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Please write your name on every page of the quiz. 

Not all questions are of equal difficulty, so look over the entire quiz and budget your time carefully. 

Please carefully state any assumptions you make. 

Enter your answers in the spaces provided below. If you need extra room for an answer or for 
scratch work, you may use the back of each page but please clearly indicate where your answer is 
located. 

A list of useful equations is printed at the end of this quiz. You can detach this sheet for reference 
and do not have to hand this in. We will not grade anything written on the equation sheet. 

You will also receive a separate handout containing a copy of the relevant Bluespec lecture slides. 
We will not grade anything written on the Bluespec slides. 

You must not discuss the quiz’s contents with other students who have not yet taken 
the quiz. If, prior to taking it, you are inadvertently exposed to material in a quiz — 
by whatever means — you must immediately inform the instructor or a TA. 
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Problem 1 : Optimizing delay of a sign-extension circuit (22 total points) 

Sign-extension is a common operation in arithmetic circuits, where a narrower binary integer is 
converted into a wider binary integer by replicating the sign bit in the higher order bits of the 
destination. In this question, we examine the delay penalty for extending a 16-bit number to a 64
bit value. For this problem, assume that the sign bit is generated by a minimum-sized inverter, and 
that the sign-extension circuit must eventually drive 49 other minimum-sized inverters. All bits in 
the datapath are arranged linearly 20 µm apart. The following table lists various parameters which 
you may find useful when solving this problem. Remember that there is a list of useful equations 
at the end of this quiz. 

� 2 
Cp,g 

Cn,g 

Cd 

Rp,on 

Rn,on 

Parameters for Minimum-Sized Inverter Symbol Value 

Ratio of PMOS to NMOS transistor widths for equal rise/fall times 
Gate capacitance for PMOS pull-up transistor 2 fF 
Gate capacitance for NMOS pull-down transistor 1 fF 
Total parasitic drain capacitance 3 fF 
Effective on resistance for PMOS pull-up transistor 2 k� 
Effective on resistance for NMOS pull-down transistor 2 k� 

Rm1 µm 
Cm1 µm 

Parameters for Metal 1 Wire Symbol Value 

Wire resistance per unit length 1 �/

Wire capacitance per unit length 0.2 fF/
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Part 1.A : Unoptimized delay of sign-extension circuit (9 points) 

To begin, we naively use Metal 1 to wire the sign 
inverter directly to the 49 output inverters as shown Sign 
in the diagram. Use a simple RC delay model to 

1

2 

1

2

1

2

1

2

20um

Inverter 

estimate the delay from the output of the sign inverter 
to the input of the inverter in the most-significant bit signbit bit[15] 

(the corresponding path is indicated with a dashed 
line). The numbers beside each transistor denote the 
width of that transistor normalized to the width of 
the NMOS in a minimum sized inverter. Report the 
delay as an RC time constant in picoseconds. 

bit[62] 

bit[63] 

Cw 
2 

Cw 
2 

Rw 

Cload 

Rdriver 

Cd 

Cg for bit[15] 

Rwire = Lwire × Rm1 = (48 × 20µm) × 1�/µm = 960� 

Cwire = Lwire × Cm1 + 47 × (Cp,g + Cn,g ) = (48 × 20µm) × 0.2fF/µm + 47 × 3fF = 333fF 

Cload = (Cp,g + Cn,g ) = 3fF 

Delay = 
� 

Rdriver × 
� 

Cwire 

2 
+ Cd + Cg,bit15 

�� 

+ (Rdriver + Rwire) × 
� 

Cwire 

2 
+ Cload 

� 

= 2k� × 172.5fF + (2k� + 960�) × (166.5fF + 3fF) 

= 847ps 
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Part 1.B : Reducing delay using a multi-stage driver (10 points) 

To improve performance you decide to Inverter 
use the multi-stage driver shown in the 

