
MITOCW | watch?v=ziViLYrf1Ak

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

ERIK DEMAINE: Welcome back to 6.890. Today will be our last lecture about pure 3SAT, so to

speak, and we'll be focusing in particular on circuit SAT today.

But before we get started with more reductions, I want to highlight two styles of

3SAT proofs that we've seen. This is orthogonal to the circuit perspective versus

logic perspective. And I think it's interesting to highlight the two different

approaches.

So approach one I'm going to call dual rail logic. These are not the usual names.

We're making up names here. There aren't really names for these types of

reductions. And the other type I'm going to call binary logic. These names come

from actual circuit stuff, real hardware.

So for example, all the Nintendo proofs we saw are in the style of what I would call

dual rail logic because the variables have two outputs. And the idea is that this one

is activated when x is set to true. This one is activated when not x is set to true or x

is set to false. Never should both of them be activated.

So you have a separate rail, separate line for the true case, and a separate line for

the false case. And this is usually called the variable gadget that does that. And I'm

going to make up some more terminology. I'll call this semi-wires to distinguish from

wires.

So over here in the binary logic case, this is sort of a half of a distinction. It's a semi-

distinction. This is my attempt to unify things slightly.

So the idea is that these semi-wires, either they get activated, or they don't get

activated at all. In the unactivated case, nothing happens to them. So they're not

1



really interesting.

In the binary logic case, the idea is that the wire gadget is active in all situations, but

it can be active in two different ways. You can either set it to the true state or you

can set it to the false state, and it represents both sort of in one wire.

Now, this distinction is going to get a little bit of egg. But we saw an example of this

kind of proof when we were talking about crease pattern, flat foldability, and p

hardness. The wire was the pleat, and the pleat could be folded one way or the

other. But either way, the information is right here, and the same wire gets put into

this gadget whether you're true or false.

Whereas over here you're connecting to this clause only the true half wire or semi-

wire goes to this clause. The false one goes to this clause and to this clause. So

there's a distinction between here where the wire's been split in half, and here

where it's all in one place, and the wire goes to the gadget whether it's a true or

false.

I think that's what I wanted to say. My main intent here is to highlight what kind of

gadgets you need. So we have a wire gadget on this side, a variable gadget on this

side. For binary logic you also need a splitter or a split gadget to make copies of the

wire.

So the idea is you have one wire coming in, there's some magic split gadget which

makes two wires or three wires, whatever, coming out. So then you can repeat split

however many times that variable occurs. You can make a copy. In the non-

monotone versions of 3SAT you may also need a negation or not gadget. If you

need negation, then you'll need a negation gadget.

In some cases you also need a terminator gadget in this perspective. A terminator

gadget is just the end of a wire, you might say. So if you want to just not use a wire,

then you would put a terminator gadget. And the idea of the terminator gadget is it

leaves it free, leaves the wire free to choose true or false.

Now, sometimes you can get away without a terminator gadget. For example, if

2



each of your variables occurs exactly four times, then you can just use two splitters,

make four copies, and then connect those directly to the clauses, maybe with some

negations. So in that case, you wouldn't need a terminator.

Over here we're using a terminator in a certain sense, which is the edge of the

paper. If a wire goes to the edge of the paper it becomes free. So that's sort of the

terminator gadget here. Though we didn't make explicit, it was part of this overall

plan.

In both cases, in one and two, you probably need something like a turn gadget and

maybe a crossover gadget. We've seen these in various forms. In this case, the turn

gadget was very explicit. I mean it was also a splitter and also in negator, but in

particular, it changed the angle, and we needed that in order to take this truth value

and send it up to clause and aim everything right.

And in general, if you were doing any kind of embedding into two dimensions, you're

probably going to need a turn gadget so you can move your wires or semi-wires

around.

A lot of the time people might call this also a wire, so that's why. But I think it's useful

to have a word to distinguish these kinds of wires which are only active or inactive,

versus the wires which are always active but in two possible states. Hopefully that

clarifies or makes more explicit the types of proofs we've seen so far.

Now, today we're going to do a couple of circuit SAT proofs, which all of this applies

to circuit SAT proofs, as well as SAT and 1 and 3SAT and that'll equals SAT, that'll

equal 3SAT. Circuit SAT you're going to have-- I guess in principle you could do it

dual rail logic or binary logic, although usually we probably think of them in this

capacity in binary logic.

And you're going to have wires. You still need splits because you need to be able to

take the output of a gate and send it to multiple other gates. In addition to a not

gadget, you're going to want some other universal logic gate. So we're going to talk

about that in a bit after we see some examples.

3



Our first example is called Akari or Light Up. This is another Nikoli puzzle like

Sudoku and Numberlink we saw last time. So here's a sample input and a sample

output. Ignore the black dots there.

So you're given a grid. There's blank squares and there's obstacle squares where

you're not allowed to put anything. Some of the obstacle squares may have a

number between 0 and 4 on them. And that number represents how many, among

the four neighbors, edge neighbors of that square, how many of them should have

a light? These blue circles are lights.

OK, so like this one has zero lights in those four positions, this one has two, this one

has four, that's forced, and so on. A lot of the cells are free, but whether you're lit or

not.

And then the rules are so you can think of a light as a rook in chess, so it can see

everything horizontally in the same row, up to obstacles, and in the same column up

to obstacles. So this guy, for example, lights this portion and this portion. This guy

lights that portion, and the thing here, and so on.

And the goal is, first of all, to light the entire board, so that's why it's all green, it's all

lit in that way. And no two lights should like each other, because then it's too bright I

guess. I don't know. So no two rooks can attack each other would be another

perspective. I think those are the rules.

So you've got to satisfy the number constraint. You can only place lights in the blank

squares. You have to light everything, and they can't see each other. So this is a

valid solution. This is puzzle one on the Nikoli website, and there's a ton more if you

want to play.

AUDIENCE: So you're saying they can't be in the same NOR column?

PROFESSOR: I mean they can be in the same column, but they have to be separated by an

obstacle. So they can't see each other within a sort of sub-column or within a sub-

row as given by the obstacles. Cool.

4



So that's the problem, and now we're going to prove that it's NP-complete. This is

the nice proof because it's relatively simple and it illustrates a kind of circuit SAT and

style reduction.

So for starters, and I would say most SAT proofs, a good starting point is a wire

gadget. You want to think about can I make some construction that has ideally

exactly two solutions, one to represent true, one to represent false.

So here are a variety of ways to do wires. And this is a fairly flexible kind of game.

