
6.890 Lecture 22 - Scribe Notes 

Today’s lecture is a guest lecture by Costis Daskalakis, a world leading 
expert in algorithmic game theory. 

In 1928, von Neumann published his minimax theorem [1], which states 
that any zero-sum game will have a Nash equilibrium (although at the time 
this was not called a Nash equilibrium). In the 1950s, Nash extended this 
result to general games [2]. 

Interestingly enough, this small difference is a huge gap on the algorith
mic side. The first problem can be solved in polynomial time via LP duality, 
whereas the more general problem has no known polynomial time algorithm. 
This dichotomy provides the motivation for the PPAD class. 

In this lecture, we will introduce three key theorems that are interrelated 
and are PPAD-Complete. We will also formally define the PPAD class 
and sketch the proof that the general Nash equilibrium problem is PPAD-
Complete. The full proof will be shown on the next lecture. 

1 Three Key Existance Theorems 

We will analyze existence theorems by Nash, Brouwer and Sperner that 
arise from game theory, topology and combinatorics, respectively. These 
three theorems, as disimilar as they seem, can be related to one another and 
rely on very basic combinatorial principles.In this section, we will define the 
setting for each of the theorems and give an overview of their connection. 

The motivation to study these problems is that, unlike many problems 
in computer science, we are told that a solution exists. How efficiently can 
we compute this solution? If the search space is polynomial, this is easy: 
simply search exhaustively. However, some of these problems can be defined 
succintly and have exponential size. In these cases, the search problem 
requires a larger framework. 

1.1 Nash Equlibria 

Definition A finite game consists of the following elements: 
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•	 A set of n players p ∈ P . 

•	 A set of strategies Sp for every p ∈ P . 

•	 A utility or payoff function that assings a real value to player p for 
every possible strategy set. Formally, we need up : ×Si → R, for every 
p ∈ P . 

For the purposes of this lecture, we will be interested in what is known 
as Nash equilibrium (NE). A collection of pure strategies s1, s2, ..., sn is a 
NE if for every player p ∈ P , 

up(s1, s2, ..., sp, ..., sn) ≥ up(s1, s2, ..., s p, ..., sn)∀sp ∈ Sp 

Informally, this definition says that a strategy is NE if no player has in
centive (i.e., can’t be better off) to change his strategy based on the strate
gies of the other players. 

Unfortunately, many games don’t have pure NE. However, if we allow 
players to pick their strategy according to some distribution we can prove 
there are always NE. This motivates the use of randomization. In partic
ular, a randomized strategy xp is one where a player picks a distribution 
Δ over their various strategies Δ(SP ). We can extend our notion of NE to 
randomized strategies by taking expected values based on the distributions. 

In 1928, von Neumann showed that in two-player zero-sum games there 
is always an equilibrium [1]. This minimax theorem turned out to be a 
special case of strong LP duality. This implies that NE can be computed in 
polynomial time. In 1950, Nash showed equilibrium exists in general games 
[2]. Unfortunately, there is no known LP proof or polynomial time algorithm 
to compute such equilibria. 

As an example, consider the following game: Player 1 needs to decide 
where to shoot a penalty (left or right) and Player 2 needs to decide where 
to dive (left or right). The payoff of this game is easy to describe: if Player 1 
scores, he gets a point and player 2 gets -1 points. If Player 1 misses, Player 
2 gets a point and Player 1 gets -1 points. 

There is no pure NE in this game. Consider any strategy. If the two 
strategies matched, player 1 would have incentive to deviate. Otherwise, 
player 2 would have incentive to deviate. However, there is a mixed NE: 
each player flips a fair coin. If it is heads, he goes right and if it is tails, he 
goes left. This can be shown to be a NE. 
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Figure 1: Kick Dive payoff matrix. 

1.2 Brouwer’s Fixed Point Theorem 

Theorem 1.1. (Brouwer’s Fixed Point Theorem [3]) Let f : D → D be a 
continuous function from a convex and compact subset D of Euclidean space 
to itself. Then, there exists x ∈ D such that f(x) = x. 

Figure 2: Brouwer’s fixed point theorem is a mapping from D to D. 

