
6.890 Lecture 22 - Scribe Notes

Today’s lecture is a guest lecture by Costis Daskalakis, a world leading
expert in algorithmic game theory.

In 1928, von Neumann published his minimax theorem [1], which states
that any zero-sum game will have a Nash equilibrium (although at the time
this was not called a Nash equilibrium). In the 1950s, Nash extended this
result to general games [2].

Interestingly enough, this small difference is a huge gap on the algorith
mic side. The first problem can be solved in polynomial time via LP duality,
whereas the more general problem has no known polynomial time algorithm.
This dichotomy provides the motivation for the PPAD class.

In this lecture, we will introduce three key theorems that are interrelated
and are PPAD-Complete. We will also formally define the PPAD class
and sketch the proof that the general Nash equilibrium problem is PPAD-
Complete. The full proof will be shown on the next lecture.

1 Three Key Existance Theorems

We will analyze existence theorems by Nash, Brouwer and Sperner that
arise from game theory, topology and combinatorics, respectively. These
three theorems, as disimilar as they seem, can be related to one another and
rely on very basic combinatorial principles.In this section, we will define the
setting for each of the theorems and give an overview of their connection.

The motivation to study these problems is that, unlike many problems
in computer science, we are told that a solution exists. How efficiently can
we compute this solution? If the search space is polynomial, this is easy:
simply search exhaustively. However, some of these problems can be defined
succintly and have exponential size. In these cases, the search problem
requires a larger framework.

1.1 Nash Equlibria

Definition A finite game consists of the following elements:

1

� �

•	 A set of n players p ∈ P .

•	 A set of strategies Sp for every p ∈ P .

•	 A utility or payoff function that assings a real value to player p for
every possible strategy set. Formally, we need up : ×Si → R, for every
p ∈ P .

For the purposes of this lecture, we will be interested in what is known
as Nash equilibrium (NE). A collection of pure strategies s1, s2, ..., sn is a
NE if for every player p ∈ P ,

up(s1, s2, ..., sp, ..., sn) ≥ up(s1, s2, ..., s p, ..., sn)∀sp ∈ Sp

Informally, this definition says that a strategy is NE if no player has in
centive (i.e., can’t be better off) to change his strategy based on the strate
gies of the other players.

Unfortunately, many games don’t have pure NE. However, if we allow
players to pick their strategy according to some distribution we can prove
there are always NE. This motivates the use of randomization. In partic
ular, a randomized strategy xp is one where a player picks a distribution
Δ over their various strategies Δ(SP). We can extend our notion of NE to
randomized strategies by taking expected values based on the distributions.

In 1928, von Neumann showed that in two-player zero-sum games there
is always an equilibrium [1]. This minimax theorem turned out to be a
special case of strong LP duality. This implies that NE can be computed in
polynomial time. In 1950, Nash showed equilibrium exists in general games
[2]. Unfortunately, there is no known LP proof or polynomial time algorithm
to compute such equilibria.

As an example, consider the following game: Player 1 needs to decide
where to shoot a penalty (left or right) and Player 2 needs to decide where
to dive (left or right). The payoff of this game is easy to describe: if Player 1
scores, he gets a point and player 2 gets -1 points. If Player 1 misses, Player
2 gets a point and Player 1 gets -1 points.

There is no pure NE in this game. Consider any strategy. If the two
strategies matched, player 1 would have incentive to deviate. Otherwise,
player 2 would have incentive to deviate. However, there is a mixed NE:
each player flips a fair coin. If it is heads, he goes right and if it is tails, he
goes left. This can be shown to be a NE.

2

Figure 1: Kick Dive payoff matrix.

1.2 Brouwer’s Fixed Point Theorem

Theorem 1.1. (Brouwer’s Fixed Point Theorem [3]) Let f : D → D be a
continuous function from a convex and compact subset D of Euclidean space
to itself. Then, there exists x ∈ D such that f(x) = x.

Figure 2: Brouwer’s fixed point theorem is a mapping from D to D.

In particular, this theorem is tight: if any of the conditions are not met,
the theorem is not true.

It is worth noting that Nash used Brouwer’s theorem to show his result
for general games. Roughly, the proof involves a function f : [0, 1]n → [0, 1]n

3

as a vector field that indicates the motivation a player has to deviate from
his current strategy. The NE corresponds to the fixed point of the mapping.
The following picture depicts the function for the game we studied in the
previous section:

Figure 3: The proof of Nash using Brouwer.

