
6.890 Lecture 21 Scribe Notes
 

1 3SUM motivation
 

Throughout this class, we have categorized problems based on whether they 
were solvable in polynomial time or not. However, it would also be nice to 
know whether certain polynomial problems are ω(nc−E), and for which there 
are algorithms known to solve the problem in O(nc), for some constant c 
and any given E > 0. 

So, let us consider the following problem. Given n integers, we want to 
know if any 3 sum to 0. This problem is called 3SUM . [4] There are two 
versions of this problem depending on whether the three integers are allowed 
to be duplicates. This is easily solvable in O(n3) by trying all triples. 

We can also do this in O(n2) randomized time. Indeed, we can first 
compute all the pairwise sums and then compute all the pairwise sums and 
create a hash table of these values; then, we check over all integers if its 
negation is in the list of integers. 

But we can do better; there exists an O(n2) deterministic algorithm. 
Start with two copies of the integers in sorted order, which takes n log n 
time. Then, in one array we have a pointer at the front of the list, and 
the other array has a pointer at the end of the list. We do the following 
for each the n integers in the set. If the sum of the integers at the two 
pointers and the current integer is smaller than 0, we move the first array’s 
pointer forward; if the sum is larger than 0, we move the second array’s 
point backwards; otherwise, we have the three integers sum to 0, and we are 
done. If the two pointers crossover, we move onto the next integer. This 
algorithm clearly takes O(n2) time. 

It is conjectured that no O(n2−E) algorithm exists for this problem, for 
any E > 0. This is called the 3SUM -Conjecture. 

In various models of computation or with a more limited problem scope, 
we have algorithms that run in subquadratic time. 

If we have that all of the integers are in the range [−u, u], we can solve 
this problem in O(n + u log u) time. We have a bunch of subquadratic 
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algorithms as well, but not by factor of E. We can use a model of computation 
called word RAM to manipulate log n words in constant time, and it will 

2/( logntake total time O(n ))2); this is randomized. [2] log log n 
This year in fact, we were able to show that there is a randomized al-

log ngorithm with running time O(n2/ ) and we have a deterministic algolog log n 
log nrithm using real RAM that can solve it in O(n2/( )log log n 

2 
3 ). [5] √ 

We also have a decision tree model in which it takes O(n1.5 log n) time 
to run the model [5]; this is not an algorithm, as we don’t know how to 
compute the tree in subquadratic time. This is one of many problems where 
we have a better decision tree than algorithms. 

1.1 k-SUM and Its Relation to NP 

Our 3-SUM problem can easily be generalized to k-SUM, which asks, given 
n integers, do any k of them sum to 0. 3-SUM is the most popular type of 
these problems. 

In addition, k-SUM is NP-complete. Namely, this is essentially asking 
the Partition Problem, which is known to be NP-complete. In fact, it is 
W [1]-hard with respect to k. Furthermore, if we assume the exponential 
time hypothesis, we have there is no no(k) algorithm, where we are assuming 

0.99k ≤ n . [7] Finally, we have that there is a randomized algorithm of 
l k 

We then have the following k-SUM conjecture: there is no O(n

2O(n
 l). 
2

l k 

algorithm for solving this problem. This reduces to the normal 3-SUM 
conjecture for k = 3. 

2 3SUM-Hardness 

2.1 Definition 

This leads us to the notion of 3SUM -Hardness. We call a problem 3SUM 
hard, if there exists an O(n2−E) algorithm that can solve the problem, then 
there exists one for 3SUM as well. 

2.2 3SUM Reductions 

This leads us to the notion of 3SUM -Reductions. Recall we have if A 
reduces to B, we can solve A using B. So, suppose we reduce an instance x 

'in A to x' in B. If n = |x|, and n = |x'|, then if we were to have a 3SUM 

l−E) 
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Figure 1: The relationships of problems to 3SUM. 

' reduction, it is required that we make a O(1)-call reduction on n = O(n), 
and that our reduction is O(n2−E) for some E > 0. 

So, if there is a 3SUM reduction from A to B, then we have if A is 
3SUM-hard (such as 3SUM), then B is also 3SUM-hard. 