The basic one looks like this. Most of things are going to be obstacles to tie it down,

make it easy to separate gadgets. But here we have two blanks squares, a one, two

blank squares, a one, two blank squares. That's sort of a simple kind of wire

because you know from this one, either x or x prime is a light. Exactly one of them

is. So that forces alternation. Done.

Why? Because if we choose x, we can't choose x prime because then they're in the

same sub-row and all the way down the chain. So in general, if x is true, the idea is

that the x's are the lights. If x is false, then the x primes are the lights.

Now, that's a basic wire. But part of the wires we need a turn gadget. So this is a 90

degree turn. Just check that this is still lit. If these guys could not see each other, I

think this is black. It's also OK. The alternation's forced by the one. But some

flexibility.

And let's see. The other fun thing you could do is spread out the x and x prime. If

you put a bunch of zeroes here to force that there's no lights here, because this has

to be lit again, one of these has to be active, and the ones force an alternation.

So this is helpful because if our wires just look like this, and this will come up again

today, then you're forced to be congruent to zero mod three. First your width has to

be a multiple of 3.

And this can be an issue. If you have a bunch of gadgets each of the different sizes-

- maybe one is 5 by 5, another 3 by 3, and other fun prime numbers, then you might

have trouble actually getting gadgets to meet edge on. Maybe there's a gap of one
5



or two or something between the gadgets.

But if you have a set up where you can adjust the wire lengths to be any integer,

that's good. You can do this most of the time, but then when you're getting close to

the gate, if you're off by one or two or three, you just make it a little bit longer and

you're all set.

AUDIENCE: The unfilled one can also just have a crossover gadget then?

PROFESSOR: Ah, sorry?

AUDIENCE: Since you have nothing-- it's very natural to have a crossover gadget by putting two

of them orthongonal.

PROFESSOR: Oh yeah. You can make a crossover gadget easy in this set up. I think that is a

future slide.

So we'll do crossover in a bit. Let's start with-- yeah, you can very easily do

crossover. We won't need a crossover here. That's what I mean.

So we definitely need splitting, though. In general, whenever you have wires you've

got to be able to make copies, because if your variable only appears in two places,

3SAT is easy, our circuit SAT is probably easy.

So here is a splitter. This is the main mechanism. I guess these ones and this two.

So these ones force an alternation between here and here. These have to be

opposites of each other. And then the two-- so if both of the x's are present, if this is

absent, then these two have to be present by the ones. And so by this two, that's all

there is, and therefore this is absent. So these guys have to be the same. These

guys have to be opposite.

And conversely, if this is present by these ones, these have to be absent, and by

this two, this has to be present. So this is almost sort of a-- well, you could also put

some ones here I guess if you felt like it.

Anyway, if you think about the parity here, when we're represent a signal coming

6



into a gadget, there's x on the left and x prime on the right. So that means coming

out here there's not x prime on the left and x on the right, so this actually a negated

copy of x. And up here with some turns, we have a regular copy of x and a regular

copy of x.

This is actually a fairly common thing that happens. When you try to split maybe you

also get a negated copy, or instead you get a negated copy. This is actually great

because it kills two birds with one stone. You could use this as a splitter. It kind of

makes 3D copies of your signal. But you could also use it just as a negation gadget,

as a not gate.

I think I have a slide of those done explicitly. Yeah. So here we're effectively using a

terminator gadget. We're saying, well, we could throw away this negated copy

because we already have two positive copies and that's enough for a splitter. So if

we just end this wire here, great, we've got a split. Or if we throw away the two

copies of x and we just want the negated copy of x, then ends up looking like this.

So we get a split gadget and a not gate essentially for free out of this. You could just

present this gadget and say, oh, I also have terminators, and then you know that

you get these. But for fun, he drew them and I'll show you them. I won't show you

them in future proofs. Cool.

So let's see, what do we have? We've got a wire. We've got a split. We've got a not.

We've got a terminator. We need some kind of clause or some kind of logic gate.

And then possibly we also need a crossover. We have turns.

Next up is a gate. It's sort of a mega gate. I'm guessing McPhail tried various little

configurations and then found one that did interesting things. It actually does two

interesting things at once.

So we have x coming in on the left and y coming in on the right, so both of them

have this x prime and y prime, then negated copies. And then we've got some fun

stuff in here. So let's start with maybe the bottom, which is supposed to be an OR of

x and y.

7



So let's say that they are both false, for example. And in general, we're going to

have to check all the cases, but I won't do all of them. So let's say this is absent.

This is absent, meaning the it's lit from the other end.

AUDIENCE: If it's false it means that x prime is present.

ERIK DEMAINE: Oh, right. Sorry. If they're both false-- I though it was good-- then both of these are

present, and therefore, we're going to get hopefully that this one's absent because

the OR of false and false is false. So the claim would be that A prime and B prime

must be activated.

AUDIENCE: If they weren't then you couldn't light both A and B.

ERIK DEMAINE: Right. These are at best OR'd together. At most, one of these is present. These

regions both need to be lit. So we're going to need at least one of them to be on,

but once one of them is on, we know that z is absent, and then the other one must

be on. Right, this too. Good.

And then we should up here get x NOR. So when these were both false and

present, these were present, these are absent, and therefore, this is present. And

the x OR of zero and zero is zero. The x NOR is 1, so that's good.

So in general, you check all the cases and confirm this is the case. Again, by putting

terminators on here, we can get either x OR y, or x NOR-- x NOR y-- it sounds

funny. That's great.

This is the one that we really care about. The OR gate-- well, so different answers

to this. But you should know, and we'll talk more about this later, NAND-- or let's say

NAND gate is universal. And a NOR gate by itself is universal. They're just good

things you should know. They go back at least 50 years.

AUDIENCE: What does universal mean?

ERIK DEMAINE: So universal means that from those-- if you're just given a bunch of NANDs, then

you can construct any logical get you want. I will talk about that more in a moment.

8



So this OR is particularly interesting because we already have NOT, and so from

OR and NOT we can make NOR-- it's just the NOT of the OR. And so from that, we

should be able to make anything. Which is great, except for one thing which is the

crossover gadget.

So in the case of Light Up, crossover gadget is easy to construct. But because we

have x OR anyway, we can use this fun fact that-- this is the symbol for x OR. If you

have x OR gadgets, you can make a crossover gadget for free. So this

communicates x to x, y to y. There's four cases. I won't check all of them.

But that's cool because we have x NOR, we can negate it and get x OR. And then

we can take three of them, plugging them together, and we get a rather complicated

crossover gadget if I expanded it out.

There is a simpler one, but we don't care about simplicity here. These are just

constants, and we just care about polynomial. So that's Light Up as empty heart.

AUDIENCE: Do we need crossover gadgets in general for circuit SAT? Is planner circuit SAT

hard?

