
6.890: Algorithmic Lower Bounds: Fun With Hardness Proofs Fall 2014

Lecture 15 — October 23, 2014
Prof. Erik Demaine

1 Recap

We have seen many decision problems when we are concerned whether a solution exists. In ap
proximation problems we had to define a stronger version of NP-style problems which are the
optimization problem (NPO) when we want to find the best solution (that maximizes or minimizes
some parameter). This class will cover counting problems and, as we did in the past, we will define
another version of NP-style problems: NP search problems. Now we are concerned in finding a
solution for some instance of a problem. From this concept, we define counting problems.

2 Overview

NP search problems are a version of NP-style problems whose goal is to find one solution (any
solution) to a given NP problem. If the answer to the decision problem is yes, than at least one
valid solution exists. We can convert a searching problem into a counting problem (that outputs
an integer) that counts the number of solutions for a given instance of the search problem. If the
original problem was denoted by A, we refer as #A the counting version of A. In general, counting
problems are harder than its decision version since we can conclude in constant time what is the
answer for the decision version (is the output zero or not?). Indeed there are problems whose
decision version are polynomial while the counting problem is hard.

A motivation for counting problems comes from puzzle design. We usually want to know if there
is a unique solution for a puzzle. #P is the class of all counting problems. From the computation
perspective, we can also define as #P = {problems solved by polynomial-time nondeterministic
counting algorithms}. A NP decision nondeterministic algorithm, when there is branching the
algorithm guesses and go to any path that leads to a yes. In the counting case, the computer runs
all the branches, count the number of yes and returns that number. (See Negative Results on
Counting by Valiant [4])

A #P -hard problem is a problem as hard as any problem in #P . We can reduce all problems in
#P to a #P -hard problem.

3 Reductions

The reductions to prove #P -hardness are usually multicall (Cook-style) reductions. This is a
general approach for FNP (NP-style functions whose output is a value and its decision version is
in NP). Since the output is a number, in our case, we are also allowed to manipulate the number
in the end after a call as well as making multicalls (polynomial number of calls).

1

3.1 Parsimonious reductions

This is a more familiar style of reduction that allows us to prove #P -hardness often without
multicalls. As usual, we convert an instance x of problem A into an instance x' of B by a function
f that is computable in polynomial time. The difference is that we will require that the number

'of solutions of A to instance x equals the number of solutions of B to the instance x . This is a
stronger notion than a normal NP-style reduction. If #A is #P -hard, this reduction will imply
that #B is also #P -hard.

A lot of NP reductions that we already saw in this course follows this extra rules and can be used
as Parsimonious reductions.

3.2 c-monious reduction

This name was made up by Erik. By its etymology the word parsimonious means “little money”, so
“c-monious” would mean a little more money. Something like “c-money”. In this style of reductions
we will require that the number of solutions of x' equals c times the number of solutions of x. In

'other words, c·#A solutions to x = #B solutions to x . The number c must be a constant (different
than zero) to each instance, not dependent of the instance but can be dependent on n. From #P
perspective, this is just as good.

4 Familiar problems that are (or not) #P-complete

In this section, we will look on examples of past NP reductions and see if they are Parsimonious
or not.

4.1 #3SAT(-3)

#3SAT is hard. This proof can be done by a reduction from #SAT. #3SAT-3 can also be shown
#P -hard by replacing each variable by a cycle.

4.2 Planar #3SAT

Planar #3SAT is hard. Figure 1 is from lecture 7. If you see all the cases for this gadget you will
conclude that all the variables are forced to assume specific values that depend only of a and b. In
other words, we can deterministically determine the values for all the variables in the gadget from
the values of a and b. This means you preserve the number of solutions. We can use exactly the
same reduction as lecture 7 to prove that Planar #3SAT is #P -hard.

4.3 Planar Monotone Rectilinear #3SAT

The previously seen reduction will also work in this case. Figure 2 shows the reduction. All the
variables created to substitute xi (a and b in the figure) are forced and can be deterministically
determined by the value of xi. Therefore, it will preserve the number of solutions.

2

Figure 1: Figure of the crossover gadget of the reduction from 3SAT to Planar 3SAT.

Figure 2: Reduction from Planar #3SAT to Planar Monotone Rectilinear #3SAT.

4.4 Planar Positive Rectilinear #1-in-3SAT

The reduction from Planar #3SAT shown in Figure 3 does not work. There is exactly one case
when we can set the variables of the original instance and cannot force the internal variables to an
specific value. The figure shows that there are two possible solutions of the #1-in-3SAT instance
that correspond to the same solution of the #3SAT instance. If every solution of the #3SAT
instance had 2 correspondent #1-in-3SAT solutions we would have a c-monious reduction, but this
irregularity makes this reduction not good enough for #P -hardness.