1.3 Sperner’s Lemma

We will be looking at the special case where the dimension is 2, but there
is a natural generalization of the Lemma.

Figure 4: Valid edge coloring for the Sperner edge coloring.

Theorem 1.2. (Sperner [4]) Suppose we are given a triangulized square
grid graph and three colors: red, blue and yellow. Let a legal boundary be
one in which all nodes in the bottom line of the grid are red, all nodes in
the leftmost column are yellow and all other boundary nodes are blue. Then,

4

for every coloring of the internal nodes, there will always be a trichromatic
triangle. In fact, there will be an odd number of them.

There is also a natural connection between Sperner’s and Brouwer’s the
orems. We can consider the problem of finding approximate fixed points
|f(x) − x| < E for some E > 0. We will create a mesh on the space of the
function and color each node according to the direction of f(x) − x in one
of three colors. We can then use a compactness argument and let E → 0 to
prove the existence of a fixed point (which will be inside the trichromatic
triangle). This proof however might not preserve the parity or even the
number of trichromatic triangles.

Figure 5: The overlay of Sperner’s coloring on a function mapping [0, 1]2 →
[0, 1]2 .

1.4 Proof of Sperner

We will now provide a proof of Sperner’s Theorem and highlight the math
ematical principle that underlies it.

First, we will add an artificial trichromatic triangle by adding a blue
vertex next to the bottom left corner of the grid, where the yellow and red
boundaries meet. We now define a directed walk on the triangles of the
grid graph. While we haven’t found a new trichromatic triangle, cross a
yellow-red edge, with the yellow node to the left of the path. We claim that
this procedure will find another trichromatic triangle.

Note that this walk can not exit the grid graph with legal boundary
coloring: the only red-yellow edge on the boundary is the one on the bottom
left corner, and in order to cross it we would have to have the yellow node

5

Figure 6: A valid walk in a valid coloring of a triangulation of the lattice
for Sperner’s lemma.

on our right. This is not allowed. Moroever, our walk will not produce a
cycle. For the sake of contradiction, suppose that it did. Consider a triangle
where the loop closes. This triangle must have had a red-yellow edge that
we crossed the first time with yellow to the left. However, on our way back
in, any edge we cross will either have red to the left or yellow to the right.
Neither of these options is admissible. Therefore, there are no cycles and we
never leave the grid graph.

This, together with the fact that the number of triangles is finite, implies
that at some point we must encounter a trichromatic triangle, since that is
when our walk stops. Therefore, at least one such triangle must exist.

What about any other trichromatic triangles? Well, we can perform the
same procedure with the other internal trichromatic triangles. Start another
walk from one such triangle and, by the same argument above, we will end
at another.

Therefore, the total number of trichromatic triangles in our modified
graph is an even number greater than 2. However, one of these triangles

6

was artificially introduced. Therefore, the number of trichromatic triangles
inside the grid graph must be odd and greater than 1.

1.5 A more basic approach

There is yet another more basic proof of this. Consider a directed graph
where each node represents a triangle. There is an edge (u, v) if triangles
u, v are adjacent and the edge that they share is a ’crossable’ edge (i.e.
yellow on the left).

We claim that every vertex must have either in-degree or out-degree at
most 1. This can be done by an exhaustive analysis of the possibilities. It is
important to note that if a triangle has exactly one red-yellow edge (hence
it’s tri-chromatic), then it’s node will have either exactly in-degree 1 and
out-degree 0 or out-degree 1 and in-degree 0.

But what can we say about a directed graph where very node has in-
degree and outdegree at most 1? Well, there can only be three types of
(weakly) connected components: isolated nodes, cycles or directed paths.
These paths correspond to the paths we discovered in the walk above and
imply that the trichromatic triangles come in pair. In a more elementary
way, the underlying principle is that if a directed graph has an unbalanced
(i.e. indegree is not the same as out-degree) node, then there must be an
other one.

Figure 7: The triangulation of Sperner’s lemma turned into a directed graph.

In our example, the unbalanced nodes correspond exactly to trichromatic
triangles. Since in our construction we introduce one such node, we are
guaranteed that our graph will contain another one and a total even number

7

of them. This property is also known as the Parity Argument for Directed
Graphs, and plays a key role in the definition of the PPAD class.