In particular, this theorem is tight: if any of the conditions are not met, 
the theorem is not true. 

It is worth noting that Nash used Brouwer’s theorem to show his result 
for general games. Roughly, the proof involves a function f : [0, 1]n → [0, 1]n 
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as a vector field that indicates the motivation a player has to deviate from 
his current strategy. The NE corresponds to the fixed point of the mapping. 
The following picture depicts the function for the game we studied in the 
previous section: 

Figure 3: The proof of Nash using Brouwer. 

1.3 Sperner’s Lemma 

We will be looking at the special case where the dimension is 2, but there 
is a natural generalization of the Lemma. 

Figure 4: Valid edge coloring for the Sperner edge coloring. 

Theorem 1.2. (Sperner [4]) Suppose we are given a triangulized square 
grid graph and three colors: red, blue and yellow. Let a legal boundary be 
one in which all nodes in the bottom line of the grid are red, all nodes in 
the leftmost column are yellow and all other boundary nodes are blue. Then, 
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for every coloring of the internal nodes, there will always be a trichromatic 
triangle. In fact, there will be an odd number of them. 

There is also a natural connection between Sperner’s and Brouwer’s the
orems. We can consider the problem of finding approximate fixed points 
|f(x) − x| < E for some E > 0. We will create a mesh on the space of the 
function and color each node according to the direction of f(x) − x in one 
of three colors. We can then use a compactness argument and let E → 0 to 
prove the existence of a fixed point (which will be inside the trichromatic 
triangle). This proof however might not preserve the parity or even the 
number of trichromatic triangles. 

Figure 5: The overlay of Sperner’s coloring on a function mapping [0, 1]2 → 
[0, 1]2 . 

1.4 Proof of Sperner 

We will now provide a proof of Sperner’s Theorem and highlight the math
ematical principle that underlies it. 

First, we will add an artificial trichromatic triangle by adding a blue 
vertex next to the bottom left corner of the grid, where the yellow and red 
boundaries meet. We now define a directed walk on the triangles of the 
grid graph. While we haven’t found a new trichromatic triangle, cross a 
yellow-red edge, with the yellow node to the left of the path. We claim that 
this procedure will find another trichromatic triangle. 

Note that this walk can not exit the grid graph with legal boundary 
coloring: the only red-yellow edge on the boundary is the one on the bottom 
left corner, and in order to cross it we would have to have the yellow node 
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Figure 6: A valid walk in a valid coloring of a triangulation of the lattice 
for Sperner’s lemma. 

on our right. This is not allowed. Moroever, our walk will not produce a 
cycle. For the sake of contradiction, suppose that it did. Consider a triangle 
where the loop closes. This triangle must have had a red-yellow edge that 
we crossed the first time with yellow to the left. However, on our way back 
in, any edge we cross will either have red to the left or yellow to the right. 
Neither of these options is admissible. Therefore, there are no cycles and we 
never leave the grid graph. 

This, together with the fact that the number of triangles is finite, implies 
that at some point we must encounter a trichromatic triangle, since that is 
when our walk stops. Therefore, at least one such triangle must exist. 

What about any other trichromatic triangles? Well, we can perform the 
same procedure with the other internal trichromatic triangles. Start another 
walk from one such triangle and, by the same argument above, we will end 
at another. 

Therefore, the total number of trichromatic triangles in our modified 
graph is an even number greater than 2. However, one of these triangles 
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was artificially introduced. Therefore, the number of trichromatic triangles 
inside the grid graph must be odd and greater than 1. 

1.5 A more basic approach 

There is yet another more basic proof of this. Consider a directed graph 
where each node represents a triangle. There is an edge (u, v) if triangles 
u, v are adjacent and the edge that they share is a ’crossable’ edge (i.e. 
yellow on the left). 

We claim that every vertex must have either in-degree or out-degree at 
most 1. This can be done by an exhaustive analysis of the possibilities. It is 
important to note that if a triangle has exactly one red-yellow edge (hence 
it’s tri-chromatic), then it’s node will have either exactly in-degree 1 and 
out-degree 0 or out-degree 1 and in-degree 0. 

