
1

February 22, 2005 http://csg.csail.mit.edu/6.884/ L07-1

Bluespec-1: Design Affects 
Everything

Arvind 
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc, 
January 2005

February 22, 2005 L07-2http://csg.csail.mit.edu/6.884/

Chip costs are exploding
because of design complexity

Design and verification 
dominate escalating 
project costs

Issues Found on First Spin ICs/ASICs

43%
20%

17%
14%

12%
11%
11%

10%
10%

7%
4%

3%

0% 10% 20% 30% 40% 50%

Functional Logic Error
Analog Tuning Issue

Signal Integrity Issue
Clock Scheme Error

Reliability Issue
Mixed Signal Problem

Too Much Power
Has Path(s) Too Slow
Has Path(s) Too Fast

IR Drop Issues
Firmware Error

Other

Source: Aart de Geus, CEO of Synopsys
Based on a survey of 2000 users by Synopsys

SoC failures 
costing 

time/spins

IC Design Costs

0

5

10

15

20

25

30

0.18µm 0.13µm 90nm

Silicon Feature Dimension

C
o

st
 (

$
M

)

Source: IBM/IBS, Inc.

Architecture

Verification

Physical

Validation
Prototype



2

February 22, 2005 L07-3http://csg.csail.mit.edu/6.884/

Common quotes
“Design is not a problem;
design is easy”

Almost complete reliance on post-design 
verification for qualityMind se

t

“Verification is a problem”
“Timing closure is a problem”
“Physical design is a problem”

February 22, 2005 L07-4http://csg.csail.mit.edu/6.884/

The U.S. auto industry
Sought quality solely through post-build inspection
Planned for defects and rework

and U.S. quality was…

Through the early 1980s:

Defect

Make Inspect Rework

D
ef

ec
t

D
ef

ec
t



3

February 22, 2005 L07-5http://csg.csail.mit.edu/6.884/

… less than world class

Adding quality inspectors (“verification 
engineers”) and giving them better tools, was 
not the solution
The Japanese auto industry showed the way

“Zero defect” manufacturing 

February 22, 2005 L07-6http://csg.csail.mit.edu/6.884/

New mind set:

Design affects everything!
A good design methodology

Can keep up with changing specs
Permits architectural exploration
Facilitates verification and debugging
Eases changes for timing closure
Eases changes for physical design
Promotes reuse

Design for Correctness

⇒ It is essential to

Image of Chevrolet Chevette removed due to copyright restrictions. 



4

February 22, 2005 L07-7http://csg.csail.mit.edu/6.884/

Why is traditional RTL
too low-level?

Examples with dynamic and 
static constraints

February 22, 2005 L07-8http://csg.csail.mit.edu/6.884/

Design must follow many
rules (“micro-protocols”)

not full

not empty

not empty

n

n

RDY

ENAB

RDY
ENAB

RDY

en
q

de
q

fir
st

FIFO

Consider a FIFO (a queue)

In the hardware, 
there are a number of requirements 
for correct use

DATA_IN

DATA_OUT

enq: put an
item into the queue

deq: remove an
item from the queue

first: examine item
at head of queue



5

February 22, 2005 L07-9http://csg.csail.mit.edu/6.884/

Requirements for correct use
Requirement 1:  deq ENAB only when RDY (not empty)

not full

not empty

not empty

n

n

RDY

ENAB

RDY
ENAB

RDY

en
q

de
q

fir
st

FIFO

DATA_IN

DATA_OUT

client

Requirement 2:  first DATA_OUT only when RDY (not empty)

client

Requirement 3:  enq ENAB simultaneously with DATA_IN

client

Requirement 4:  enq ENAB only when RDY (not full)

February 22, 2005 L07-10http://csg.csail.mit.edu/6.884/

Correct use of a shared FIFO
• Needs a multiplexer in front of each input (    )
• Needs proper control logic for the multiplexer

not full

not empty

not empty

n

n

RDY

ENAB

RDY
ENAB

RDY

en
q

de
q

fir
st

FIFO

DATA_IN

DATA_OUT

client 1

client 2

control



6

February 22, 2005 L07-11http://csg.csail.mit.edu/6.884/

Concurrent uses of a FIFO
enq ENAB ok if deq ENAB,  even if not RDY ??

