
1

February 25, 2005 L08-1

Bluespec-2: Designing with
Rules

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc,
January 2005

February 22, 2005 L07-2

Bluespec: State and Rules
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their
interfaces.

interface

module

Courtesy of BlueSpec Inc. Used with permission.

2

February 22, 2005 L07-3

Rules
A rule is declarative specification of a
state transition

An action guarded by a Boolean condition

rule ruleName (<predicate>);
<action>

endrule

February 22, 2005 L07-4

Example 1:
simple binary multiplication

1001
x 0101
1001
0000

1001
0000
0101101

// multiplicand (d) = 9
// multiplier (r) = 5
// d << 0 (since r[0] == 1)
// 0 << 1 (since r[1] == 0)
// d << 2 (since r[2] == 1)
// 0 << 3 (since r[3] == 0)
// product (sum of above) = 45

(Note: this is just a basic example; there are many sophisticated
algorithms for multiplication in the literature)

3

February 22, 2005 L07-5

typedef bit[15:0] Tin;
typedef bit[31:0] Tout;

module mkMult0 ();
Tin d_init = 9, r_init = 5; // compile-time constants

Reg#(Tout) product <- mkReg (0);
Reg#(Tout) d <- mkReg ({16’h0000, d_init});
Reg#(Tin) r <- mkReg (r_init);

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule: cycle

rule done (r == 0);
$display (“Product = %d”, product);

endrule: done

endmodule: mkMult0

State—registers
(module
instantiation)

Example 1:
simple binary multiplication

Behavior

February 22, 2005 L07-6

Module Syntax
Module declaration

module mkMult0 ();
…

endmodule: mkMult0

module name

Reg#(Tout) product <- mkReg (0);

interface
type

interface
instance

interface type’s
parameter(s)

module
name

module’s
parameter(s)

Module instantiation
short form

Reg#(Tout) product(); // interface
mkReg#(0) the_product(product);

// the instance

long form

4

February 22, 2005 L07-7

Variables

Variables have a type and name values
Tin d_init = 9, r_init = 5;

Variables never represent state
I.e., they do not remember values over time
They are always like wires, i.e., a variable
just represents the value it is assigned

State is obtained only by module
instantiation

February 22, 2005 L07-8

The module hierarchy

product r

instance of mkMult0

instances of mkReg

As in Verilog, module instances can be nested,
i.e., the tree can be deeper.

All state elements are at the leaves

d

5

February 22, 2005 L07-9

module mkMult0 (CLK, RST_N);
input CLK;
input RST_N;

reg [31:0] product = 0;
reg [31:0] d = 9;
reg [15:0] r = 5;

always @ (posedge CLK)
if (r != 0) begin

if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

end
else

$display (“Product = %d”, product);

endmodule: mkMult0

Example 1 in Verilog RTL

Very
 sim

ilar
!

February 22, 2005 L07-10

Over-simplified
analogy with Verilog process

In this simple example, a rule is reminiscent of
an “always” block:

But this is not true in general:
Rules have interlocks—becomes important when
rules share resources, to avoid race conditions
Rules can contain method calls, invoking actions in
other modules

rule rname (<cond>); <action> endrule

always@(posedge CLK)
if (<cond>) begin: rname

<action>
end

6

February 22, 2005 L07-11

Rule semantics
Given a set of rules and an initial state

while (some rules are applicable*
in the current state)

choose one applicable rule
apply that rule to the current state to
produce the next state of the system**

(*) “applicable” = a rule’s condition is true in current state

(**) These rule semantics are “untimed” – the action to change the state
can take as long as necessary provided the state change is seen as
atomic, i.e., not divisible.