3 3SUM-hard Problems 

3.1 3SUM-Variants 

We have that 3SUM with u = O(n3) is still 3SUM -hard. This shows we 
don’t need to have the numbers being too large. [6] [2] 

' 3SUM is the following: given 3 sets A, B, C of n integers, are there 
a ∈ A, b ∈ B, and c ∈ C such that a + b = c. This problem is also 3SUM 
hard. This is easy to see by a reduction from 3SUM with the original 
instance being S; just put A = S, B = S, C = −S. [4] 

' We can also show how to reduce from 3SUM to 3SUM using very large 
integers [4]; namely, we can make S to be all the elements of A + large, 
B +2 large, and C − 3 large, where large just means a large number that is 
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added to each element of the corresponding sets. 

3.2 Computational Geometry 

The paper by Gajentaan and Overmars has lots of problems in computa
tional geometry that are reducible from 3SUM . 

3.2.1 GeomBase 

Our first problem is called GeomBase, which asks the following: given n 
points in 2D with y ∈ {0, 1, 2}, does there exist a non-horizontal line hitting 
3 points of this set. [4] This is displayed in Figure 2. 

Figure 2: The problem of GeomBase. 

' We can prove this problem is 3SUM -hard by reducing from 3SUM . 
Namely, for a ∈ A, we consider the point (a, 0); b ∈ B, the point (b, 2); 
and c ∈ C, ( 2 

c , 1). Then, it is easy to show that three points lie on a non-
horizontal line if and only if there exists a ∈ A, b ∈ B, and c ∈ C, such 
that a + b = c. In fact, this reduction can be used in reverse to show that 

' GeomBase reduces to 3SUM . We may have that the points may not be 
lattice points, but we can always scale the x-coordinates to become integers, 

' and then we can reduce to 3SUM . 
As an important step to show problems later in this lecture are 3SUM 

hard, we are going to consider a transformation from a GeomBase Instance. 
We will first construct the three lines y = 0, y = 1, and y = 2. Then, for 
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Figure 3: The transfomation to GeomBase’. 

every point on the lines in the original instance, we draw an E-neighborhood 
for each of those points that get removed from the horizontal lines. These 
give a notion of holes. Then, the half-infinite rays can be replaced by finite 
segments that are bookended by vertical segments intended to block hori
zontal separating lines. We call this new instance an instance of GeomBase’. 
This is displayed in Figure 3. 

3.2.2 Collinearity 

We now begin a shift towards Incidence Problems. 
We have a problem of asking whether there exist 3 points on a line, no 

two of which coincide. [4] This is 3SUM -hard. We can make a reduction 
from 3SUM to this problem. As displayed in Figure 4, we map from x to 
(x, x3) for each x in the 3SUM instance, where we assume the three chosen 
numbers have to be distinct. We can show that three points on the curve 
will lie on a line if and only if there are three integers summing to 0 in the 
original set. 
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Figure 4: The reduction from 3SAT to collinearity. 

Indeed, notice that 
b3−a3 c3−a3 2 2 2= ⇐⇒ b2 + ba + a = c + ca + a ⇐⇒ (b − c)(b + c + a) = b−a c−a 

0 ⇐⇒ b + c + a = 0, 

where in the last equality we assume that the three numbers are distinct. 

3.2.3 Concurrency 

We also can consider the following problem: given n lines, we ask whether 
any point is on three of the lines. [4] This is the dual of the previous problem. 

We will show this problem is 3SUM -Hard by reducing from Collinearity. 
Indeed, every point (a, b) can be mapped to the line ax + by +1 = 0. This is 
called projective plane duality. Then, this preserves point/line incidence; if 
three points were collinear, the three corresponding lines are incident, and 
vice versa. Therefore, we have a 3SUM -reduction. 

Incidentally, we can also consider the reverse reduction. If we have any 
lines that pass through the origin, we can translate all the lines so that none 
of them pass through the origin. Then, we can consider the projective plane 
duality defined above, and we have a reduction. 