not full

not empty

not empty

n

n

RDY

ENAB

RDY
ENAB

RDY

en
q

de
q

fir
st

FIFO

DATA_IN

DATA_OUT

client 1

client 2

February 22, 2005 L07-12http://csg.csail.mit.edu/6.884/

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

Example from a commercially
available FIFO IP component

These constraints are taken 
from several paragraphs of 
documentation, spread over 
many pages, interspersed 
with other text



7

February 22, 2005 L07-13http://csg.csail.mit.edu/6.884/

Credit based interface:

A High-Bandwidth Credit-based 
Communication Interface 

Static correctness constraints:
Data types agree on both ends?
Credit values agree (C1 == C2)?
Credit values automatically sized to comm latency?
B’s buffer properly sized (C2)?
B’s buffer pointers properly sized (log(C2))?

I/F Control
Credit = C2

I/F Control
Credit = C1

Module BModule A

You can have X credits

I can send up to X items

February 22, 2005 L07-14http://csg.csail.mit.edu/6.884/

Why is Traditional RTL 
low-level?

Hardware for dynamic constraints must 
be designed explicitly
Design assumptions must be explicitly 
verified
Design assumptions must be explicitly 
maintained for future changes
If static constraints are not checked by 
the compiler then they must also be 
explicitly verified



8

February 22, 2005 L07-15http://csg.csail.mit.edu/6.884/

In Bluespec SystemVerilog (BSV) …
Power to express complex static 
structures and constraints

Checked by the compiler
“Micro-protocols” are managed by the 
compiler

The compiler generates the necessary 
hardware (muxing and control)
Micro-protocols need less or no verification

Easier to make changes while 
preserving correctness

Smaller, simpler, clearer, more correct code

February 22, 2005 L07-16http://csg.csail.mit.edu/6.884/

Bluespec SystemVerilog (BSV)

Structure
Modules, interfaces, types

HW semantics
Cooperating FSMs

+ Assertions

Low-level description of FSMs
Processes, cycle counting, 
explicit management of 
shared resources

SystemVerilog

High-level description of FSMs
Rules, Interface Methods

Static elaboration, verification
Types, Procedures

Bluespec SystemVerilog

Structure
Modules, interfaces, types

HW semantics
Cooperating FSMs

+ Assertions

Low-level description of FSMs
Processes, cycle counting, 
explicit management of 
shared resources



9

February 22, 2005 L07-17http://csg.csail.mit.edu/6.884/

Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluespec C sim Cycle
Accurate

Blueview

February 22, 2005 L07-18http://csg.csail.mit.edu/6.884/

Bluespec:  State and Rules 
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their 
interfaces.

interface

module



10

February 22, 2005 L07-19http://csg.csail.mit.edu/6.884/

Programming with
rules: A simple example

Euclid’s algorithm for computing the 
Greatest Common Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:

February 22, 2005 L07-20http://csg.csail.mit.edu/6.884/

module mkGCD (ArithIO#(int));
Reg#(int) x <- mkRegU; 
Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));
x <= y;  y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

State

Internal
behavior

External
interface

GCD in BSV



11

February 22, 2005 L07-21http://csg.csail.mit.edu/6.884/

rdy
enab

t

t
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

t

y == 0

y == 0

implicit 
conditions

interface ArithIO #(type t);
method Action start (t a, t b);
method t result();

endinterface

Many different implementations can provide the same 
interface:

module mkGCD (ArithIO#(int));

GCD Hardware Module

February 22, 2005 L07-22http://csg.csail.mit.edu/6.884/

Generated Verilog RTL: GCD
module mkGCD(CLK, RST_N,start__1, start__2, E_start_, ...)

input CLK; ...
output start__rdy; ... 
wire [31 : 0] x$get; ...
assign result_ = x$get;
assign _d5 = y$get == 32'd0;
...
assign _d3 = x$get ^ 32'h80000000) <= (y$get ^ 32'h80000000);
assign C___2 = _d3 && !_d5;
...
assign x$set = E_start_ || P___1;
assign x$set_1 = P___1 ? y$get : start__1;
assign P___2 = _d3 && !_d5;
...
assign y$set_1 =

{32{P___2}} & y$get - x$get | {32{_dt1}} & x$get |
{32{_dt2}} & start__2;

RegUN #(32) i_x(.CLK(CLK), .RST_N(RST_N), .val(x$set_1), ...) 
RegN #(32) i_y(.CLK(CLK), .RST_N(RST_N), .init(32'd0),  ...)