ERIK DEMAINE: Please wait. Yeah. This is something-- well, yeah. I want to talk about that after the

next example.

AUDIENCE: OK.

ERIK DEMAINE: Which we'll get to an answer to that question. Which as far as I know hasn't been

explicitly raised before, but the answer is basically, you don't need crossover

gadgets, and for all the cases I can think.

So that was Light Up is NP hard. It's also in NP because a certificate is just where

do you put the lights. There's only polynomial number of places to put them, and

checking it is easy. Cool. So NP-complete.

Oh, here's for fun an overall construction, which McPhail worked out. So putting all

the pieces together and possibly using-- I think here there's maybe no crossovers.

9



So in general, with Circuit SAT you can construct sort of any Boolean formula you

want once you have a universal set of gates. But yeah, you can work through details

here.

It's easy to convert between AND and OR just by negating the inputs by De Morgan.

So you've got x OR y is NOT x and NOT y or vice versa. So as long as you've got

NOT an OR you can construct AND and vice versa by negating things appropriately.

So that's what he's doing here for getting some ORs and so on.

And because there's two copies of x-- well, x is sort of getting split here. I guess you

didn't have to split x. You could just connect directly. This is a pretty nice clean

construction. It could actually make decent resize puzzles with it.

AUDIENCE: So you end up with the wire carrying the formula just by doing all these

combinations?

ERIK DEMAINE: Right.

AUDIENCE: And then what do you do?

ERIK DEMAINE: Ah, good point. Thank you. There was one more point to this picture, which is this

zero. This should be an OR of x false, and this OR or this AND and blah, blah, blah,

which is this thing.

AUDIENCE: So if that wire's carrying true, then you don't need to put a light next to the zero,

otherwise you would have to, and that means the puzzle can't be solved.

ERIK DEMAINE: Right. So for this puzzle to be solvable, we better not put a light here, which means

it has to be here, which corresponds to this formula being true, I think, if I got that

parity right. Or either way. You could put a one there and force there to be a light.

So this makes the puzzle feasible if and only if this formula's feasible. Because the

wires are unconstrained, except by setting this thing equal to one.

So this is a special kind of terminator, you might say. A true terminator. You want to

force the thing to be true in the end. That's usually pretty easy to do. Terminator's

10



usually one of the simplest gadgets to worry about. But yeah, you do need it.

For circuit SAT you need-- let's add that. Circuit SAT you need let's say a true

terminator. There are other ways you could do it. Cool. Other questions about

Akari? All right.

So our next topic is Mine Sweeper. This is from our poster. We did Super Mario

Brothers, and Bruce Lee did Rush Hour, so Mine Sweeper's the last one on the

poster. Let's prove it hard.

We're actually going to cover two proofs about Mine Sweeper, because there are

sort of two natural problems you might ask about it. The first problem is consistency.

So this is I give you a set up, I'm going to give you a partially solved board that

you're not given the x levels. So just a regular instance of Mine Sweeper.

Maybe you're told where some of the bombs are. It won't actually matter, because

all the bombs that I'll draw here are drivable from this-- I should mention the rules of

Mine Sweeper just in case you haven't played. Anyone not played Mine Sweeper?

I'm not willing to admit it.

The numbers here representing, among all your vertex neighbors, all eight

neighbors, how many of them are bombs. You don't want to click on the bombs

because then you die. So your goal is from this partial information, these blank

squares represent zeros. From this partial information, you want to figure out where

the bombs must be.

And here's a very familiar looking wire. We can't just have obstacles that are wild

cards. So we have to put numbers if we don't want there to be bombs there. That

makes the gadgets quite a bit trickier to work with.

But this looks pretty similar. We've got these ones, which force an alternation.

Exactly one of these two is a bomb, so if x is present, x prime is absent and vice

versa. And then this one forces-- I guess actually this one forces these to be

opposite. So that forces the alternation down the line. So again, there are exactly

two solutions to this wire gadget for where the bombs could be.

11



And so the Mine Sweeper consistency problem is I give you some picture involving

these things, and I want to know is there a solution-- is there a placement of the

bombs that satisfies all of these constraints?

Now, you might ask why is that the problem we care about? And one reason if

you're playing Mine Sweeper, you'd like to know, for example, could there be a

bomb at this position?

So could there be a bomb at this position? I could solve that problem, potentially, if I

could solve Mine Sweeper consistency by saying, let's put a bomb there as part of

the partial information. Is that consistent with everything else? So add a bomb to the

partial information. Is that a consistent configuration?

So if I could solve Mine Sweeper consistency, I could play Mine Sweeper very well

by just testing which are bombable positions. If they're not, possible to be a bomb

there. Actually click there and get more information and cook until done.

Now, maybe you could solve Mine Sweeper in a different way than using

consistency. But one way to solve it would be consistency. Question?

AUDIENCE: By consistency you don't mean unique solution.

ERIK DEMAINE: I do not mean unique solution, right. Yeah. So when you actually want to solve the

game, you'd like there to be a unique solution. That's a problem we will get to in a

moment.

AUDIENCE: So a blank board, unfilled information is consistent.

ERIK DEMAINE: Yes. Completely blank board is consistent. And it wouldn't be interesting. As you're

playing, you imagine you've gathered some information, you add a bomb. You want

to say is this consistent. It says yes, like you're in a blank board. And you're like

could there be a bomb here. Of course there could be. Then that's not a safe move.

So if you could solve this, you could identify safe moves. Turns out you can't solve

it, so it doesn't directly help you. Yeah.

12



AUDIENCE: So there doesn't always exist a safe move.

ERIK DEMAINE: There doesn't always exist a safe move.

AUDIENCE: What good is it, kind of, to know whether [INAUDIBLE].

ERIK DEMAINE: Yeah. I would say consistency is the wrong problem to solve for Mine Sweeper. But

it was the first problem solved. The gadgets are relatively easy, which is going to be

fairly complicated. And then we'll get to the right problem for if you wanted to solve

the puzzle.

At this point it's an interesting question. You just want to know is it consistent. Did

the computer cheat would be one other perspective. Or you could imagine some

adversarial Mine Sweeper where you only decide the bombs as the person is

playing.

So here, just even telling whether your opponent is cheating is hard. So that's

another perspective. Let's finish this proof.

We have a terminator, which is actually a little bit tricky here. You can't just end with

ones because that would force this guy to be a bomb. So you end with these threes,

which force-- these guys are already bombs because of this picture, and then

exactly one of those will still have to be a bomb.

And then we have a splitter. It's a similar picture to Akari. We have this two, which

forces exactly to two of these to be present, and these ones force alternation.