2 Total Search Problems in NP

For a search problem, we want to find an instance of a given property. For a
total search problem we are guaranteed that at least one such instance exists,
but, we must return one such instance. For Nash, Bouwer and Sperner what
we care about are search problems, usually over polynomially describable
infinite search spaces.

2.1 FNP and TFNP

We will first define search problem.

Definition A search problem L is defined by a relation RL ⊂ {0, 1}∗ ×
{0, 1}∗ such that (x, y) ∈ RL if y is a solution to x.

A search problem is total if every problem has a solution.

Definition A search problem L is total if ∃y ∀x such that (x, y) ∈ RL.

2.1.1 FNP definition

To get an intuition for FNP let us first define FP.

Definition [5] A problem L is in FP if there exists a polynomial time
algorithm that given an x can find a y such that (x, y) ∈ RL.

Instead of deciding if there exists such a y, as we do in P, we must return
such a y for problems in FP.

FNP will relate to FP in a similar way to how NP relates to P. FNP is
the class of problems where search problems can be verified efficiently. If we
can verify x, y in RL for a y that is at most polynomially sized relative to x
in polynomial time, then the problem is in FNP.

Definition A problem L is in FNP if

1. There exists a polynomial time algorithm that given an x and a y can
check if (x, y) ∈ RL.

8

�

�

�

2. There exists a polynomial	 pL() such that: given an x the existence
of a y such that (x, y) ∈ RL implies that ∃z where |z| ≤ pL(|x|) and
(x, z) ∈ RL.

Note that the first condition corresponds to being able to verify answers
efficiently. The second condition guarantees that for any x where there
exists a y such that (x, y) ∈ RL there will exist some polynomial length z
that satisfies (x, z) ∈ RL.

TFNP definition
We want to capture the fact that the problems we care about are total

in a new definition.

Definition TFNP = {L|L ∈ FNP and L is total}

Note that the existence of a solution and the polynomial condition of
FNP result in the following equivalent definition.

Definition A problem L is in TFNP if

1. There exists a polynomial time algorithm that given an x and a y can
check if (x, y) ∈ RL.

2. There exists a polynomial pL() such that ∀x ∃y such that (x, y) ∈ RL

and |y| ≤ pL(|y|).

FNP reductions
At first it seems we would like to show the search problem of SPERNER

to be FNP hard. Sadly, it doesn’t seem likely that we can reduce these
search problems to FNP.

Definition A problem L ∈ FNP is poly-time Karp reducible to L ∈ FNP
if:

1. There exists an efficiently computable f such that: {0, 1}∗ → {0, 1}∗

maps inputs x to L into inputs f(x) to L

2. And an efficiently computable g such that:

∀x, y : ALu (f(x), y) = 1 ⇒ AL(x, g(y)) = 1

u (f(x), y) = 0, ∀y ⇒ AL(x, y) = 0, ∀y

Where AL is an algorithm that solves L and AL is an algorithm that

∀x : AL

u

solves L .

9

′

′

′

Current evidence suggests we won’t be able to show NASH, SPERNER
and BROUWER to be FNP hard. We can’t reduce to NASH, SPERNER,
nor BROUWER from SAT. If we can reduce to these problems from the
Turning Machine Problem, then it implies coNP =NP. Basically, these are
a different kind of problem. We know these problems are satisfied, which
makes reducing to a problem where the core complexity comes from deter
mining satisfiability infeasible.

This is what motivates the PPAD (Polynomial Parity Arguments for
Directed graphs) class, originally introduced by Papadimitriou in 1994 [6].

3 PPAD definition

We will define a problem that is motived by an existence proof. Specifically,
the proof of Sperner’s Lemma uses the fact that nodes with max in and out
degree of 1 result in paths. It relies on the fact that a directed graph with an
unbalanced node implies another unbalanced node. As pointed out before,
this type of argument is refered to as Parity Argument for Directed Graphs.

We will define a problem based on this existence proof.

3.1 END OF THE LINE

Suppose that an exponentially large graph with vertex set {0, 1}n is defined
by two circuits:

Form a graph where E = {(v1, v2)|P (v2) = v1 ∧ N(v1) = v2}.

Figure 8: The input to the END OF THE LINE problem.

Given P and N : if 0n is an unbalanced node, find another unbalanced
node. Otherwise output 0n .