endmodule



12

February 22, 2005 http://csg.csail.mit.edu/6.884/ L07-23

Exploring microarchitectures

IP Lookup Module

February 22, 2005 L07-24http://csg.csail.mit.edu/6.884/

IP Lookup block in a router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on 
the “Longest Prefix Match” 
(LPM) of it’s IP address with 
entries in a routing table
Line rate and the order of 
arrival must be maintained line rate ⇒ 15Mpps for 10GE



13

February 22, 2005 L07-25http://csg.csail.mit.edu/6.884/

18

2

3

M RefResultIP address

E5.13.7.2

C10.18.200.7

7.14.7.2

F10.18.201.5

F7.13.7.3

Sparse tree representation

3

A…

A…

B

C…

C…

5 D

F…

F…

14

A…

A…

7

F…

F…

200

F…

F…

F*

E5.*.*.*

D10.18.200.5

C10.18.200.*

B7.14.7.3

A7.14.*.* F…

F…

F

F…

E5

7

10

255

0

1
4

4A Real-world lookup algorithms 
are more complex but all make 
a sequence of dependent 
memory references.

February 22, 2005 L07-26http://csg.csail.mit.edu/6.884/

SW (“C”) version of LPM
int
lpm (IPA ipa)                         /*  3 memory lookups */
{

int p;

p = RAM [ipa[31:16]];       /*  Level 1: 16 bits  */
if (isLeaf(p)) return p;

p = RAM [p + ipa [15:8]];  /*  Level 2: 8 bits  */
if (isLeaf(p)) return p;

p = RAM [p + ipa [7:0]];    /*  Level 3:  8 bits  */
return p; /* must be a leaf */

}

How to implement LPM in HW?
Not obvious from C code!



14

February 22, 2005 L07-27http://csg.csail.mit.edu/6.884/

Longest Prefix Match for IP lookup:
3 possible implementation architectures

Rigid pipeline

Inefficient memory 
usage but simple 
design

Linear pipeline

Efficient memory 
usage through 
memory port 
replicator

Circular pipeline

Efficient memory 
with most complex 
control

Designer’s 
Ranking:

1 2 3
Which is “best”?

Arvind, Nikhil, Rosenband & Dave ICCAD 2004

February 22, 2005 L07-28http://csg.csail.mit.edu/6.884/

Synthesis results

99.9%3.67 (2% slower)8170 (1% larger)257Circular BSV

99.9%3.628103364Circular V

99.9%4.7 (same)15910 (8% larger)168Linear BSV

99.9%4.714759410Linear V

63.5%3.32 (7% faster)2391 (5% larger)179Static BSV

63.5%3.562271220Static V

Mem. util. 
(random 
workload)

Best Speed
(ns)

Best Area
(gates)

Code 
size
(lines)

LPM 
versions

Synthesis: TSMC 0.18 µm lib

V = Verilog;BSV = Bluespec System Verilog

- Bluespec results can match carefully coded Verilog
- Micro-architecture has a dramatic impact on performance
- Architecture differences are much more important than 

language differences in determining QoR



15

February 22, 2005 L07-29http://csg.csail.mit.edu/6.884/

Implementations of the same arch -
Static pipeline: Two designers, two results

3.562271Static V (BEST)

3.608898Static V (Replicated)

Best Speed
(ns)

Best Area
(gates)

LPM versions

Replicated:

RAM

FSM

MUX / De-MUX

FSM FSM FSM

Counter

MUX / De-MUX
resultIP addr

FSM

RAM

MUX

result

IP addr

BEST:

Each packet 
is processed 
by one FSM

Shared 
FSM

February 22, 2005 http://csg.csail.mit.edu/6.884/ L07-30

Reorder Buffer

Verification-centric design



16

February 22, 2005 L07-31http://csg.csail.mit.edu/6.884/

Example from CPU design

Nirav Dave, MEMOCODE, 2004

Speculative, out-of-order
Many, many concurrent 
activities

Branch

Register
File

ALU
UnitRe-

Order
Buffer
(ROB) MEM

Unit

Data
Memory

Instruction
Memory

Fetch Decode

FIFO

FIFO FIFO FIFO FIFO
FIFO

FIFO
FIFO

FIFO
FIFORe-

Order
Buffer
(ROB)