Now, I'm orienting these arrows for the splitter and defining true to be when the

pointy end of the arrow is present. So that means this is actually a negated copy,

and these are unnegated copies. But that's only from the orientation. This gadget's

actually symmetric, fourfold.

But if you put these arrows in, which you would do if you were actually following a

circuit, their circuits are directed acyclic graphs remember. So this is negation,

which is good because it gives us a NOT, it also gives us a split. You can also end

13



these two things and get a turn. So great, three gadgets in one.

So we already have NOT. This is another way to do NOT. And it's interesting here

because with Akari we could stretch wires to any length, any integer length that's

sufficiently long. Here, we're forced in this modulo three picture, normally. But when

we do something like a negation here we get kind of messed up. We're no longer in

the same position modulo three. We should be off by one I believe.

So the idea is if you do two negations in a row, then you can end up shifting by

exactly two and still have the same signal. So you can see here we have xx bar, but

down here we have it shifted two positions over. Or I guess it's more impressive

over here, so x bar x.

And normally this would repeat in this kind of pattern. So it actually shifted by one

position. Good. That's actually what I want. So see the pattern here, here, here,

here, and shift by one. Yeah, or two the other direction.

OK, so that's good. That lets me adjust my wire length. These are also often called

shift gadgets. They just let you shift by one.

And whenever you have gadgets that force certain modulo constraints, just having

the ability to add one is great because then you can break all switch constraints.

You no longer have to live in a mod three grid, whatever, if you don't want to.

So this is important. In general-- I'll add it to the list here. When you're dealing with

wires you may need some kind of shift gadget that lets you fix parity issues, or in

this case, a mod three parity.

OK, here is a more complicated gadget, which I will not go through. It looks scary.

It's not actually a ton going on. It's a lot of gadgets we've already seen. It uses a

slight-- I've mentioned a turn gadget. This is another way to do a turn. There's a few

redundant gadgets in this paper because it's fun to make gadgets, so I want to have

more.

So there's, for example, just a turn gadget here. There's a splitter here. Another

14



turn gadget. This is reflectionally symmetric around the x-axis. There's basically just

a turn here, so x is just getting copied and negated into here. z is getting copied and

negated into here.

This is the output value, which is getting copied around into here. And then a little bit

of magic happens here and here to get these to interact in the right way. And it's

essentially just checking cases to see that this computes an AND of these two

inputs. But a little bit complicated.

AUDIENCE: Is coming up with these gadgets harder than checking them?

ERIK DEMAINE: Good question. It's unclear. Often when you're designing things, you have a lot

more control, and it could potentially be easier to design hard problems than to

check them. Because we know it's NP-complete to check this, in a certain sense.

I mean, of course, in this case there's only four cases, so it's not really that hard.

But yeah, when you're designing things you have in mind a certain connectivity

structure, and then it's a matter of getting things to resolve in the grid and not have

things overlapping and so on, which is a different kind of constraint.

I might say it's a more fun one. I would call designing these puzzles meta puzzles,

and to me that's more fun. But of course, I'm a theoretical computer scientist. That's

why we're here. Anyway, fun to answer that question.

So here's a fun thing. I hadn't seen this paper before by Goldschlager in 1977. They

were worried about p completeness, which we haven't talked about yet. But in

particular, they gave these two pictures. This one we've seen. If you have an x OR

gadget, you can construct a crossover.

Now, we don't have an XOR gadget in this case, but we have an AND gadget or a

NAND gadget. This is the funny way of writing NAND, NOT of an AND. And if you

have NAND gadgets you can construct an XOR.

So if you plug this picture into each of these three pictures you get a kind of ugly

thing, but it's planar and it implements a crossover. Which means if you have NAND,

15



you get planarity for free.

So I'm going to call this planar circuit SAT. It's like catch, this, I think is also a made-

up term. I haven't seen it in the literature. Because it's a little bit vague what it could

mean. But let's say we're given a planar directed acyclic circuit. And let's say all

gates are NAND. Then this is NP-complete.

AUDIENCE: [INAUDIBLE].

ERIK DEMAINE: Ah, right. Sorry. And at the end you want it to be true. Thank you. So you have let's

say the sources are unconstrained. So those represent the variables. And there's a

sync, which is set to one. And we could say there's just one sync.

So you have some starting points. Those are completely free to choose true or

false. And then at the end you have a sync. I guess it just has one thing probably

coming into it. Wouldn't make sense otherwise. And we set this to be one. So that's

just like satisfying formula, but drawn as a Boolean circuit, and it's planar.

Now, we're going to see more versions of planar SAT next class, but this one as far

as I know is newish. It's essentially argued in this paper. Say, hey look-- this paper

was not talking about NP-completeness, but the K paper says, hey, we've got these

two things, so as long as you have NAND you've got crossovers for free. So you

don't have to worry about planarity, which is good news. So no crossover gadget

needed.

There is one. It's actually not that hard in Mine Sweeper, but it's nicer when you

don't have to do it. Questions?

I guess I did talk about termination. We do need a true terminator here because

we're doing circuit SAT. That's really easy. In fact, this would do it. Just ending with

all ones means, in fact, if there's zeroes out here, that means this has to be a bomb.

And so that sets it to one. So there's a true terminator for Mine Sweeper

consistency.

But as we've seen in various ways, Mine Sweeper consistency is probably not what

16



we want to actually play the game. The algorithm I gave you is one way to think

about playing the game where you add a thing and you check for consistency.

That's also a little bit weird where you're assuming that the input is consistent, and

then you add one bomb and you want to see whether that makes it inconsistent.

That's a special case of this instance. Maybe not as hard as the general picture.

Everything was consistent up until the moment you added one new bomb

information. These pictures don't look exactly like that.

Another thing I want to point out in these gadgets is let's say the number of x and x

bars is not the same. Maybe this negation, this equal numbers of x and x bars over

here, but there's one extra x bar.

What that means is local to this picture, the number of bombs that get used varies.

There's either one, two, three, four bombs if you choose x, or there's five bombs if

you choose x bar.

And one of the minor things in Mine Sweeper is that the total number of bombs is

given to you as input. So that actually also kind of messes things up. Anyway,

luckily, this problem was solved. It was actually independently solved by multiple

people. It's claimed in Bob Hearn's PhD thesis, though never got fully written up.

And then it got published, so no reason to write it up anymore.

So here is their proof. Both this proof and the previous one appeared in

Mathematical Intelligencer.

So they draw the gadgets slightly differently, and so far everything looks about the

same. They're not going to use a phase changer in this form at least. So they're

going to draw the wire gadget like this, and the idea is that you would copy it, you

get things mod three, that will turn out to be OK for them.