Luckily, there was stronger reduction from Planar Rectilinear 3SAT to Planar Positive Rectilinear

Figure 3: Reduction from Planar 3SAT to Planar 1-in-3SAT.

3

1-in-3SAT that does work (slide from lecture 7). In this proof, all the variables are forced. The
number of solutions is conserved and we have a Parsimonious reduction.

4.5 Shakashaka

The reduction from Planar 3SAT in lecture 7 will work as a Parsimonious reduction. Once you
decide the value of the variables, everything is forced and the number of solutions for the instance
of Shakashaka will be exactly equal to the number of solutions of the 3SAT instance. (This proof
is from the paper by Demaine, Okamoto, Uehara and Uno in [1])

4.6 Hamiltonian cycle

This is an example of reduction that does not work in the #P perspective. We had two proofs for
Hamiltonian Cycle and neither of them are Parsimonious. Figure 4 shows that the clause gadget
admits more than one solution and therefore is not Parsimonious.

Figure 4: Clause gadget of the reduction to Planar Hamiltonian Cycle. The gadget admits more
than one solution.

The other reduction is from lecture 8 was to Planar Directed Max-Degree-3. The same issue occurs
in this reduction. When multiple variables satisfy a clause any of them can grab the vertices in
the clause gadget. Since we can sometimes have 1, 2 or 3 possible solutions that correspond to the
same 3SAT solution, we don’t have a parsimonious (or c-monious) reduction.

However, this proof is useful to make a parsimonious reduction. We can use the XOR-gadget of this
old proof into a new parsimonious reduction ([Sato, 2002]). This gadget admits only one solution
and forces that only (and exactly) one edge connected by the gadget is used in the cycle.

Three new gadget were created for this reduction. They are shown in Figure 5 and are: OR (that
requires that one or two of the edges are used in the cycle), implication (that forces an edge to be
used if the other edge is used) and a 3-way OR gate (that is used in the clause). The difference
of this clause gadget with a 3-way or to the previous reduction is that the new gadget has all its
edges forced admitting only one cycle per solution of the original 3SAT instance. Consequently,
this new reduction is Parsimonious and prove that finding the number of Hamiltonian cycles in a
planar max degree-3 graph is #P-hard.

4

http://www-imai.is.s.u-tokyo.ac.jp/~seta/paper/senior_thesis/seniorthesis.pdf

Figure 5: New gadgets for the reduction to Hamiltonian Cycle.

4.7 Slitherlink

Here we can’t use the reduction from Hamiltonicity problems on grid graphs because we did not see
any #-P hardness results for the same but we can use the alternative reduction from Hamiltonian
cycles on planar max degree 3 graphs (which was shown to be #-P hard above). Observe the figure
below and notice that for any Hamiltonian cycle (i.e. order in wich we visit the vertices) in the
planar graph, there is a unique way to solve the puzzle by visitng the ‘required’ vertices in the
corresponding order and given this order there is exactly one way to use the ooptional vertices to
complete the cycle. Hence the reduction is parsimonious and we get #-P hardness for Slitherlink.

Slitherlink is
NP-complete

[Yato 2000]

optional vertex

required vertex

edgenon-
edge

5 Other problems

5.1 Permanent

Determinant: One way to define the determinant of an nxn matrix A = (ai,j) is
(−1)sign(π)Πn|A| = i=1ai,π(i) where the sum is over all permutations πof the set {1, 2, . . . , n} and

π
sign(.) of a permutation is a 0/1 value given by the parity of the number of inversions mod 2.
Note that even though this definition has an exponential (in n) number of terms, computing the
determinant is in P.

5

Permanent: is of a matrix A as above is defined as perm(A) = Πn

i=1ai,π(i) i.e. the unsigned
π

sum over permutations. It can also be interpreted as the the sum (over all cycle covers of a directed
graph) of the product of weights of edges in a given cycle cover, where the weight of an edge (i, j)
is w(i, j) = ai,j and a cycle cover is a set of vertex disjoint directed cycles that cover all vertices of
the graph (|V | = n).

