
Transaction-Level Design

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL1

Hardware Design Abstraction Levels

Algorithm

Circuits

Application

Guarded Atomic Actions (Bluespec)

Devices

Unit-Transaction Level (UTL) Model

Gates

Physics

Register-Transfer Level (Verilog RTL)

Today’s

Lecture

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL2

Application to RTL in One Step?

Modern hardware systems have complex functionality

(graphics chips, video encoders, wireless communication
channels), but sometimes designers try to map directly to
an RTL cycle-level microarchitecture in one step

�	 Requires detailed cycle-level design of each sub-unit
–	 Significant design effort required before clear if design will

meet goals
�	 Interactions between units becomes unclear if arbitrary

circuit connections allowed between units, with possible
cycle-level timing dependencies
– Increases complexity of unit specifications

� Removes degrees of freedom for unit designers
–	 Reduces possible space for architecture exploration

�	 Difficult to document intended operation, therefore
difficult to verify

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL3

Transaction-Level Design

Arch.

Arch. State State

Arch. State
Unit 1

Unit 2 Unit
3

Shared Memory Unit

�	 Model design as messages flowing through FIFO buffers between
units containing architectural state

�	 Each unit can independently perform an operation, or

transaction, that may consume messages, update local state,

and send further messages

�	 Transaction and/or communication might take many cycles (i.e.,
not necessarily a single Bluespec rule)

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL4

6.884 UTL Discipline

�	 Various forms of transaction-level model are becoming

increasingly used in commercial designs
�	 UTL (Unit-Transaction Level) models are the variant we’ll use

in 6.884
�	 UTL forces a discipline on top-level design structure that will

result in clean hardware designs that are easier to document
and verify, and which should lead to better physical designs
–	 A discipline restricts hardware designs, with the goal of

avoiding bad choices
�	 UTL specs are not directly executable (yet), but could be

easily implemented in C/C++/Java/SystemC to give a golden
model for design verification
–	 Bluespec will often, but not always, be sufficient for UTL model

�	 You’re required to give an initial UTL description (in English
text) of your project design by April 1 project milestone

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL5

UTL Overview

Unit comprises:

Transactions

Scheduler

Input
queues

Output
queues

Arch.
State

Unit

� Architectural state (registers + RAMs)

� Input queues and output queues connected to other units

� Transactions (atomic operations on state and queues)

� Scheduler (combinational function to pick next transaction to run)

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL6

Unit Architectural State

Arch.

State

�	 Architectural state is any state that is visible to an
external agent
–	 i.e, architectural state can be observed by sending strings

of packets into input queues and looking at values returned
at outputs.

�	 High-level specification of a unit only refers to
architectural state

� Detailed implementation of a unit may have additional
microarchitectural state that is not visible externally
–	 Intra-transaction sequencing logic
–	 Pipeline registers
–	 Caches/buffers

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL7

Queues

� Queues expose communication latency and decouple units’ execution
� Queues are point-to-point channels only

–	 No fanout, a unit must replicate messages on multiple queues
–	 No buses in a UTL design (though implementation may use them)

�	 Transactions can only pop head of input queues and push at most
one element onto each output queue
–	 Avoids exposing size of buffers in queues
–	 Also avoids synchronization inherent in waiting for multiple elements

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL8

Transactions

�	 Transaction is a guarded atomic action on local state and
input and output queues
–	 Similar to Bluespec rule except a transaction might take a

variable number of cycles
�	 Guard is a predicate that specifies when transaction can

execute
–	 Predicate is over architectural state and heads of input

queues
–	 Implicit conditions on input queues (data available) and

output queues (space available) that transaction accesses
�	 Transaction can only pop up to one record from an input

queue and push up to one record on each output queue

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL9

Scheduler

Transactions

Scheduler

Input
queues

Output
queues

Arch.
State

Unit

�	 Scheduling function decides on transaction priority based on local
state and state of input queues
– Simplest scheduler picks arbitrarily among ready transactions

�	 Transactions may have additional predicates which indicate when
they can fire
– E.g., implicit condition on all necessary output queues being ready

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL10

UTL Example: IP Lookup

Packet
Input

Packet
Output
Queues

Lookup
Table

(Based on Lab 3 example)

Table
Access

Table
Replies

Transactions in decreasing scheduler priority
� Table_Write (request on table access queue)

– Writes a given 12-bit value to a given 12-bit address
� Table_Read (request on table access queue)

– Reads a 12-bit value given a 12-bit address, puts response on reply queue
� Packet_Process (request on packet input queue)

– Looks up header in table and places routed packet on correct output queue
This level of detail is all the information we really need to understand what

the unit is supposed to do! Everything else is implementation.