Branch

Register
File

ALU
Unit

MEM
Unit

Data
Memory

Instruction
Memory

Fetch Decode

February 22, 2005 L07-32http://csg.csail.mit.edu/6.884/

ROB actions
Empty

Waiting
Dispatched

Killed
Done

E
W
Di
K
Do

Head

Tail

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           - -Instr - V           -

V           0 -Instr B V           0W

V           0 -Instr C V           0W

-Instr D V           0W

V           0 -Instr A V           0W

V           - -Instr - V           -

V           - -Instr - V           -E

E

E

E

E

E

E

E

E

E

E

E

V           0

Re-Order Buffer

Insert an
instr into

ROB

Decode
Unit

Register
File

Get operands
for instr

Writeback
results

Get a ready
ALU instr

Get a ready
MEM instr

Put ALU instr
results in ROB

Put MEM instr
results in ROB

ALU
Unit(s)

MEM
Unit(s)Resolve

branches

Operand 1 ResultInstruction Operand 2State



17

February 22, 2005 L07-33http://csg.csail.mit.edu/6.884/

But, what about all
the potential race conditions?

Reading from the register file at the same 
time a separate instruction is writing back to 
the same location

Which value to read?
An instruction is being inserted into the ROB 
simultaneously to a dependent upstream 
instruction’s result coming back from an ALU

Put a tag or the value in the operand slot?
An instruction is being inserted into the ROB 
simultaneously to A branch mis-prediction 
must kill the mis-predicted instructions and 
restore a “consistent state” across many 
modules

February 22, 2005 L07-34http://csg.csail.mit.edu/6.884/

Rule Atomicity 
Lets you code each operation in isolation
Eliminates the nightmare of race conditions 
(“inconsistent state”) under such complex 
concurrency conditions

Insert Instr in ROB
• Put instruction in first
available slot
• Increment tail pointer
• Get source operands

- RF <or> prev instr

Dispatch Instr
• Mark instruction
dispatched
• Forward to appropriate
unit

Write Back Results to ROB
• Write back results to
instr result
• Write back to all waiting
tags
• Set to done

Commit Instr
• Write results to register
file (or allow memory
write for store)
• Set to Empty
• Increment head pointer

Branch Resolution
• …
• …
• …

All behaviors are 
explainable as a 
sequence of atomic  
actions on the 
state



18

February 22, 2005 L07-35http://csg.csail.mit.edu/6.884/

Synthesizable model of IA64 
CMU-Intel collaboration

Develop an Itanium µarch model that is 
concise and malleable
executable and synthesizable

FPGA Prototyping
XC2V6000 FPGA interfaced to P6 memory bus
Executes binaries natively against a real PC 
environment (i.e., memory & I/O devices)

An evaluation vehicle for:
Functionality and performance: a fast µarchitecture 
emulator to run real software
Implementation: a synthesizable description to 
assess feasibility, design complexity and 
implementation cost

Roland Wunderlich & James Hoe @ CMU 
Steve Hynal(SCL) & Shih-Lien Liu(MRL)

February 22, 2005 L07-36http://csg.csail.mit.edu/6.884/

IA64 in Bluespec Wunderlich & Hoe

Roland WunderlichRoland Wunderlich 33

Roland WunderlichRoland Wunderlich 77

Platform CapabilitiesPlatform Capabilities

High speed execution of the Bluespec model, High speed execution of the Bluespec model, 
runs at 100 MHz, 4 orders of magnitude faster runs at 100 MHz, 4 orders of magnitude faster 
than than ModelSimModelSim

Full access to the FSB, allowing 800 MB/s cache Full access to the FSB, allowing 800 MB/s cache 
line reads and writes, plus a control channel to line reads and writes, plus a control channel to 
the Pentium III processor via mapped I/Othe Pentium III processor via mapped I/O

Large FPGA resources, the current design Large FPGA resources, the current design 
occupies less than 30% of the FPGA resourcesoccupies less than 30% of the FPGA resources

Roland WunderlichRoland Wunderlich 55

Memory

Branch

Integer×3

Pipe. Control

Fetch Decode Disperse

Stack Read Execute Write

Stack Read Execute

Stack Read Execute Memory Write
Instr. Cache

FSB Control Data CacheUnified L2

Branch Pred.

Register Set

Write

Stack

Bypass

IPF Microarchitecture ModelIPF Microarchitecture Model

The model was developed in a 
few months by one student!