1

2

1

2

20um

1

2 

16

32
8

4 1

2

Sign
Inverter 

Inverter
A 

B 

diagram. Notice that this driver design 
adheres to the rule-of-thumb mentioned 
in class - each driver stage is scaled up by 
a factor of four. Again, use a simple RC 

signbit bit[15]
delay model to estimate the delay from 
the output of the sign inverter, through 
inverter A, through inverter B, and to 
the input of the inverter in the most-
significant bit (the corresponding path is 
indicated with a dashed line). Report the bit[62] 
delay as an RC time constant in picosec
onds. 

bit[63] 

We first determine the RC time constant of the sign inverter and inverter A. We then 
determine the RC time constant of the output of inverter B to the input of the inverter in 
the most-significant bit. Finally, we add all three time constants together. We are assuming 
that after the time constant associated with the sign inverter, inverter A turns on and then 
after the time constant associated with inverter A, inverter B turns on, and so on. Note 
that Rwire, Cwire, Cload remain the same as in Part 1.A. 

Cw 
2 

Cw 
2 

Rw 

CloadCd,signinv 

Ron,signinv 

Cg,A Cg,B 

Ron,B 

Cd,B 

Ron,A 

Cd,A 

Cg for bit[15] 

Tsigninv = Ron,signinv × (Cd,signinv + Cg,A) = 2k� × (3fF + 12fF) = 30ps 

TA = Ron,A × (Cd,A + Cg,B ) = 0.5k� × (12fF + 48fF) = 30ps 

TB+wire = 
� 

Ron,B × 
� 

Cwire 

2 
+ Cd,B + Cg,bit15 

�� 

+ (Ron,B + Rwire) × 
� 

Cwire 

2 
+ Cload 

� 

= 125� × 172.5fF + (125� + 960�) × 169.5fF = 205ps 

Delay = Tsigninv + TA + TB+wire = 265ps 
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Part 1.C : Further improvements to the multi-stage driver (3 points) 

Qualitatively describe another approach which might further decrease the delay of our sign-extension 
circuit. Limit your answer to less than three sentences. 

The wire delay is dominating the total delay of this path, so we should consider a distributed 
driver where the stages are spread along the wire. We could use logical effort or standard 
repeater techniques to determine where to place the stages and how to size them. 
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Problem 2 : Optimizing delay of branch comparator (23 total points) 

The branch comparator in the SMIPS processor requires a comparator that can check whether 
32 bits are all equal to zero. The output of the comparator is one if all inputs are zero. In 
this problem we will use the logical effort methodology to compare the delay of various branch 
comparator implementations. Remember that there is a list of useful equations at the end of this 
quiz. 

Part 2.A : Optimal delay of an initial implementation (9 points) 

The following circuit uses a tree of NAND and NOR gates to implement the branch comparator. 
Verify to yourself that the output is one if and only if all 32 inputs are zero. Use the method 
of logical effort to estimate the optimal delay (in picoseconds) for this circuit. Assume that the 
input capacitance of a 4-input NOR gate is 3 fF and that the branch comparator must drive a 
load capacitance of 3 fF. Also assume that the delay unit (� ) for this process is 20 ps and that the 
parasitic delay of a minimum-sized inverter is 1. 

F = GBH = (9/3)(4/3)(9/3) × 1 × (3/3) = 12 

P = 4pinv + 2pinv + 4pinv = 10 

D̂ = N F 1/N + P = 3(12)1/3 + 10 = 16.9 

D̂abs = D̂� = 337ps 
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Part 2.B : Optimal delay of various NOR/NAND trees (10 points) 

We are given a gate library which contains the following four gates: 4-input NAND, 4-input NOR, 
2-input NAND, and 2-input NOR. We will now use logical effort to evaluate all of the ways we can 
construct the branch comparator from this library. First, fill in the following table with all of the 
possible NOR/NAND trees which implement the correct logic function. Remember that the output 
of the tree must be one if all of the inputs are zero. You cannot use inverters. To denote a given 
NOR/NAND tree simply list the type of gate used in each stage of the tree. For example, the tree 
corresponding to Part 2.A is { nor4, nand2, nor4 }, and it is already filled in on the table. Use 
the logical effort methodology to fill in the path logical effort (G), the total path effort (F ), the 
path parasitic delay (P ), and the optimal path delay ( D̂abs) in picoseconds for each NOR/NAND 
tree. You should be able to fill in the first row of the table based on your answer from Part 2.A. 
Hint: The number of possible NOR/NAND trees is equal to the number of rows in the table. Which 
is the fastest implementation? 