But what they really want is that in each diagram there are equal number of x and x

bars. Why? And also what are they proving? So this is what they call the Mine

Sweeper inference problem. But it's also what you might just call Mine Sweeper.

17



I want to solve this puzzle. What does it mean to solve the puzzle? Well, it means

you're given this partial information. You want to know am I done? Did I solve it?

Can I solve it? Can I figure out where all the bombs are? This is like there being a

unique solution.

So I want to conclude that, OK, I can figure out where all the bombs are. So can you

figure everything out? So again, the reduction is from something like circuit SAT. It's

going to be a reduction from circuit unSAT. Unsatisfiability.

So satisfiability you want to set the variables so that the outcome is true. You might

say, well, I could try to set the variables so the outcome is false. That's the same

problem. That won't change. Just put a NOT at the end.

Unsatisfiability means that you cannot satisfy this formula. There's no way to set the

variables to make the output true. There does not exist choices for the x ANDs,

such that some f of xi's equals 1. If we do some-- who knows, this is called De

Morgan? Probably not.

Another fun fact is NOT there exists, NOT is the same thing as for all or however

you want to write it. So if we put this negation over to here, this turns into universal

quantifiers. These are extensial quantifiers to for alls. So this is quite a different

problem.

3SAT is about do there exist settings for these n variables such that this comes out

to be true. Now we're saying no matter how you set the variables, this comes out to

be true or false I guess. But again, that doesn't matter. You can just put the

negation inside f if you wanted to.

So the key difference here is we switched the quantify direction. This is such a big

difference that this problem is not NP-complete, unless NP equals coNP. This

problem is coNP complete.

Recall coNP are the problems where you can always given no certificate. Whenever

the answer is no, I can give you a short proof that the answer is no. How would I tell

you that the answer to this question is no? I would give you a satisfying assignment.

18



I'd give you xa to xn, where f ends up being 1, then you know this is not true.

It's very hard to prove yes here. I mean you might have to check all possible

exponentially many assignments to the xi's. Of course, we don't know whether that's

possible. That's coNP completeness. It's the same NP versus p problem, but

negated. Cool.

So claim is Mine Sweeper inference is coNP-complete. And in general, the proper

statement is Mine Sweeper is coNP-complete. Mine Sweeper consistency is NP-

complete, but Mine Sweeper the game, I want to solve the game, is coNP-complete.

Cool?

This will be one of the few cases where coNP arises for us. Yeah.

AUDIENCE: Where does coNP lie on this? We don't know?

ERIK DEMAINE: In my one-dimensional diagram, you can think of NP and coNP lying in the same

space, but maybe like in a parallel universe. I think. People always draw this picture,

NP, coNP. P is here, and this is NP intersect coNP. And some people think that's the

same thing as P. Who knows.

So there are parallel universes, one about positive problems, one about negative

problems. But in some sense, equal complexity.

In this class we think about reductions as being one call reductions. You take your

problem, you map it so that the output when you solve this new problem has exactly

the same solution to the original problem.

If you instead think about multi-call reductions where you can make calls to an

oracle that solved the target problem multiple times and then do stuff with it-- you

could, for example, call that thing, then negate the answer and return that.

In that universe NP and coNP become the same thing. Or NP-completeness and

coNP-completeness, which are about reductions, become the same thing. So that's

the only thing holding them apart is that we're not allowed to negate the answer.

19



So I view them as almost the same, but obviously they're different and you have to

distinguish one from the other. But in terms of difficulty they're about the same. The

difference between NP and coNP versus p space is totally different, or x time, or the

other things in my one-dimensional diagram.

Yeah?

AUDIENCE: Would p equals NP imply p equals coNP?

ERIK DEMAINE: If p equals NP, then I'm pretty sure NP equals coNP, because in polynomial time

you can do-- yeah. p is closed under a complement, because you can solve the

problem then negate.

So I should say NP and coNP are different. But NP-complete and coNP-complete

are very close, let's say. There's sort of dual-- for every problem over here, the

corresponding problem over here is like the hardest, and they're sort of symmetric

or something.

All right. Phew. Back to Mine Sweeper.

So here is the coNP-completeness. We have wires just like before, but I'm drawing

them differently. Because part of the issue here is we are told how many bombs

there are, and we don't want that information to help us.

So we want every diagram to have an equal number of, say, x and x bars. So if we

set it with x or set it with x bar, we use exactly the same number of bombs,

Which means knowing what gadgets are glued together we can just add up how

many bombs each one has. That will be the total number of bombs given to the

puzzle. And that shouldn't give you any extra information because all of these

pictures will have equal number of x's and x bars.

So here we have wire, terminator, and turn. Pretty similar to before, but now

checking that everything has equal number of x's and x bars. I think this turn, for

example-- no, that one happens to be balanced. Some of these gadgets are not

balanced. This one almost certainly.
20



OK. So in this case, they construct a NOT gate and an OR gate. And then they also

build a shifter. This is a different kind of shifter. It still has width and multiple of 3, but

we're taking the wire and shifting it perpendicular by one unit. With turns you can

simulate the other type of shifter, but this turns out to be the only one that they

need.

So let's talk about that first, let's say. So if x is set by this two and this bomb, this

one is not set. This four already has three of them, so it effectively becomes a one.

So then these two have to be opposites from each. This is sort of where the shift

happens.

And then because we have to deal with these bombs that are left over. Let's put

some more in. And then this is five, so there's already four here, and so that forces

an alternation there. So same idea, but with some bombs added in to fill the space,

let's say.

Got to do a one here, and a one here, a one there. This is a problem. I can't put a

one here. That would force this guy to be present. So that's probably why that bomb

is there, because we don't want to have to say how many bombs are adjacent to

this corner.

With regular wires you don't have corners. Good. But when you're doing a shift you

have sort of corner. Same thing with the turn gadget that we already saw. OK.

I think NOT is also pretty intelligible, but it's fairly complicated. It essentially involves

making another copy of the signal just so we get an equal number of x's and x bars.

Because we saw in the previous reduction with a NOT gate, we had this one

isolated guy. That would be like this one.

And so if you just have this picture, yeah, it would negate things. And again, this is

designed to be mod three, so there's three, six-- that's hard to do-- nine, 12, 15. So

things are nicely aligned on the mod three boundary, but they end up with these

three dudes. They end up flipping the signal. Here's x, here's also x, which is like

21



the reverse because it's on the left.

But this would have an unequal number of x's and x bars. There's too many x's in

this row. So we end up splitting off a negated copy here, basically, to balance things

out. And now if you count all the x's and x bars they should be equal. Cool.