But what can we say about a directed graph where very node has in-
degree and outdegree at most 1? Well, there can only be three types of 
(weakly) connected components: isolated nodes, cycles or directed paths. 
These paths correspond to the paths we discovered in the walk above and 
imply that the trichromatic triangles come in pair. In a more elementary 
way, the underlying principle is that if a directed graph has an unbalanced 
(i.e. indegree is not the same as out-degree) node, then there must be an
other one. 

Figure 7: The triangulation of Sperner’s lemma turned into a directed graph. 

In our example, the unbalanced nodes correspond exactly to trichromatic 
triangles. Since in our construction we introduce one such node, we are 
guaranteed that our graph will contain another one and a total even number 
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of them. This property is also known as the Parity Argument for Directed 
Graphs, and plays a key role in the definition of the PPAD class. 

2 Total Search Problems in NP 

For a search problem, we want to find an instance of a given property. For a 
total search problem we are guaranteed that at least one such instance exists, 
but, we must return one such instance. For Nash, Bouwer and Sperner what 
we care about are search problems, usually over polynomially describable 
infinite search spaces. 

2.1 FNP and TFNP 

We will first define search problem. 

Definition A search problem L is defined by a relation RL ⊂ {0, 1}∗ × 
{0, 1}∗ such that (x, y) ∈ RL if y is a solution to x. 

A search problem is total if every problem has a solution. 

Definition A search problem L is total if ∃y ∀x such that (x, y) ∈ RL. 

2.1.1 FNP definition 

To get an intuition for FNP let us first define FP. 

Definition [5] A problem L is in FP if there exists a polynomial time 
algorithm that given an x can find a y such that (x, y) ∈ RL. 

Instead of deciding if there exists such a y, as we do in P, we must return 
such a y for problems in FP. 

FNP will relate to FP in a similar way to how NP relates to P. FNP is 
the class of problems where search problems can be verified efficiently. If we 
can verify x, y in RL for a y that is at most polynomially sized relative to x 
in polynomial time, then the problem is in FNP. 

Definition A problem L is in FNP if 

1. There exists a polynomial time algorithm that given an x and a y can 
check if (x, y) ∈ RL. 
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2. There exists a polynomial	 pL() such that: given an x the existence 
of a y such that (x, y) ∈ RL implies that ∃z where |z| ≤ pL(|x|) and 
(x, z) ∈ RL. 

Note that the first condition corresponds to being able to verify answers 
efficiently. The second condition guarantees that for any x where there 
exists a y such that (x, y) ∈ RL there will exist some polynomial length z 
that satisfies (x, z) ∈ RL. 

TFNP definition 
We want to capture the fact that the problems we care about are total 

in a new definition. 

Definition TFNP = {L|L ∈ FNP and L is total} 

Note that the existence of a solution and the polynomial condition of 
FNP result in the following equivalent definition. 

Definition A problem L is in TFNP if 

1. There exists a polynomial time algorithm that given an x and a y can 
check if (x, y) ∈ RL. 

2. There exists a polynomial pL() such that ∀x ∃y such that (x, y) ∈ RL 

and |y| ≤ pL(|y|). 

FNP reductions 
At first it seems we would like to show the search problem of SPERNER 

to be FNP hard. Sadly, it doesn’t seem likely that we can reduce these 
search problems to FNP. 

Definition A problem L ∈ FNP is poly-time Karp reducible to L ∈ FNP 
if: 

1. There exists an efficiently computable f such that: {0, 1}∗ → {0, 1}∗ 

maps inputs x to L into inputs f(x) to L 

2. And an efficiently computable g such that: 

∀x, y : ALu (f(x), y) = 1 ⇒ AL(x, g(y)) = 1 

u (f(x), y) = 0, ∀y ⇒ AL(x, y) = 0, ∀y 

Where AL is an algorithm that solves L and AL is an algorithm that 

∀x : AL

u 

solves L . 
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Current evidence suggests we won’t be able to show NASH, SPERNER 
and BROUWER to be FNP hard. We can’t reduce to NASH, SPERNER, 
nor BROUWER from SAT. If we can reduce to these problems from the 
Turning Machine Problem, then it implies coNP =NP. Basically, these are 
a different kind of problem. We know these problems are satisfied, which 
makes reducing to a problem where the core complexity comes from deter
mining satisfiability infeasible. 