February 22, 2005 L07-12

Example 2:
Concurrent Updates

Process 0 increments register x;
Process 1 transfers a unit from register x to register y;
Process 2 decrements register y

This is an abstraction of some real applications:
Bank account: 0 = deposit to checking, 1 = transfer from
checking to savings, 2 = withdraw from savings
Packet processor: 0 = packet arrives, 1 = packet is
processed, 2 = packet departs
…

0 1 2
x y

+1 -1 +1 -1

7

February 22, 2005 L07-13

Concurrency in Example 2

Process j (= 0,1,2) only updates under
condition condj
Only one process at a time can update a
register. Note:

Process 0 and 2 can run concurrently if process 1 is
not running
Both of process 1’s updates must happen
“indivisibly” (else inconsistent state)

Suppose we want to prioritize process 2 over
process 1 over process 0

0 1 2
x y

+1 -1 +1 -1

February 22, 2005 L07-14

Example 2 Using Rules
(* descending_urgency = “proc2, proc1, proc0” *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc2 (cond2);
y <= y – 1;

endrule

Functional correctness follows
directly from rule semantics

Related actions are grouped
naturally with their conditions—
easy to change

Interactions between rules are
managed by the compiler
(scheduling, muxing, control)

8

February 22, 2005 L07-15

Example 2 in Verilog:
Explicit concurrency control
always @(posedge CLK) // process 0

if ((!cond1 || cond2) && cond0)
x <= x + 1;

always @(posedge CLK) // process 1
if (!cond2 && cond1) begin

y <= y + 1;
x <= x – 1;

end

always @(posedge CLK) // process 2
if (cond2)

y <= y – 1;

Are these solutions correct?
How to verify that they’re correct?
What needs to change if the conds change?
What if the processes are in different modules?

always @(posedge CLK) begin
if (!cond2 && cond1)

x <= x – 1;
else if (cond0)

x <= x + 1;

if (cond2)
y <= y – 1;

else if (cond1)
y <= y + 1;

end
Anoth

er
sol

utio
n

will make it incorrect

February 22, 2005 L07-16

interface FIFO #(type t);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

A FIFO interface

n = # of bits needed
to represent the
values of type “t“

not full

not empty

not empty

rdy
enab

n

n

rdy
enab

rdy

en
q

de
q

fir
st

FI
FO

m
o
d
u
le

cl
ea

r

enab

9

February 22, 2005 L07-17

interface FIFO #(type t);
method Action push(t); // enqueue an item
method ActionValue#(t) pop(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

Actions that return Values:
Another FIFO interface

n = # of bits needed
to represent the
values of type “t“

not full

not empty

not empty

rdy
enab

n

n

rdy
enab

rdy

pu
sh

po
p

fir
st

FI
FO

m
o
d
u
le

cl
ea

r

enab

n

February 22, 2005 L07-18

Example 3:
A 2x2 switch, with stats

Packets arrive on
two input FIFOs, and
must be switched to
two output FIFOs

dest(pkt) ∈ {1,2}

Certain “interesting
packets” must be
counted

interesting(pkt) ∈
{True, False}

D
et

er
m

in
e

Q
u
eu

e
D

et
er

m
in

e
Q

u
eu

e

+1
Count

certain packets

i1

i2

o1

o2

10

February 22, 2005 L07-19

Example 3: Specifications
Input FIFOs can be empty
Output FIFOs can be full

Shared resource collision on an output FIFO:
if packets available on both input FIFOs, both have same
destination, and destination FIFO is not full

Shared resource collision on counter:
if packets available on both input FIFOs, each has different
destination, both output FIFOs are not full, and both
packets are “interesting”

Resolve collisions in favor of packets from the first input
FIFO

Must have maximum throughput: a packet must move if
it can, modulo the above rules

February 22, 2005 L07-20

Rules for Example 3
(* descending_urgency = "r1, r2" *)
// Moving packets from input FIFO i1
rule r1;

Tin x = i1.first();
if (dest(x)== 1) o1.enq(x);
else o2.enq(x);
i1.deq();
if (interesting(x)) c <= c + 1;

endrule

// Moving packets from input FIFO i2
rule r2;

Tin x = i2.first();
if (dest(x)== 1) o1.enq(x);
else o2.enq(x);
i2.deq();
if (interesting(x)) c <= c + 1;

endrule

D
et

er
m

in
e

Q
u
eu

e
D

et
er

m
in

e
Q

u
eu

e

+1
Count

certain packets

Notice, the rules
have no explicit
predicates, only
actions

11

February 22, 2005 L07-21

Example 3: Commentary
Muxes and their control for output FIFOs and
Counter are generated automatically
FIFO emptiness and fullness are handled
automatically