We did not tell you the input capacitance of a 2-input NOR gate. So if you assumed that both 
2-input and 4-input NOR gates had the same input capacitance you would get the following 
result. 

ˆ ˆNOR/NAND Tree G Cin H F F 1/N P N D Dabs 

{ nor4,nand2,nor4 } 12 3 1 12 2.29 10 3 16.9 337ps 
{ nor4,nand4,nor2 } 10 3 1 10 2.15 10 3 16.5 329ps 
{ nor2,nand4,nor4 } 10 3 1 10 2.15 10 3 16.5 329ps 
{ nor2,nand2,nor2,nand2,nor2 } 8.2 3 1 8.2 1.52 10 5 17.6 352ps 

A 2-input NOR gate, however, does not have the 
same input capacitance as a 4-input NOR gate. The 
mosfet diagrams to the right show the two NOR 
gates sized assuming: (a) that PMOS transistors are 
twice as slow as NMOS, and (b) that we want equal 
rise/fall times. The 4-input NOR gate has an in
put capacitance of 3 fF so the capacitance per unit 
of transistor width is 3/9 fF. Thus a reasonable as
sumption is that the 2-input NOR gate has an input 
capacitance of 3/9 × 5 or 1.67 fF. 

8 

8 

8 

8 

1 111 

4 

4 

11 

ˆ ˆNOR/NAND Tree G Cin H F F 1/N P N D Dabs 

{ nor4,nand2,nor4 } 12 3 1.0 12 2.29 10 3 16.9 337ps 
{ nor4,nand4,nor2 } 10 3 1.0 10 2.15 10 3 16.5 329ps 
{ nor2,nand4,nor4 } 10 1.7 1.8 18 2.62 10 3 17.8 357ps 
{ nor2,nand2,nor2,nand2,nor2 } 8.2 1.7 1.8 14.8 1.71 10 5 18.5 371ps 
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Part 2.C : Optimal delay for alternative capacitive load (4 points) 

Now assume that the branch comparator must drive an output load which is a thousand times 
larger (3,000 fF). Which NOR/NAND tree is the fastest implementation? You may answer this 
question numerically or with a brief qualitative argument. 

Using the implementation with the most stages will help mitigate the increased output load. 
More stages increase N and thus the effort portion of the optimal delay decreases. Adding 
too many stages, though, will increase the parasitic term of the optimal delay and result in 
too little effort per stage. For this problem the five stage tree should perform best with the 
larger output load. We show this numerically below. 

ˆ ˆNOR/NAND Tree G Cin H F F 1/N P N D Dabs 

{ nor4,nand2,nor4 } 12 3 1k 12k 22.9 10 3 78.6 1.6ns 
{ nor4,nand4,nor2 } 10 3 1k 10k 21.5 10 3 74.6 1.5ns 
{ nor2,nand4,nor4 } 10 1.7 1.8k 18k 26.2 10 3 88.6 1.8ns 
{ } 8.2 1.7 1.8k 14.8k 6.83 10 5 44.1 882psnor2,nand2,nor2,nand2,nor2 
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Problem 3 : Calculating minimum clock period (15 total points) 

The following diagram shows a finite state machine built from combinational logic (CL) and D-flip-
flops (DFFs). The table lists the various timing parameters. The initial clock period is 9. 

CL1 CL2 
D Q D Q 

DFF2DFF1 
B C 

A 

clk 

T 2 
T 3 

Tsetup 1 
T 5 

Parameters for DFFs Symbol Value 

Clock to Q min delay CQMIN 

Clock to Q max delay CQMAX 

Setup time 
Hold time hold 

T 1 2 
T 1 3 
T 2 4 
T 2 5 

Parameters for CLs Symbol Value 

CL1 min propagation delay CL ,P DMIN 

CL1 max propagation delay CL ,P DMAX 

CL2 min propagation delay CL ,P DMIN 

CL2 max propagation delay CL ,P DMAX 

Part 3.A : Identifying timing violation (5 points) 

There is a timing violation in this circuit. What is the violation and on what path does it occur? 