We know that the circuit described by P and N has max out degree
1 and max in degree 1. Notice, this looks exactly like the constraints for
Sperner’s Lemma!

10

Figure 9: The graph produced by the END OF THE LINE input.

Further note that checking if 0n is unbalanced takes O(1) time. We
check if N(P (0n)) = 0n and if P (N(0n)) = 0n if one is and one isn’t then we
have that 0n is unbalanced. Given that 0n is unbalanced there must exist
an unbalanced node somewhere else in the graph.

3.2 PPAD-Completeness

Something is PPAD-hard if it can solve END OF THE LINE. A problem is
PPAD-complete if it is also solvable by END OF THE LINE.

4 PPAD-complete problems

END OF THE LINE, NASH, SPERNER and BROUWER are all PPAD
complete.

4.1 PPAD-completeness of NASH (high level)

We first find cycles and paths and place them in a cube [0, 1]3 without
intersections. Then we represent this as a SPERNER problem, next we
convert the problem to an Arithmetic Circuit. Finally, that Arithmetic
Circuit is converted into a NASH problem.

The full proof was part of Daskalakis’ PhD Thesis and is based on joint
work with Goldberg and Papadimitriou [7].

11

Figure 10: A high level overview of the proof that NASH is PPAD hard.

4.2 ArthmCircuitSAT

Input is a circuit comprising

•	 variable nodes x1, x2, . . . , xn

•	 gate nodes g1, . . . , gm of 6 types (:=, +, −, a, xa, >)

•	 directed edges connecting variables to gates and vice versa

•	 Variable nodes have in-degree 1; gates have in degree 0,1, or 2 inputs
depending on type ; gates and nodes have arbitrary fan out

Figure 11: The operation nodes of ArthmCircuitSAT.

The output is a set of values satisfying the circuit constraints.
The types of gate nodes are:

•	 Assignment: y == x1

•	 Addition: y == min{1, x1 + x2}

•	 Subtraction: y == max{0, x1 − x2}

•	 Equal a constant: y == max{0, min{1, a}}

12

• Multiply by a constant: y == max{0, min{1, ax}}⎧ ⎪⎨ ⎪⎩

0, if x1 < x2

• Greater than: y ==
 1, if x2 < x1

any value, if x2 = x1

Arithmetic circuit satisfiability will be used to show that NASH is PPAD
hard.

4.2.1 Example

In Figure 4.2.1 we show an example of ArthmCircuitSAT.

Figure 12: The operation nodes of ArthmCircuitSAT.

Node c is assigned to value 1/2 and thus must have this value.
If a > c = 1/2 then b will be set to 0, a = b and 0 < 1/2 so this is a

contradiction.
If a < c = 1/2 then b will be set to 1, a = b and 1 > 1/2 so this is a

contradiction.
If a = c = 1/2 then b can be set to any value, a = b = c = 1/2 .

References

[1] Von Neumann, J: Zur Theorie der Gesellschaftsspiele Math. Annalen.
100 (1928) 295-320

[2] Nash, John: Equilibrium points in n-person games. Proceedings of the
National Academy of Sciences 36 (1950):48-49.

13

[3] L.E.J.	 Brouwer: Ueber eineindeutige, stetige Transformationen von
Flchen in sich. Math. Annalen. , 69 (1910) pp. 176180

[4] Sperner,	 E. : Fifty years of further development of a combinatorial
lemma. Numerical solution of highly nonlinear problems. Sympos. Fixed
Point Algorithms and Complementarity Problems, Univ. Southampton,
Southampton, 1979: Part A, p.183197, Part B, p.199214.

[5] Rich, Elaine: Automata, computability and complexity: theory and ap
plications. Prentice Hall, 2008, ISBN 0-13-228806-0, section 28.10 ”The
problem classes FP and FNP”, pp. 689-694

[6] Papadimitriou, Christos: On the complexity of the parity argument and
other inefficient proofs of existence. Journal of Computer and System
Sciences 48 (1994): 498532

[7] Daskalakis, C., Goldberg, P., Papadimitriou, C.:The Complexity of Com
puting a Nash Equilibrium.Proceedings of the Thirty-eighth Annual
ACM Symposium on Theory of Computing. STOC 2006, ACM, pp. 71
78

14

MIT OpenCourseWare
http://ocw.mit.edu

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