This is what motivates the PPAD (Polynomial Parity Arguments for 
Directed graphs) class, originally introduced by Papadimitriou in 1994 [6]. 

3 PPAD definition 

We will define a problem that is motived by an existence proof. Specifically, 
the proof of Sperner’s Lemma uses the fact that nodes with max in and out 
degree of 1 result in paths. It relies on the fact that a directed graph with an 
unbalanced node implies another unbalanced node. As pointed out before, 
this type of argument is refered to as Parity Argument for Directed Graphs. 

We will define a problem based on this existence proof. 

3.1 END OF THE LINE 

Suppose that an exponentially large graph with vertex set {0, 1}n is defined 
by two circuits: 

Form a graph where E = {(v1, v2)|P (v2) = v1 ∧ N(v1) = v2}. 

Figure 8: The input to the END OF THE LINE problem. 

Given P and N : if 0n is an unbalanced node, find another unbalanced 
node. Otherwise output 0n . 

We know that the circuit described by P and N has max out degree 
1 and max in degree 1. Notice, this looks exactly like the constraints for 
Sperner’s Lemma! 
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Figure 9: The graph produced by the END OF THE LINE input. 

Further note that checking if 0n is unbalanced takes O(1) time. We 
check if N(P (0n)) = 0n and if P (N(0n)) = 0n if one is and one isn’t then we 
have that 0n is unbalanced. Given that 0n is unbalanced there must exist 
an unbalanced node somewhere else in the graph. 

3.2 PPAD-Completeness 

Something is PPAD-hard if it can solve END OF THE LINE. A problem is 
PPAD-complete if it is also solvable by END OF THE LINE. 

4 PPAD-complete problems 

END OF THE LINE, NASH, SPERNER and BROUWER are all PPAD 
complete. 

4.1 PPAD-completeness of NASH (high level) 

We first find cycles and paths and place them in a cube [0, 1]3 without 
intersections. Then we represent this as a SPERNER problem, next we 
convert the problem to an Arithmetic Circuit. Finally, that Arithmetic 
Circuit is converted into a NASH problem. 

The full proof was part of Daskalakis’ PhD Thesis and is based on joint 
work with Goldberg and Papadimitriou [7]. 
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Figure 10: A high level overview of the proof that NASH is PPAD hard. 

4.2 ArthmCircuitSAT 

Input is a circuit comprising 

•	 variable nodes x1, x2, . . . , xn 

•	 gate nodes g1, . . . , gm of 6 types (:=, +, −, a, xa, >) 

•	 directed edges connecting variables to gates and vice versa 

•	 Variable nodes have in-degree 1; gates have in degree 0,1, or 2 inputs 
depending on type ; gates and nodes have arbitrary fan out 

Figure 11: The operation nodes of ArthmCircuitSAT. 

The output is a set of values satisfying the circuit constraints. 
The types of gate nodes are: 

•	 Assignment: y == x1 

•	 Addition: y == min{1, x1 + x2} 

•	 Subtraction: y == max{0, x1 − x2} 

•	 Equal a constant: y == max{0, min{1, a}} 
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• Multiply by a constant: y == max{0, min{1, ax}}⎧ ⎪⎨ ⎪⎩ 

0, if x1 < x2 

• Greater than: y ==
 1, if x2 < x1 

any value, if x2 = x1 

Arithmetic circuit satisfiability will be used to show that NASH is PPAD 
hard. 

4.2.1 Example 

In Figure 4.2.1 we show an example of ArthmCircuitSAT. 

Figure 12: The operation nodes of ArthmCircuitSAT. 

Node c is assigned to value 1/2 and thus must have this value. 
If a > c = 1/2 then b will be set to 0, a = b and 0 < 1/2 so this is a 

contradiction. 
If a < c = 1/2 then b will be set to 1, a = b and 1 > 1/2 so this is a 

contradiction. 
If a = c = 1/2 then b can be set to any value, a = b = c = 1/2 . 
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