Hold time violation on DFF1.Q->A->CL1->DFF1.D since TCQMIN + TCL1,P DMIN < Thold 
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Part 3.B : Fixing timing violation (5 points) 

Assume you have a non-inverting buffer for which TBUF,P DMIN is 2 and TBUF,P DMAX is 3. Draw 
a new circuit diagram showing how these buffers can be added to the circuit to resolve the timing 
violation. 

Add one buffer at node A so that TCQMIN + TBUF,P DMIN + TCL1,P DMIN > Thold 

CL1 CL2 
D Q D Q 

B C 

A 

clk 

buffer 

Part 3.C : Final clock period (5 points) 

What is the final clock period? How did fixing the timing violation affect the clock period? 

Tperiod = TCQMAX + TBUF,P DMAX + TCL1,P DMAX + Tsetup = 10 
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Problem 4 : Rule firing in Bluespec (20 total points) 

In this problem we will explore the behavior of the two stage pipeline presented in slides L13-3 to 
L13-6 (these slides are included in the lecture notes section.You should assume that bu has a maximum 
capacity of two instruction templates. You should also assume the following starting state: 

• bu holds Tuple2(99, EBz {cond: 0, addr:200}) 

• pc is 100 

• Instruction at address 100 is Add {dst: R3, src1: R1, src2: R2} 

• Instruction at address 101 is Add {dst: R6, src1: R4, src2: R5} 

• Instruction at address 200 is Add {dst: R9, src1: R4, src2: R7} 

Part 4.A : (4 points) 

Describe the contents of pc and bu after applying the Fetch&Decode rule. 

pc = 101 

Instruction templates in bu:

Tuple2(100, EAdd {dst: R3, op1:rf[R1], op2:rf[R2]}) and

Tuple2( 99, EBz {cond: 0, addr: 200})


Part 4.B : (4 points) 

Describe the contents of pc and bu after applying the Fetch&Decode rule followed by the Execute 
rule. 

pc = 200 

Instruction templates in bu:

Empty
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Part 4.C : (4 points) 

Describe the contents of pc and bu after applying the Execute rule followed by the Fetch&Decode 
rule. 

pc = 201 

Instruction templates in bu:

Tuple2(200, EAdd {dst: R9, op1:rf[R4], op2:rf[R7]})


Part 4.D : (8 points) 

We can write a single rule that achieves the effect described in Part 4.C. Fill in the following rule 
so that it has the same effect as applying the Execute rule followed by the Fetch&Decode rule. 

Notice that we have used a new method for the bu FIFO which clears the fifo and then enques 
the given value in the same cycle. An acceptable solution might also call clear() and enq() 
directly but in this case, the solution must make some kind of note indicating that there might 
be an issue with using both of these methods in the same rule on the same queue. There 
are some subtle issues with this part which we are currently working out - we will post an 
updated set of solutions in the next few days. 

rule compoundBzFetchAdd ( instr matches Add {dst:.rd, src1:.ra,src2:.rb}

&&& it matches EBz {cond:.cv,addr:.av} );


if ( cv == 0 ) then begin 

bu.clearThenEnq(tuple2(av, EAdd {dst:rd, op1:rf[ra], op2:rf[rb]})); 
pc <= av+1; 

end

else if ( !stall ) then begin


bu.deq();

bu.enq(tuple2(pc, EAdd {dst:rd, op1:rf[ra], op2:rf[rb]}));

pc <= pc+1;


end

else begin


bu.deq(); 

end

endrule
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Problem 5 : Bluespec synthesis (20 total points) 

In this problem we will explore the circuit that is generated for the example taken from the lecture 
slide L08-20. You may find slide L10-26 helpful. These slides are included at the end of the quiz. 

