types which you might find useful in your design
(LpmTypes). A naive implementation might handle lookup requests one a time; do the first RAM
read, then check to see if it is a pointer or a leaf, then do the second RAM read if necessary, and
so on. Once the proper response is found, the naive implementation would return the response and
move onto the next request. Unfortunately, this approach would be very slow due to the four cycle
latency of the RAM. It would take a minimum of four cycles to service a lookup and in the worse
case it could take 12 cycles. Note that in this naive implementation the RAM request port is idle
much of the time.

Figure 9 shows a circular pipeline implementation which will better saturate the RAM request
bandwidth by processing multiple lookups at the same time. The design works as follows. When
lookupRequest() is called, a LuRequest is pushed onto the input queue. The enter rule then pops
LuRequests off the input queue and obtains a CbufToken from the completion buffer. The comple
tion buffer’s job is to keep track of the order in which lookup requests were made. Remember, that
the ILookupTable interface requires that responses be returned in FIFO order - so the CbufToken
is basically an index into a FIFO. This enables you to write the FIFO out of order but only drain
things out of the FIFO in order. We provide you with a completion buffer (ILpmCompletionBuf

6.884 Lab Assignment 3, Spring 2005 13

recircQ

enter complete

recirculate

makeRequest()

takeResponse()

mkLpmRam

complete()reserve()
mkLpmCompletionBuf

drain() lookupResponse()

inputQ

lookupRequest()

mkLookupTableLpm

Figure 9: Design for mkLineCardLpm module (loadLookupTable() method not shown)

and mkLpmCompletionBuf) which you can use. After the enter rule has obtained a CbufToken,
the rule creates a PartialLookup composed of the CbufToken and part of the LuRquest. The enter
rule then makes a RAM read request and pushes the PartialLookup onto the recirculation queue.

The complete and recirculate rules are mutually exclusive (you should use explicit conditions
to ensure this). The complete rule only fires when the RAM returns a leaf, and the recirculate
rule only fires when the RAM returns a pointer. The recirculate rule gets the data coming
back from the RAM and pops the next PartialLookup off the recirculation queue. The rule then
uses the RAM data to calculate a new effective address and to make a new request to the RAM.
The last thing the recirculate rule does is push an updated PartialLookup onto the recirculation
queue. The complete rule also gets the data coming back from the RAM and pops the next
PartialLookup off the recirculation queue. The difference is that this rule uses the CbufTag stored
in the PartialLookup to write the response into the appropriate slot of the completion buffer. The
lookupResponse() method then eventually retrieves responses in order from the completion buffer.

For Part C you need to write mkLookupTableLpm.bsv. You also need to write mkLineCardLookupLpm.bsv,
which should be almost identical to mkLineCardLookup.bsv from Part B. The following list shows
which files you will be using in this part of the lab. You should check mkLineCardLookup.bsv and
mkLookupTableLpm.bsv into CVS along with any other changes you make. You should use the
mkLineCardLookupLpm.mk makefile fragment to build your design.

• ILineCard.bsv - Interface for linecards

• ILookupTable.bsv - Interface for lookup tables used in linecards

• ILpmCompletionBuf.bsv - Interface for a completion buffer

• ILpmRam.bsv - Interface for a synchronous RAM

• PacketTypes.bsv - Types which describe a packet

• LpmTypes.bsv - Types useful for implementing longest prefix match

14 6.884 Lab Assignment 3, Spring 2005

• mkLookupTableLpm.bsv - You write this ...

• mkLineCardLpm.bsv - You write this ...

• mkLpmCompletionBuf.bsv - Implementation of completion buffer

• mkLpmRam.bsv - Implementation of synchronous RAM

• LineCardTH nofiles.v - Verilog test harness where packets are explicitly specified

• LineCardTH.v - Verilog test harness where packets are specified in files

Writing the loadTable() method depends on how the test harness is implemented, so please use
something similar to the code shown below to implement this method.

method Action loadTable(Bit#(12) entryIndex, Bit#(12) entryData);

RamResponse resp;

if (entryData[11] == 0)

resp = tagged Leaf(entryData[1:0]);

else

resp = tagged Pointer(entryData[10:0]);

RamRequest req = entryIndex[10:0];
ram.write(req, resp);

endmethod

There are some very important questions you should ask yourself when implementing your design.
How many lookups can be active in your design at once? How large should your completion buffer
be to accommodate this? What happens if the recirculation queue is full? Will this cause reduced
performance or deadlock? How can you prevent such an occurrence?

Once your design is functional, you should see if you can achieve a linecard rate greater than 90%
on the lpm explicit fullthruput.pgen test input. This test has no delays and the lookup table
only has leaves, so your design should be able to saturate the lookup table request bandwidth.

15 6.884 Lab Assignment 3, Spring 2005

Deliverables

For this lab assignment you are to complete Parts A, B, and C. There is nothing to be turned in for
Part A. You should check into CVS any Bluespec source code as well as any new tests you wrote
for Parts B and C. At a bare minimum you will need to add the following three files.

• mkLineCardLookup.bsv - From Part B

• mkLineCardLpm.bsv - From Part C

• mkLookupTableLpm.bsv - From Part C

It would be useful if you use a CVS tag once you have committed all of your changes. This will
make it easier for you to go back and reexamine your design. To create a CVS tag for the final
project use the following commands.

1. Make sure you add all the appropriate files and commit your changes

% pwd

.../2005-spring/<username>/linecard

% cvs update

% cvs commit

2. Create a new junk directory somewhere

% cd

% mkdir junk

3. Checkout your project in the junk directory

% cd junk

% cvs checkout 2005-spring/<username>/linecard

4. Verify that your project builds correctly

% cd 2005-spring/<username>/linecard

% mkdir build-partB

% cd build-partB

% ../configure.pl ../config/mkLineCardLookup.mk

% make run-tests

% cd ..

% mkdir build-partC

% cd build-partC

% ../configure.pl ../config/mkLineCardLookupLpm.mk

% make run-tests

5. Add the CVS tag

% cd ..

% pwd

.../junk/2005-spring/<username>/linecard

% cvs tag lab3-final .

16 6.884 Lab Assignment 3, Spring 2005

6. Delete the junk directory

% cd

% rm -rf junk

I will be doing the following to test your design, so please try building your project in a clean
working directory to make sure these steps work.

% mkdir temp

% cd temp

% cvs checkout -r lab3-final 2005-spring/<username>/linecard

% cd 2005-spring/<username>/linecard

% mkdir build-partB

% cd build-partB

% ../configure.pl ../config/mkLineCardLookup.mk

% make run-tests

% cd ..

% mkdir build-partC

% cd build-partC

% ../configure.pl ../config/mkLineCardLookupLpm.mk

% make run-tests