Rule and interface method semantics make it
Impossible to read a junk value from an empty FIFO
Impossible to enqueue into a full FIFO
Impossible to race for multiple enqueues onto a FIFO

No magic -- equally available for user-written
module interfaces

All control for resource sharing handled
automatically

Rule atomicity ensures consistency
The “descending_urgency” attribute resolves
collisions in favor of rule r1

February 22, 2005 L07-22

Example 3: Changing Specs
Now imagine the following changes to the
existing code:

Some packets are multicast (go to both FIFOs)
Some packets are dropped (go to no FIFO)
More complex arbitration

FIFO collision: in favor of r1
Counter collision: in favor of r2
Fair scheduling

Several counters for several kinds of interesting
packets
Non-exclusive counters (e.g., TCP IP)
M input FIFOs, N output FIFOs (parameterized)

Suppose these changes are required 6 months
after original coding

Rules based designs provide flexibility, robustness,
correctness, ...

12

February 22, 2005 L07-23

Example 4: Shifter

Goal: implement: y = shift (x,s)

where y is x shifted by s positions.
Suppose s is a 3-bit value.

Strategy:
Shift by s =

shift by 4 (=22) if s[2] is set,
and by 2 (=21) if s[1] is set,
and by 1 (=20) if s[0] is set

A shift by 2j is trivial: it’s just a “lane change” made purely
with wires

0 0

sh2

February 22, 2005 L07-24

Cascaded Combinational
Shifter

sh2

s

x

m
u
x

m
u
x

m
u
xsh1 sh4

s0 s1 s2

n n
x0 x1 x2

3 f

function int shifter (int s,int x);
Pair sx0, sx1, sx2;
sx0 = step_0(Pair{s:s, x:x});
sx1 = step_1(sx0);
sx2 = step_2(sx1);
return (sx2.x);

endfunction

function Pair step_j (Pair sx);
return ((sx.s[j]==0) ? sx :

Pair{s: sx.s,x:sh_k(sx.x)});
endfunction

where k=2j

A
 f

a
m

ily
 o

f
fu

n
ct

io
n
s

typedef struct
{int x; int s;}
Pair;

13

February 22, 2005 L07-25

Asynchronous pipeline
with FIFOs (regs with interlocks)

sh2

s

x

m
u
x

m
u
x

m
u
xsh1 sh4

s0 s1 s2

n n

3

rule stage_1;
Pair sx0 <- fifo0.pop(); fifo1.push(step_0(sx0));

endrule

rule stage_3;
Pair sx2 <- fifo2.pop(); fifo3.push(step_2(sx2));

endrule

rule stage_2;
Pair sx1 <- fifo1.pop(); fifo2.push(step_1(sx1));

endrule

fifo0 fifo1 fifo2 fifo3

February 22, 2005 L07-26

Required simultaneity

If it is necessary for several
actions to happen together,
(i.e., indivisibly, atomically)

Put them in the same rule!

14

February 22, 2005 L07-27

Synchronous pipeline
(with registers)

sh2

s

x

m
u
x

m
u
x

m
u
xsh1 sh4

[0] [1] [2]

n n

3

sx1 sx2 sx3sx0

rule sync-shifter;
sx1 <= step_0(sx0);
sx2 <= step_1(sx1);
sx3 <= step_2(sx2);

endrule

step_1 step_2 step_3

sx1, sx2 and sx3 are
registers defined
outside of the rules

February 22, 2005 L07-28

Discussion
In the synchronous pipeline, we compose
actions in parallel

All stages move data simultaneously, in lockstep
(atomic!)