And then they build an OR gate. So it's again, looks fairly complicated. Probably

pretty simple in essence, but I don't feel like checking all those cases.

What is annoying is that this thing is not mod three aligned. Mod three aligned

would be here or here, with the output always in the middle finger. But instead it's

here. And so they used the shift gadget over here to offset that by one, and similarly

in all three pictures.

And then you get an OR gate with proper alignment. Everything works out in mod

three. OK. Cool.

So we have NOT and we have OR, therefore we have NOR, and therefore we can

build any logical gate we want. An so we have turns, we have shifts that we need,

we have NOT, we have-- did we do split? I think we did split on the previous-- nope,

we didn't do split. OK, then let's do split.

So we need to copy our wires. This is a more complicated version of the previous

split. Again, with an extra thing thrown in. Like this is not needed. You don't have to

put this here, but it adds an extra x bar.

So there's actually two of those things. And so together that offsets all the extra x

copies that are on the inside. And so that forces, again, equal number of bombs,

whether it's x or x bar chosen. So we can just count how many bombs are needed

in this picture. Cool.

This is, again, a symmetric version. So if you're thinking of, let's say, this as the

input, and these two as the output, than negation happened. So if you don't want

negation to happen, just put a big NOT gate there.

And in this case they give a crossover gadget. In particular because it's not that
22



hard to give a crossover gadget, but it's also not necessary. So you could do

crossover explicitly, but in fact, I just looked on Wikipedia earlier today.

We already know that planar circuit SAT with NAND gates is hard. So can we build

NAND? And so I looked up in Wikipedia, how you build NAND out of NORs. And the

answer is this. And that's planar. So we're done.

You take this picture, you plug it into each of these guys. And you take that picture

and you plug it into each of these guys. Make sure to preserve planarity all the way

through. It does. And then from-- I should know that's you construct NAND out of

NOR. It's exactly from De Morgan law, because this is just negation.

So cool thing is all these constructions preserve planarity which means we can add

to our definition of planar circuit SAT. All gates are NAND or all gates are NOR. This

is nice because when you're solving next p set or whatever, you can just take planar

circuit SAT, if you happen to construct a NAND gate you're done. If you happen to

construct an OR gate you're done. No crossover needed.

You'll still need turns, and maybe a shift, and maybe a terminator. You won't need

NOT if you build NAND or NOR. You'll need a split, but you don't need a crossover

anymore. This is cool. As far as I know a new result, but I mean obviously implicit in

all of these things.

Yeah.

AUDIENCE: Do you know if there's any sub-problem, I guess, is that where you don't have

universal gates and you can't be planar and get it so hard? So maybe you can--

ERIK DEMAINE: Oh, interesting.

AUDIENCE: You can split wires and you have a variable that has the negation of it coming out,

but that's all you can do. No other NOT gates.

ERIK DEMAINE: My guess is that all such problems are polynomially solvable, but maybe that's

something we could think about. Certainly plausible that you don't need to be able

23



to construct all Boolean formulas in order to be hard.

But my vague sense/experience playing around with weird other gates, most of

them are all equivalent to splits if they're not universal-- something like a split.

Maybe with some like five operand operator, you could do something cool.

But usually they degenerate to other split-like things or clause-like things. But if you

don't have both, you don't get enough to be hard. We should prove a theorem like

that, but I would guess that you need something like this.

Now these are not the only universal gate sets. I think in a moment I will have a-- if

you are curious about more of what universal gate sets are, these are usually called

functionally complete or functional completeness.

If you look at that on Wikipedia, this is an excerpt from Wikipedia, you see NAND

and NOR are the only, among arity two operators, so you have two inputs, one

output. NAND and NOR are the only things that by themselves are universal. But

once you allow two different gates you can do other things.

So these are particularly interesting. This is false I think. It's called [INAUDIBLE],

and this is called top, it's true. And so these are slightly unusual ways for me to think

about writing them. Here we have, of course, AND and NOT. But this is right

implication, which is like not the left thing or the right thing. We talked about that in

the past.

That by itself is not enough, because you can just follow implication chains. But if

you also have false, that is universal. So that's kind of funny.

And this is XOR I think. XOR is the same as saying that the two things are different.

And this is XNOR. So those by themselves are not universal, but if you have some

other kind of one-way implication, then that gives you any logical formulas.

Now, whether these in the planar version are hard, I don't know. But I know that Ds

in the planar version are hard.

OK, back to Mine Sweeper. They drew a picture of how everything fits together, so
24



it's maybe nice to have the big picture. But let's in particular think about what the

decision question is and make sure-- I mean I claim this is coNP and then we're

doing unSATs, but we should actually check that.

At this point we've just simulated a circuit. We haven't thought about what we're

trying to solve overall.

Now, we want to know whether we can derive everything. So we compute our

formula and then the output is here. And at this point there's just a terminal there

saying I don't know what it is. Different from the previous proof. The previous proof

said that should be one at the end, and then you have to figure out how to fill in the

things.

Now we're saying, I don't know what's there. Can you figure out what's there? And if

it's the case that no matter how you set the variables you always get false, then you

know what this wire looks like. You know that it's false. And in fact, you can figure

out everything. If you know what all the XI's are you can just run through the circuit.

So you can figure out the entire diagram.

But in general, just asking the question, can I figure out this square? Is there a

bomb or not? In order for there not to be a bomb, you would have to solve this

problem. You need to determine that no matter how you set the things you end up

with a zero. Or the adjacent position it would be the opposite.

So conversely, what I really care about-- that was the wrong direction. I'm given a

circuit unSAT instance. I want to turn it into a Mine Sweeper instance. So I do that,

and then the question is-- get this right-- can you derive whether there is a bomb in

this square? Can you determine that there must be a bomb in this square, for

example? That would be a slightly cleaner version.

And that will be true, if and only if no matter what you do, there's a bomb in that

square. Which is like saying no matter what you do, this formula comes out to zero.

So any kind of inference question like that is going to require you to solve this

problem, or rather, this problem can be reduced to any inference problem like that.

25



It's easy to get backwards here, so hope I got it all right. And that's coNP

completeness. Reductions look the same for coNP. We just start with different

problems. Cool. So that was Mine Sweeper and functional completeness.

I have one more-- well, sort of two more proofs. Only one that I will talk about in

detail for Candy Crush and soon enough, Bejeweled. But let's think about Candy

Crush is the modern version. I'm guessing you've all played, but in case not, please

don't play. It's very addictive.

But on the slides we're allowed to. So you have a grid of colors, colored candies.

And a move in this game is to take two candies and switch their order. I guess in

this picture I did these two. If you switch these two you get this picture.