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL11

UTL & Architectural-Level Verification

�	 Can easily develop a sequential golden model of a UTL
description (pick a unit with a ready transaction and
execute that sequentially)

�	 This is not straightforward if design does not obey UTL
discipline
–	 Much more difficult if units not decoupled by point-to-point

queues, or semantics of multiple operations depends on which other
operations run concurrently

�	 Golden model is important component in verification
strategy
–	 e.g., can generate random tests and compare candidate design’s

output against architectural golden model’s output

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL12

UTL Helps Physical Design

�	 Restricting inter-unit communication to point-
to-point queues simplifies physical layout of
units
–	 Can add latency on link to accommodate wire delay

without changing control logic
�	 Queues also decouple control logic

–	 No interaction between schedulers in different units
except via queue full/empty status

–	 Bluespec methods can cause arbitrarily deep chain of
control logic if units not decoupled correctly

�	 Units can run at different rates

– E.g., use more time-multiplexing in unit with lower

throughput requirements or use different clock

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL13

Refining IP Lookup to RTL

Packet
Output
QueuesLookup

RAM

(See also Lab 3 handout) Table
RepliesCompletion

Buffer

Recirculation
PipelinePacket

Input

Table
Access

�	 The recirculation pipeline registers and the completion buffer
are microarchitectural state that should be invisible to
external units.

�	 Implementation must ensure atomicity of transactions:
–	 Completion buffer ensures packets flow through unit in order
–	 Must also ensure table write doesn’t appear to happen in middle

of packet lookup, e.g., wait for pipeline to drain before
performing write

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL14

Non-Blocking Cache Example

CPU

Memory

Memory unit transactions:

Load<address, tag>
returns Reply<tag, data>

Store<address,data> modifies memory

Load replies can be out-of-order
–	 Spec should strictly split load transaction

in two and include additional architectural
state in memory unit as otherwise no way
for loads to get reordered. Omitted
here for clarity.

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL15

Refining UTL Design

DRAM

CPU

Cache
State

�	 Memory unit implemented as
two communicating units,
Cache and DRAM

�	 CPU’s view of Memory unit
unchanged
– i.e., the cache state should

not be visible to the CPU

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL16

A DRAM Unit

DRAM

DRAM Unit reads and writes whole
cache lines (four words) in order

Transactions:
� LoadLine<addr> returns
RepLine<dataline> from DRAM

� StoreLine<addr,dataline>
updates DRAM

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL17

Non-Blocking Cache Unit

DataTags

Miss
Tags

Replay
Queues

Replay
State

Victim
Buffer

Victim Buffer holds evicted dirty
line awaiting writeback to
DRAM (writeback cache)

Miss Tags hold address of all
cache miss requests pending in
DRAM unit

Replay Queues hold secondary
misses for each miss tag
already requested from DRAM

Replay State holds state of any
active replay of a returned
cache line

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL18

CPU Load Transaction

Load<addr,tag> (if miss tag and replay queue free)

if (cache hit on addr) then

update replacement policy state bits

return Reply<tag,data> to CPU

else
if (hit in miss tags) then
append request <R,tag,addr[1:0]> to associated Replay Queue

else
allocate new miss tag and append <R,tag,addr[1:0]> to Replay

Queue

send LoadLine<addr> to DRAM unit

select victim line according to replacement policy

if victim dirty then copy to victim buffer

invalidate victim’s in-cache tag

Replay Queue holds entries with tag and offset of requested word within
cache line (addr<1:0>)