As a side note, all the the d dimensional versions of the problems men
tioned so far, are d + 1-sum hard. 
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Figure 5: The reduction from GeomBase to Separator, using GeomBase’. 

3.2.4 Separator 

We can now consider another type of problem. Suppose we are given n line 
segments in the plane. We ask if there is a line that separates them into 2 
nonempty groups. This line is not allowed to intersect any of the segments. 
[4] This is called the Separator Problem. 

We can reduce from GeomBase to Separator. Consider the corresponding 
GeomBase’ Instance. We have we can find a nonhorizontal line hitting 3 
points if and only if there is a line separating the corresponding segments 
into three points (the segments are formed by complement of original graph). 
This is displayed in Figure 5. 

3.2.5 Strips Cover Box 

We are now on course with Covering Problems. 
We have the following question. Does a union of n strips cover a given 

axis-aligned rectangle? A strip is just a fixed region in between two parallel 
lines. [4] 

We can reduce from GeomBase to Strips Cover Box. Consider the cor
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responding instance of GeomBase’, and rotate it 90 degrees. Then, con
sider the following duality: take the point (m, b) and map it to the line 
y = mx + b. The reverse construction is possible for all non-vertical lines. 
This is described in Figure 6 

Figure 6: The reduction from GeomBase to Strips Cover Box, using Geom-
Base’. 

Then, observe that points on a a single vertical segment, will get mapped 
into a strip of lines. Further, we can get the box by considering the 6 half-
planes that occur because of the rays, and then consider the bounding box 
of the hole formed by the union of these 6 regions Then, we restrict half 
planes to this rectangle by adding 6 more strips. We then have that if there 
is a point left behind by these strips, then GeomBase was in the negative. 

3.2.6 Triangles Cover Triangle 

We can also do the same type of question with Triangles. Do a bunch of 
triangles cover a triangle? [4] This reduces from Strips Cover Box. We 
start with a box. Make a triangle that covers the box, and then triangulate 
the exterior of the rectangle, but interior of triangle. Then, for each strip, 
triangulate each intersection. Then, we have the question do a bunch of 
triangles cover a triangle. We need to make sure we don’t blow up complexity 
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when we triangulate regions of strips, but this is fine as triangulation results 
in O(1)-gons. 

3.2.7 Hole in Union 

We have another problem called Hole In Union. This problem asks does 
a union of n triangles have a hole? [4] We can reduce from the previous 
problem of Triangles Cover Triangle. Indeed, let us add very thin triangles 
that cover the edges of the original triangle instance. We then have that 
there is a hole if and only if the triangles do not cover the triangle. 

3.2.8 Triangle Measure 

We have yet another question regarding triangles. Given a set of triangles 
in the plane, compute the measure of their union. [4] We have a reduction 
from Triangles Cover Triangle. First, we can add extra triangles to cover 
the edges of the original triangle instance. Then, we have that the area of 
the union of the triangles is equal to the area of the original triangle if and 
only if the triangles cover all the triangles. 

3.2.9 Point-Covering 

The Point-Covering problem asks given n half-planes, is there a k-way in
tersection, as in is there a point covered by at least k of the half-planes. 
[4] 

Observe if k ≤ n , we have that the answer is going to always be yes. 2 
But for larger values of k, this becomes harder. So, consider the reduction 

from Strips-Cover-Box. For each strip, take the 2 half-planes that do not 
cover the strip. Then, we have any point that does not lie in any of the strips 
lies in exactly n half-planes. Any other point will lie in fewer half-planes. 
Then, add 4 more half-planes that are directed inwards into the rectangle 
with each line overlapping with a rectangle edge. Then, if there is a point 
that is covered by exactly n +4 of the 2n +4 half-planes, we know the Strips 
will not cover the Box, and thus we have a reduction. 

3.2.10 Visibility Between Segments 

We now shift towards Visibility Problems. Our first problem deals with 
Visibility Between Segments. [4] Given a set of n horizontal line segments 
in the plane, and two particular segments s1 and s2. We ask whether there 
are points on s1 and s2 that can see each other; in other words, is there a 
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segment that, aside from its endpoints on s1 and s2 does not intersect any 
of the n horizontal line segments. This is displayed in Figure 7. 