And the mechanics of the game, the physics or whatever, is whenever you have

three or more candies of the same color in a row or column, or in a row, then they

disappear. And anything above them falls. So like this red candy ends up there. In

this case, there were no more candies above. In the real game usually there's

always more candies above.

But if we're in a small game this won't-- if we're in a big game and looking at a small

window, we know everything about what will fall.

AUDIENCE: Do you need to make them fall or do they automatically fall once you get--

ERIK DEMAINE: They automatically fall. Yeah, so they are forced to fall. It's all I get to do is make

this move and then stuff happens. So I make this move and then anything that-- any

three in a rows or more disappear. And then if that makes more three in a rows they

will disappear and so on.

And my hands are off at that point. Once the chain reactions are finished-- not all

games work this way, but Candy Crush happens to work this way. Once these

things are finished, then I can do another exchange. And when I do an exchange I

must make three in a row. I can't just swap these two guys. It's not interesting.

AUDIENCE: What if it's like a T pattern or like non-linear?

26



ERIK DEMAINE: Yeah, OK. In this picture we'll never have Ts. It will always be three in a row, and

never a four in a row. With four in a row, magical striped candies happen and you

don't want to know.

So potentially you can get up to five in a row with these rows, but in these

reductions that won't happen. So we don't care what the rules say there. We're only

going to get three in a rows.

There is a weird catch in this proof. I'm going to mention two proofs from 2014, so

all very recent. I guess the game isn't that old. And in this proof we're going to

assume if-- in general, there may be multiple three in a rows at once. And the proof

is going to assume that they are resolved bottom to top, so you do the bottom-most

one first, things fall, then you do the next one, things fall, do the next one, things fall.

That's not how the actual game works. In the game, they all disappear

simultaneously and then stuff falls. OK, but ignore that for the moment. The next

proof will change the model. OK, this is a much easier one to think about and draw

the pictures.

So in that model, here's a variable gadget. The starting point's the same, picture top

and bottom. And the idea is either you exchange these two to make three, or you

exchange these two to make three.

And the consequence is either the right column falls by three or the middle column

falls by three. And that's all you can do local to this gadget. So that's easy. Things

are going to get messier.

OK, so you have this picture, variable gadget for XI. Above it I'm going to make one

of these two gadgets. Actually, both of them, but one at a time. So in fact, it will

actually look kind of like this, stacked on top of the variable which is down here. So

variables down here. Either the center column falls or the right column falls.

Now, the idea is this is going to eventually connect to a clause, and this variable-- I

should say this is not for circuit SAT, this is from 3SAT-- regular old 3SAT. So that

27



variable appears in a clause either in positive form or negative form. Positive, use

this gadget. Negative, use this gadget.

So in the positive case, if this falls by three we get this picture, and then these

disappear, and so this guy falls one more. And the idea is that's going to trigger

something off to the right. That will be next slide. That will be the wire gadget.

If the center column fell by three, nothing would happen. The purples-- so I should

mention how these gadgets are constructed. There's a four color sort of

checkerboard pattern in odd rows. It's alternating orange, green, orange, green. In

even rows it's alternating red, yellow, red, yellow.

And then in a few places we're going to put the purple ones, because purple's best.

And all the action is going to be in the purple candies. These guys are just out

there-- and the real game has six colors. We're only using five of them. So cool.

These guys are just sort of filler to make sure nothing else happens. But still things

fall vertically in a nice controlled way. OK, so if these fall by three, the purples don't

align so nothing happens. In this case, if the center one falls by three we get

alignment, and that falls by one.

So great. Also note, these gadgets stack somewhat nicely. In that other than this

three gap-- in reality, more candies will fill in here. I drew it this way so you could

see how much the columns actually fall.

Remember, this all sort of happens in one move. So this falls, these clear, then this

will clear, and stuff happens. It's annoying. So, so far everything's good because

each of these has fallen by one in addition to the original three.

But in this case, this follows by an extra one, and I think you need to add an extra

candy here. I'm a little unclear in the details on how to do that. It's mentioned in the

paper, but without details.

Anyway, in the end we will have a bunch of these stacked on top of each other.

Each time the variable occurs in various clauses we're going to have some positive

28



and some negative ones. And we want the same variable trigger-- ah, that's right.

There will be-- well, OK. Yeah. I'm going to leave it like that.

So at this point we have a purple thing triggering something to the right. So now I'm

going to show you how that part works. This is the wire. So the wire itself is like this.

And the idea is that when there's a purple one here, a chain reaction happens. And

it happens in this way. As soon as there's a purple candy here, this clears, which

makes these two fall by one, which clears that, which makes this fall by one, and

triggers the next thing.

This one, some stacking happens. Let's see. So overall, I think this one is actually

better behaved. This falls by one here and then two. So overall these columns fell

by two.

This column has fallen so far by one, but it's about to fall by a second one, because

this will always trigger something. And so these do stack nicely, because you always

clear exactly two columns. The worry is that the gadget above it will be skewed.

Let me give you one more gadget, then I'll tell you-- no, actually, I think at this point

I should tell you how things fit together, which is this picture.

So we have variables down here in the lower left. Then let's worry about one thing

at a time. These are the connection gadgets. I don't think I told you their name. But

they are your connector gadgets. This is making a 90 degree turn. From the falling

action we're going to get a purple in a particular position, which causes rightward

motion.

And then the wires that you saw basically go in some angle off to the right. I want

these all to be non-intersecting. And there's sort of two of them. There's going to be

the true case and the false case.

And then way over here somewhere, we're going to have a clause where these

wires all attach. And then above it we're going to have a reward where you get tons

of points, and et cetera.

29



So let me tell you what happens next. It's a fun way to draw the picture. So above

these we'll have some other connections. I should not do it in the same pattern. I

should not do it like that. Yeah, sure. Connection, connection.

OK, again, diagonal lines. Great. Not quite diagonal. It's an angle. We have a

clause. Everything connects up. Above the clause is a reward. And then I move

boards, and that's the picture.

And above the variables, we just keep adding more connections connected to some

clauses. And there's not just three variables, of course. There's n variables down

here, and we use some, three of them, and then connect that off to a clause.

And they're all just stacked-- I happen to draw the clauses one on top of the other.

That shouldn't happen. So there's some extra space here. This is more over to the

right. So that none of them will interact with each other. That's the goal.

Except there's some issues, like notice this wire gadget, notice dual rail logic. Either

this is active or this is active. And we hope that not both of them are active, although

that can actually happen here. I'll get to that.

So when this activates, notice this goes on top of a variable gadget. Now, a wire by

itself is kind of good. We've seen it removes two things from every spot. So things

don't shift too much. And furthermore, we should hope that either this activates or

this activates. So this will shift by a consistent amount in either case.