In the asynchronous pipeline, we compose
rules in parallel

Stages can move independently (each stage can
move when its input fifo has data and its output fifo
has room)
If we had used parallel action composition instead,
all stages would have to move in lockstep, and could
only move when all stages were able to move

Your design goals will suggest which kind of
composition is appropriate in each situation

15

February 22, 2005 L07-29

Summary: Design using Rules

Much easier to reason about
correctness of a system when you
consider just one rule at a time
No problems with concurrency (e.g.,
race conditions, mis-timing,
inconsistent states)

We also say that rules are “interlocked”

Major impact on design entry time and
on verification time

February 22, 2005 L07-30

Types and Syntax notes

16

February 22, 2005 L07-31

Types and type-checking

BSV is strongly-typed
Every variable and expression has a type
The Bluespec compiler performs strong type
checking to guarantee that values are
used only in places that make sense,
according to their type

This catches a huge class of design
errors and typos at compile time, i.e.,
before simulation!

February 22, 2005 L07-32

SV notation for types
Some types just have a name

More complex types can have
parameters which are themselves
types

int, Bool, Action, …

FIFO#(Bool) // fifo containing Booleans
Tuple2#(int,Bool) // pair of items: an int and a Boolean
FIFO#(Tuple2#(int,Bool)) // fifo containining pairs of ints

// and Booleans

17

February 22, 2005 L07-33

Numeric type parameters
BSV types also allows numeric
parameters

These numeric types should not be
confused with numeric values, even
though they use the same number
syntax

The distinction is always clear from context, i.e.,
type expressions and ordinary expressions are
always distinct parts of the program text

Bit#(16) // 16-bit wide bit-vector
Int#(29) // 29-bit wide signed integers
Vector#(16,Int#(29)) // vector of 16 Int#(29) elements

February 22, 2005 L07-34

A synonym for bit-vectors:
Standard Verilog notation for bit-
vectors is just special syntax for
the general notation

bit[15:0] is the same as Bit#(16)

Courtesy of BlueSpec Inc. Used with permission.

18

February 22, 2005 L07-35

Common scalar types

Bool
Booleans

Bit#(n)
Bit vectors, with a width n bits

Int#(n)
Signed integers of n bits

UInt#(n)
Unsigned integers of n bits

February 22, 2005 L07-36

Types of variables
Every variable has a data type:

BSV will enforce proper usage of values
according to their types

You can't apply “+” to a struct
You can’t assign a boolean value to a
variable declared as a struct type

bit[3:0] vec; // or Bit#(4) vec;

vec = 4’b1010;

Bool cond = True;

typedef struct { Bool b; bit[31:0] v; } Val;

Val x = { b: True, v: 17 };

19

February 22, 2005 L07-37

“let” and type-inference
Normally, every variable is introduced
in a declaration (with its type)
The “let” notation introduces a variable
with an assignment, with the compiler
inferring its correct type

This is typically used only for very
“local” temporary values, where the
type is obvious from context

let vec = 4’b1010; // bit[3:0] vec = …

let cond = True; // Bool cond = …;

February 22, 2005 L07-38

Instantiating
interfaces and modules

The SV idiom is:
Instantiate an interface
Instantiate a module, binding the interface

Note: the module instance name is generally not
used, except in debuggers and in hierarchical
names

BSV also allows a shorthand:

FIFO#(DataT) inbound1();
mkSizedFIFO#(fifo_depth) the_inbound1(inbound1);

interface type interface instance

module name module
parameters

module instance

interface instance declaration

module instance declaration

interface type’s
parameters

FIFO#(DataT) inbound1 <- mkSizedFIFO(fifo_depth);

20

February 22, 2005 L07-39

Rule predicates
The rule predicate can be any Boolean
expression

Including function calls and method calls

Cannot have a side-effect
This is enforced by the type system

The predicate must be true for rule
execution

But in general, this is not enough
Sharing resources with other rules may
constrain execution

February 22, 2005 L07-40

Why not “ reg x; ”?
Unambiguity: In V and SV, “reg x;” is
a variable declaration which may or
may not turn into a HW register

Uniformity: BSV uses SV’s module-
instantiation mechanism uniformly for
primitives and user-defined modules

Strong typing: Using SV’s module-
instantiation mechanism enables
polymorphic, strongly-typed registers