(* descending_urgency = "r1, r2" *) 

// Moving packets from input FIFO i1 
rule r1;


Tin x = i1.first();

if ( dest(x) == 1 ) o1.enq(x);

else o2.enq(x);

i1.deq();

if (interesting(x)) c <= c + 1;


endrule 

// Moving packets from input FIFO i2 
rule r2;


Tin x = i2.first();

if ( dest(x) == 1 ) o1.enq(x);

else o2.enq(x);

i2.deq();

if (interesting(x)) c <= c + 1;


endrule 

Naming convention: The Data, Ready and Enable wires of the method g of module m are named 
m.gData, m.gRdy, and m.gEn, respectively. We may attach rule names to these names for further 
clarification if necessary. The boolean equations for the circuits that are generated for rule r1 may 
be expressed as follows where can fire r1 gives the conditions under which rule r1 can fire. 

Guard Logic 

x1 = i1.firstData;

p1 = (dest(x1) == 1);

q1 = interesting(x1);

can_fire_r1 = i1.firstRdy


&& ((p1 && o1.enqRdy) || (!p1 && o2.enqRdy)); 

Action logic (just for rule 1) 

o1.enqEn_r1 = p1; o1.enqData_r1 = x1;

o2.enqEn_r1 = !p1; o2.enqData_r1 = x1;

i1.deqEn_r1 = 1;

cEn_r1 = q1; cWriteData_r1 = (cReadData+1);
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Part 5.A : (4 points) 

Write down the equation for can fire r2 (i.e. the conditions under which rule r2 can fire). 

Assuming p2 = (dest(i2.firstData) == 1) then 

can_fire_r2 = i2.firstRdy

&& ((p2 && o1.enqRdy) || (!p2 && o2.enqRdy))


Part 5.B : (8 points) 

Write down the equations for the conditions under which rules r1 and r2 will fire. Do not forget 
the effect of urgency annotations. 

will_fire_r1 = can_fire_r1

will_fire_r2 = !can_fire_r1 && can_fire_r2


Part 5.C : (8 points) 

Write down the logic equations for the following signals obtained by combining the logic for the 
two rules. Let MUX((x1, c1), (x2, c2)) represent the MUX that produces x1 when c1 is true 
and x2 when c2 is true, assuming c1 and c2 can never be true simultaneously. 

o1.enqEn = MUX((o1.enqEn_r1, will_fire_r1),

(o1.enqEn_r2, will_fire_r2))


o1.enqData = MUX((o1.enqData_r1, will_fire_r1),

(o1.enqData_r2, will_fire_r2))


i1.deqEn = will_fire_r1 
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Equation Sheet 

Equation or Symbol 

g 

h = Cout/Cin 

f = gh 

p 

pinv 

d = f + p 

dabs = d� 

G = gi 

H = Cout/Cin 

F = GH 

D = di = gihi + pi 

f̂ = gihi = F 1/N 

D̂ = N F 1/N + P 

ĥi = 1/gi × F 1/N 

Delay = n �j=i Rj Cii=0 j=0 

Rd 

Rw 

Cw 

Description 

Gate logical effort 

Gate electrical effort 

Gate effort 

Gate parasitic delay 

Parasitic delay of minimum-sized inverter 

Delay in units of � 

Delay unit 

Absolute delay in seconds 

Path logical effort 

Path electrical effort 

Path effort 

Path delay 

Optimal stage effort 

Optimal path delay 

Optimal stage electrical effort 

Penfield-Rubenstein wire-delay model 

Resistance of driver 

Total resistance of wire 

Total capacitance of wire 

Delay = Rd × Cw /2 + (Rd + Rw ) × (Cw /2 + Cload) Simple lumped � model 

Number of inputs 
Gate Type 1 2 3 4 5 n


Inverter Logical Effort 1 
NAND Logical Effort 4/3 5/3 6/3 7/3 (n + 2)/3 
NOR Logical Effort 5/3 7/3 9/3 11/3 (2n + 1)/3 

Inverter Parasitic Delay pinv 

NAND Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv 

NOR Parasitic Delay 2pinv 3pinv 4pinv 5pinv npinv 