The problem of finding the Permanent of a matrix is #-P complete. (See paper by Valiant in [2])
Hardness is shown by a c-monious reduction from #-3SAT. Look at the figure below

Permanent
[Valiant 1979]

𝑥𝑥5

𝑥𝑥5

variable gadget

clause gadget

All edges shown in the gadgets are weight one. The shaded structure used in the gadgets is a graph
with weight matrix (X) as shown in figure. Notice that the Permanent of the matrix is 0 hence in
any nonzero weight cycle cover for the whole graph all such structures ust be a part of a bigger
cycle that enters and leaves at some point (else there would be a 0 in the product).

Also, although not explicitly shown, a cycle can enter/exit these structures only at the structures’
nodes that correspond to ro/column 1 and row/column 4. If a cycle enters and leaves at the same
node (1 or 4) then we again get a 0 in the product due to the remaining part of the structure
because the Permanent of X-row/column 1 and X-row/column 4 is also 0. Hence cycles must enter
every node and leave at dstinct points for all structures.

Also, X-row/columns 1,4 has permanent 0 as well, hence the cycle entering and exiting the structure
at nodes 1,4 must go through at least one more internal node as well to have a non-zero product
weight.

Now the premanent of matrix X-row 1, column 4 and of X-row4, column 1 is 4 hence we get a
factor 4 in the weight product of a cycle cover due to each structure.

In summary the structures act as forced edges in variable and clause gadgets. In the variable gadget
this forces the choice of either x or x̄ and in the clause gadget if none of the literal structures have
been covered by external edges (T2, T5, T7) then we must traverse all 5 structures in the clause in
a consecutive manner but having done that there is no way to finish a cycle, hence atleast one of
the structures has to be covered by an external cycle, which corresponds to that literal being 1.

Now note that for every solution to the 3SAT instance there are exactly 45 possible cycle covers

6

∑

for every clause (because of 5 structures in a clause gadget each coverable 4 different ways), given
the variable assignment of the 3SAT solution. Hence the reduction is a c-monious reduction with
c = 45(#clauses).

5.2 Permanent mod r

This is also #-P hard by a multicall reduction from the previosu problem, because given a poly-
time algorithm for the mod r problem one can substitute r = 2, 3, 5, 7, 11 . . . until product is
> Mn n! where M is the largest albsolute entry in the matrix and perm(A) ≤ Mn n!. This requires
O(n log M +n log n) many calls which is polynomial in the size of the input. Hence using the results
of these calls and the Chinese Remainder Theorem we can get the Permanent in polytime. Hence
the problem is as hard as calculating the Permanent. (See [2])

5.3 0/1-Permanent mod r

We show it is #P -hard using a parsimonious reduction from Permanent mod r. In any instance
of Permanent mod r, the edge weights can be represented as non-negative integers 0...r − 1. We
replace each edge of weight k with a gadget with k loops. The figure below shows the gadget for
an edge of weight 5. (See [2])

0/1-Permanent
[Valiant 1979]

𝑦𝑦

𝑥𝑥

5

If (x, y) is not covered by a cycle in the instance of Permanent mod r there is exactly one way to
cover the edges. If (x, y) is covered in a cycle there are exactly k solutions. (each using a different
self-loop)

Therefore 0/1-Permanent mod r is #P -hard.

5.4 0/1-Permanent

We reduce from 0/1-Permanent mod r using a one-call reduction. Given an instance of 0/1
Permanent mod r, if we can find the Permanent of the input we can find the Permanent mod r by

7

taking the modulus of the output w.r.t r.

(This was proved in [2])

Note:

•	 The permanent of a 0/1 matrix is equal to the number of vertex-disjoint cycle covers in the
corresponding directed graph.

•	 The permanent is also equal to the number of perfect matchings in the bipartite graph of
rows and columns of the given matrix. (where the partite sets correspond to the set of rows
and set of columns and there is an edge between row i and column j if and only if the element
(i, j) = 1)

5.5 Bipartite #Maximal Matchings

We use a one-call reduction from Bipartite #Perfect Matchings. Given a bipartite graph G = (V, E)
replace each vertex v with n = |V | copies of it v1, v2...vn and replace each edge (u, v) with a biclique
(complete bipartite graph) on the sets {v1, v2...vn} and {u1, u2...un}. For each matching of size i in
the original graph there are n!i distinct matchings of size ni in the transformed graph. In addition
maximality of matchings is preserved.

n/2

Therefore number of maximal matchings is (number of matchings of size i)(n!)i . From this
i=0

number we can extract the number of perfect matchings which is the term in the summation
corresponding to i = n/2.

Therefore this problem is #P -hard.