But the wire may get messed up because the variable actually removes three things

from one of the columns. So we need a better wire gadget, which looks like this.

This is a super wire gadget. It's really cool. It works no matter how you use it, kind

of.

So this is what it looks like in general. And this is regular use. So as before, if we

trigger this, then this triggers, and this guy falls by one, just like before.

But now also, if there's a variable down here and this column falls by three-- or

sorry. If this column falls by three, so the same picture, the things fell by three, still

30



everything works out. These two fall. These two fall but they meet a different dude.

But there were a bunch of guys to meet up with, so it's fine. And I clearly drew the

output in the wrong place. The output should be here I think. Yeah. So in this picture

the output was here, also it shifted by one. In this picture the output is here, not up

there.

So in both cases it triggers. And finally if the middle column fell by three before this

gadget activated, then this, again, triggers this time with this guy being different.

Instead of this one matching, this one's matching. That still triggers these guys and

this is still the output.

So this is a different wire gadget that works in three different scenarios, depending

on what happened below it. So that's good news. That lets us do this type of wire.

And in general, we're going to have a chain reaction all the way down here until we

get to the clause from bottom to top. And this we'll resolve. And let me show you the

clause. I think details are a little bit messy. There's a little locking mechanism here.

But basically the idea is all of these things come in, x1, x1 bar, x2, x2 bar. All of the

half wires or semi-wires. And so we expect one of these to activate. Maybe you

don't do that, but that would be weird, and you won't end up satisfying the clause.

So if this one activates, then these align, and you're happy. In general, if you can

get this column to fall, you're going to be happy, because above this thing is this

reward gadget. And if this column falls by one, you get a million points. And every

clause has its own reward of a million points, and million here is like n squared or

something.

So you really want to get these. And the only way to do it is to satisfy the clauses.

The only way to get all the point is satisfy all the clauses.

Now, the goal in this game, I didn't mention, is to maximize the number of points

you can get for a given number of moves. Usually in Candy Crush you have a

limited number of moves. So the idea is you're just going to have enough moves to

31



set each of the variables right.

If you end up setting one of the wires directly-- you can trigger any wire by doing a

little flip. You can say I'll trigger this one wire. But that will satisfy, at most, one

clause. Whereas if you do it on a variable, you're going to satisfy a bunch of

clauses, and that's clearly better.

So that's a bit of an argument you need to make. It doesn't help enough. You could

even set this wire and this wire, an xy or an x bar wire. But the claim is that will

never buy you as much as setting an entire variable, and here's the reason why.

I drew this picture simply to say for every clause we're going to have this picture

connected to some variables. In fact, every time you have a clause, you make a

million copies of the clause. And million is like n. So that it's really worth setting the

var-- every variable appears in millions of clauses. So you really want to set the

variables. If you just satisfy one measly clause and get one measly million points, it's

not worth it.

But if you can get a million times a million points, whoa, a trillion points. So that's

why you should only set variables, not set wires directly.

OK. I think I have roughly covered this proof, except I didn't go up the chain. Here,

setting x1 bar doesn't do much except setting one or the other of these ends up

shifting all of these things by one, which ends of clearing this, which shifts all of

these columns by one.

And basically things look really spread out here, but as you work your way up,

they're coming more and more into alignment. The idea is as long as things resolve

from bottom to top, you-- it doesn't-- then first you figure out whether x1 satisfies the

clause.

If it doesn't, it sets things up for x2. And then maybe x2 satisfies the clause. If it

doesn't, it sets things up for x3 here. They're spread out even more. But by the time

you've done these things below, that thing will be ready.

32



So that was the first proof. The second proof-- sorry, before interlude. Candy Crush

is based on a variety of games. Most famous is Bejeweled, but there is a long

history of-- even Tetris is in there.

There's a long history of match three games. And pretty much all of these are NP-

complete. I don't know the details of all of them, but there's this paper by three

authors a little bit later in the year that proves basically all of these games are NP-

complete, even when you're not given a move limit.

So this is interesting. And Bejeweled, the goal is just to maximize your score. You

don't necessarily have a limit on the number of moves, unlike Candy Crush. And

also in some levels candy Crush is like that.

So here it was very crucial that we only had enough moves to trigger all the

variables. We didn't want to be able to do other things. So here's a different proof,

and I'm just going to give the high level picture, basically.

This is cool, because even just figuring out whether you get this one gem, this one

candy is hard. In order to do so, you have to line up all of these things for each

clause. And here's the reduction from exactly one of 3SAT.

So only if exactly one of the variables get set correctly does this shift to the right

level, and only when all of these are shifted to the right level can you trigger this

wire to go all the way here and get that guy. And it's the only way to get that guy.

You can't do it directly. It can only be triggered from the left-hand side.

And there's also a sequencer over here, which forces all of the variables to get set

before this happens. So it's a little tricky, because you don't want it to be, you could

say half of them, and then trigger this, and then things happen to align in a cheating

way.

The details are complicated, but they actually implemented their reduction. So this is

it. Now, as it says here, there are 4,000 rows above and 2,000 rows below. So it's a

large construction. And this is for this formula.

33



[LAUGHTER]

I can clean it up a little bit, remove the-- again, there's a background checkerboard

pattern here. So if I generate instance then things are little bit cleaner. And I think

highlighted in red are the moves you can make.

So here's the first variable. You could either-- let's do the simple one first-- move

this guy with this one, and then trigger, trigger, trigger. All this happens without you

able to do anything. And that will move some stuff up top.

Or we can move this one here, and then this is fun. The variable goes down and it

just keeps-- it goes down, basically, to where the x1 bar is, down here, and then it

triggers that guy, and maybe that guy also. And that one. And--

[LAUGHTER]

Just lots of stuff happens. Anyway, eventually we'll get down to x2 and we'll be able

to set it one way or the other.

So the details are obviously a little bit complicated, but clearly they've been explicitly

worked out because they can even play the game, which is pretty awesome.

Anyway, and they also have the greatest URL, candycrush.isnphard.com. We

should try to get other things not as nphard.com.

That is Candy Crush and Bejeweled and all of its friends are NP hard. That's it,

unless there are questions.

So we've just started to scratch the surface on the idea that planar graphs are hard,

and next class we'll see planar versions of 3SAT and one and 3SAT. If we weren't

using here, this is using a non-planar thing. So that helps with a lot of proofs,

especially ones that happen in the plane.

So we've seen it with planar circuit SAT. But next we'll do planar and 3SAT, planar

one and 3SAT, planar not all equal SAT, those kinds of things. And again, be able to

avoid crossovers, which is nice. Cool.

34