Figure 7: Segment visibility reduction using GeomBase’. 

We reduce from GeomBase to Visibility-Between-Segments. We consider 
the corresponding GeomBase’ Instance. Then, add two segments, one above 
the segments and the other below. These two segments can only see each 
other if and only if there are three collinear E-neighborhoods corresponding 
to three collinear points in the original instance. 

3.2.11 Visible Triangle 

We can then consider a three-dimensional version of the previous problem 
with triangles. Given a set of n horizontal triangles in 3D, and one special 
triangle, T , and a given point in 3D-space, can we see a point on triangle 
T . This assumes that the n horizontal triangles are not transparent. [4] 

There is a reduction from Triangles Cover Triangle to this problem. In
deed, we first can suppose T has z-coordinate 0, and then make all the other 
triangles have different heights above T . Then, we can let the point be the 
point of infinity, and we have that T is visible from infinity if and only if 
the triangles do not cover T . This is depicted in Figure 8. 

We also have a reverse reduction for this problem from this problem to 
Triangles Cover Triangle. 
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Figure 8: Visible Triangle reduction.
 

3.2.12 Planar Motion Planning 

We also consider a group of Motion Planning Problems. The first problem 
is called Planar Motion Planning, which asks given given horizontal and 
vertical segment obstacles, can we move a robot (represented in the form of 
a line segment) allowing translations and rotations, from a given source to 
a goal without colliding into any obstacles. [4] 

The reduction is evident from the Figure 9. 

3.2.13 3D Motion Planning 

We can then extend the previous problem into 3D-space, to get 3D Motion 
Planning. It asks given a set of horizontal non-intersecting triangle obstacles 
in 3D-space, and a robot represented as a vertical line segment, can the robot 
move through the obstacles without collision, using translations only. [4] 

There is an algorithm to solve this problem in O(n2 log n)time. 
This problem can be reduced from Triangles Cover Triangles. Indeed, 

first we create a cage to prevent the robot from leaving the original triangle 
T in the original problem instance. Then, we see that we can go from a 
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Figure 9: Planar Motion Planning. 

given source from the top of the cage to the bottom of the cage, if and 
only if there is a point not covered by a triangle, and we are done. This is 
depicted in Figure 10. 

3.2.14 Fixed Angle Chains 

A fixed angle chain is a chain of line segments which follow each other at 
fixed angles.[3]We can imagine this in 3 dimensions as an object where the 
segments are attached to each other at joints; the joints have a fixed angle 
but can rotate freely. In 2 dimensions, since the angles are fixed, we can 
only change whether the fixed angle is a left-hand turn or a right hand turn. 
Flipping an angle this way flips the whole subsequent structure as if the 
chain were a rigid body (see Figure 11). The goal of our problem is to find, 
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Figure 10: 3D motion planning. 

given a fixed-angle chain in 2 dimensions, if there is an angle which can be 
flipped to cause a collision (two different points on the chain occupying the 
same point in the plane). [3] 

We reduce from 3SUM’ (the A-B-C version, where the goal is to find 
a ∈ A, b ∈ B, c ∈ C such that a + b = c) as follows: given a 3SUM’ instance 
A, B, C, we first find M = max(|x| : x ∈ A ∪ B ∪ C), which is large enough 
to separate the 3 groups if doubled. We then add −2M to A and 2M to 
−C to get A ' and C ' , and set B ' = −B/2. We then construct the chain in 
the following diagram, where the two lines y = 0 and y = 1 are each broken 

' up by ‘teeth’ located at the values of the elements of A ' and C respectively; 
the two lines are joined by a step function where the steps are located at 
the values of the elements of B ' . 

It is trivial to verify that, with a careful construction, flipping any edge 
aside from the vertical edges corresponding to the elements of B ' does not 
cause a collision. Thus, we only need to worry about these vertical segments. 
Consider flipping the segment at b ' ∈ B ' ; the only segments that might come 

' ' ' into contact are the ‘teeth’. Suppose that the teeth at a ∈ A ' and c ∈ C 
come into contact; flipping horizontally at b ' reflects everything to the right 
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Figure 11: Fixed Angle Chains reduction to 3SUM’. 