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL19

CPU Store Transaction

Store<addr,data> (if miss tag and replay queue free)

if (cache hit on addr) then

update replacement policy state bits

update cache data and set dirty bit on line

else
if (hit in miss tags) then
append request <W,addr[1:0],data> to associated Replay Queue

else
allocate new miss tag and append <W,addr[1:0],data> to Replay

Queue

send LoadLine<addr> to DRAM unit

select victim line according to replacement policy

if victim dirty then copy to victim buffer

invalidate victim’s in-cache tag

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL20

Victim Writeback Transaction

(if buffered victim)
send StoreLine<victim.addr,victim.dataline> to DRAM unit
clear victim buffer

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL21

DRAM Response Transactions

RepLine <dataline> /* Receive DRAM Response Transaction */
locate associated miss tag (allocated in circular order)
locate invalid line in destination cache set
overwrite victim tag and data with new line
initialize replay state with new line and replay queue

(if replay state valid) /* Replay Transaction */
read next replay queue entry
if <R,addr,tag>, read from line and send Reply<tag,data> to
CPU

if <W,addr,data> write data to line and set its dirty bit

if no more reply queue entries then

clear replay state
deallocate miss tags and replay queue (circular buffer)

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL22

Cache Scheduler

Descending Priority
� Replay
� DRAM Response
� Victim Writeback
� CPU Load or Store

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL23

Design Template for Pipelined Unit

scheduler

Arch.
State 1

Arch.
State 2

�	 Scheduler only fires transaction when it can complete without stalls
–	 Avoids driving heavily loaded stall signals

�	 Architectural state (and outputs) only written in one stage of pipeline,
only read in same or earlier stages
–	 Simplifies hazard detection/prevention

�	 Have different transaction types access expensive units (RAM read
ports, shifters, multiply units) in same pipeline stage to reduce area

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL24

Skid Buffering

Sched. Tags Data

Sched. Tags Data

Sched. Tags DataStop further
loads/stores

Primary Miss #1

Primary Miss #2

�	 Consider non-blocking cache implemented as a three stage
pipeline: (scheduler, tag access, data access)

�	 CPU Load/Store not admitted into pipeline unless miss tag, reply
queue,and victim buffer available in case of miss

�	 If hit/miss determined at end of Tags stage, then second miss
could enter pipeline

�	 Solutions?
–	 Could only allow one load/store every two cycles => low throughput
–	 Skid buffering: Add additional victim buffer, miss tags, and replay

queues to complete following transaction if miss. Stall scheduler
whenever there is not enough space for two misses.

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL25

Implementing Communication Queues

�	 Queue can be implemented as centralized FIFO with single

control FSM if both ends are close to each other and directly
connected:

Cntl.

�	 In large designs, there may be several cycles of communication
latency from one end to other. This introduces delay both in
forward data propagation and in reverse flow control

Recv.Send

�	 Control split into send and receive portions. A credit-based
flow control scheme is often used to tell sender how many units
of data it can send before overflowing receivers buffer.

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL26

End-End Credit-Based Flow Control

Recv.Send

�	 For one-way latency of N cycles, need 2*N buffers at
receiver
–	 Will take at least 2N cycles before sender can be informed

that first unit sent was consumed (or not) by receiver
�	 If receive buffer fills up and stalls communication, will

take N cycles before first credit flows back to sender to
restart flow

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL27

Distributed Flow Control

Cntl. Cntl. Cntl.

�	 An alternative to end-end control is distributed
flow control (chain of FIFOs)

�	 Lower restart latency after stalls
�	 Can require more circuitry and can increase

end-end latency

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL28

Buses

Bus
Cntl.

Bus
Wires

� Buses were popular board-level option for implementing
communication as they saved pins and wires

� Less attractive on-chip as wires are plentiful and buses are
slow and cumbersome with central control

� Often used on-chip when shrinking existing legacy system design
onto single chip

� Newer designs moving to either dedicated point-point unit
communications or an on-chip network

6.884 – Spring 2005 Krste, 3/14/05 L14-UTL29

On-Chip Network

Router

Router Router

Router

� On-chip network
multiplexes long range
wires to reduce cost

�	 Routers use distributed
flow control to transmit
packets

�	 Units usually need end-
end credit flow control
in addition because
intermediate buffering
in network is shared by
all units

6.884 – Spring 2005 Krste, 3/14/05	 L14-UTL30