5.6 Bipartite #Matchings

We describe a multicall reduction from Bipartite #Perfect Matchings. Given the graph G = (V, E).
Let Gk be the graph created by adding k adjacent leaves to each vertex in V . Suppose there are
Mr matchings of size n − r in G. They are contained in the Mr(k + 1)r matchings obtained by

n/2

adding some number of the new edges. Therefore number of matchings in Gk = Mr(k + 1)r We
r=0

can evaluate this polynomial in k for k = 1, 2 . . . n/2 + 1 to extract the coefficients M0,M1,
Here M0 is the number of perfect matchings.

Therefore this problem is #P -hard.

(This was proved in [3])

5.7 Positive #2SAT

We describe a parsimonious reduction from bipartite #matchings. Given a graph G = (V, E),
convert each edge into a variable. It is true if it is not in a matching. We convert every pair

8

∑

∑

of 2 incident edges e, f into the clause (e ∨ f). It can be seen that every satisfying assignment
corresponds to a matching and vice-versa.

Therefore it is #P -hard. (See [3]) Note: The number of solutions of an instance Positive #2SAT
can be shown to be equal to the number of vertex covers in the graph created by transforming each
variable into a vertex and each clause (u ∨ v) into the edge {u, v}. This is also equal to the number
of cliques in the complement graph.

5.8 #Minimal Vertex Covers

This is equal to #maximal cliques in the complement graph. It is also equal to #minimal truth
settings for positive 2-SAT (by the reduction described previously).

The parsimonious reduction from bipartite #maximal matchings to #minimal truth settings for
positive 2SAT is the same as above. Here there is an exact correspondence between minimal
satisfying assignments (|E|−i true variables) and maximal matchings (matching of size i). Therefore
#Minimal 2SAT and #Minimal vertex cover are #P -hard. (See [3])

5.9 Some more problems

3 Regular Bipartite Planar #Vertex Covers is equivalent to planar positive 2SAT-3 (where each
clause contains variables corresponding to vertices of different colors). It is #P -complete.

In addition (2-3) Regular Bipartite #Perfect Matchings is also #P -complete.

Note: The decision version of these problem is easy.

6 Another Solution Problems (ASP)

Given an NP search problem A.

ASP A: Given one solution for A, is there another?

This is useful in puzzle design, we want to be able to show that there is a unique solution.

6.1 Examples

•	 ASP k-coloring is trivially in P since we can permute the colors.

•	 ASP 3-regular Hamiltonian cycle is in P since it has been proved that there is always another
solution.

6.2 ASP reduction

A problem A is ASP reducible to B if there is a parsimonious reduction from A to B with the
additional property that given a solution for an instance of A, a solution for an instance of B can
be computed in polynomial time.

9

A is ASP reducible to B implies the following:

• ASP A is reducible to ASP B using an NP reduction.

• ASP B ∈ P =⇒ ASP A ∈ P .

• ASP A is NP -hard =⇒ ASP B NP -hard.

6.3 ASP-Hard and ASP-Complete

ASP-Hard is defined as the set of problems ASP reducible from every NP search problem. ASP-
Hard =⇒ NP-Hard.

ASP-Complete is the set of ASP-Hard NP search problems. This includes all problems A for which
we proved #A is #P -complete.

Slitherlink was proved to be ASP-Complete.

References

[1] Erik D. Demaine, Yoshio Okamoto, Ryuhei Uehara, and Yushi Uno. Computational complexity
and an integer programming model of shakashaka. IEICE Transactions, 97-A(6):1213–1219,
2014.

[2] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979.

[3] Leslie G. Valiant. The complexity of enumeration and reliability problems.	 SIAM J. Comput.,
8(3):410–421, 1979.

[4] Leslie G. Valiant.	 Negative results on counting. In Theoretical Computer Science, 4th GI-
Conference, Aachen, Germany, March 26-28, 1979, Proceedings, pages 38–46, 1979.

10

MIT OpenCourseWare
http://ocw.mit.edu

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Recap
	Overview
	Reductions
	Parsimonious reductions
	c-monious reduction

	Familiar problems that are (or not) #P-complete
	#3SAT(-3)
	Planar #3SAT
	Planar Monotone Rectilinear #3SAT
	Planar Positive Rectilinear #1-in-3SAT
	Shakashaka
	Hamiltonian cycle
	Slitherlink

	Other problems
	Permanent
	Permanent mod r
	0/1-Permanent mod r
	0/1-Permanent
	Bipartite #Maximal Matchings
	Bipartite #Matchings
	Positive #2SAT
	#Minimal Vertex Covers
	Some more problems

	Another Solution Problems (ASP)
	Examples
	ASP reduction
	ASP-Hard and ASP-Complete