' across the line x = b ' , and thus causes c → −(c ' − 2b ' ), so this only happens 
' ' ' ' ' ' if a = −(c − 2b ' ) for some a ∈ A ' , b ' ∈ B ' , c ∈ C . But a = a − 2M for 

' some a ∈ A, b ' = −b/2 for some b ∈ B, and c = −c + 2M for some c ∈ C. 
Thus, we can conclude that 

' ' a = −(c − 2b ' ) =⇒ a − 2M = −(−c + 2M) − b =⇒ a + b = c 

so there is a solution to the 3SUM’ problem iff there is a solution to the 
fixed-angle chains problem for this construction, so fixed-angle chains is 
3SUM-Hard. [3] 

' ' Remark: Setting C = C + 2M (as opposed to C = −C + 2M) gives a 
reduction from the 3SUM’ variant where the goal is to find a + b + c = 0. 

The best known algorithm for fixed angle chains is O(n3). [9] 

3.3 Nonquadratic LBs from 3SUM-Hardness 

If we assume that the 3SUM Conjecture is true, we can use 3SUM-Hardness 
to show some nonquadratic lower bounds as well, particularly for problems 
on graphs. [6] 

Given a graph G = (V,E) with edge weights, suppose we want to find 
a triangle of a particular weight; we can do this in O(|E|3/2 − E) time only 
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if there is a O(n2−E) algorithm (possibly not the same E in these cases) for 
3SUM. 

Similarly, finding |E| triangles in G (unweighted this time) in O(|E|4/3 − 
E) time is 3SUM-Hard. 

3.4 Conjectured Cubic Graph Problems 

Given a graph G = (V, E) (with or without edge weights), let δ(v, w) for 
v, w ∈ V be the minimum distance between v and w. 

We represent some of the relationships between these cubic graph prob
lems in Figure 12. 

Reductions to these cubic problems must take O(n3−E). 

Figure 12: A depiction of the relationships between All Pairs Shortest Paths 
(APSP), Diameter and other problems. 

3.4.1 Diameter 

Goal: given G, find maxv,w∈V δ(v, w) (the diameter of G). 
Conjecture: there is no O(|V |3−E) algorithm, even for unweighted graphs. 

[8] 
It is known (assuming the ETH) that there is no (3/2−E)-approximation 

in O(|E|2−E) time. 

3.4.2 All-Pairs Shortest Paths (APSP) 

Goal: find δ(v, w) for all pairs v, w ∈ V . Can do this in O(|V |3) time with 
the Floyd-Warshall Algorithm (by relaxing all edges |V | times) (this also 
solves Diameter) 

Conjecture: there is no O(|V |3−E) algorithm, even for unweighted graphs. 
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It is trivial that APSP is at least as hard as Diameter; it is not known 
if the opposite is true. 

We can create notions of Diameter-hard and APSP-hard in the same 
manner as 3SUM-hard (except now we are saying that a problem is APSP-
hard if a solution to it implies a O(|V |3−E) solution to APSP, and the same 
with Diameter). Multicall reductions are premitted, but with the restriction e 

3−Ethat if n∗ is the size of a reduced instance, then n = O(n3−E).∗ 

3.4.3 Negative Triangles 

Given a weighted graph the goal is to find a triangle of negative total weight; 
if we can solve this in subcubic time, we can solve APSP in subcubic time 
as well. Thus it is APSP-hard (in fact, it’s equivalent). [10] 

It is also equivalent to listing |V |0.99 negative triangles, and to testing 
the triangle inequality. 

3.4.4 New Results: Radius and Median 

Radius: find minv∈V maxw∈V δ(v, w), i.e. find the vertex which is closest to 
all other vertices. [1] e 
Median: find minv∈V w∈V δ(v, w), i.e. find the vertex which is closest to 
all other vertices on average. [1] 

Both are APSP-Hard, and in fact equivalent (for both directed and undi
rected graphs); assuming Strong ETH, there is also no O(|E|2−E) algorithm 
for sparse graphs. 
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