Plan Recognition

"Generalized Plan Recognition" (Kautz&Allen 1986)

- Plan recognition: lies in identification of a minimal set of *top-level actions* sufficient to explain the set of observed actions
- Plan representation: grap, with top level actions as root nodes and other actions as nodes depending from the top-level actions
- Approximation: the problem of graph recognition is a problem of graph covering

Dialogue Systems

1/16

Regina Barzilay

Plan Recognition: Algorithms

- (Charniak&McDermott,1985): plan recognition as abduction
 - (Charniak&Goldman,1993): use of Bayesian inference (supports minimal explanation, handles likelihood)
- (Vilain, 1990; Pynadath&Wellman, 1997): plan recognition as parsing (problems: does not support interleaved plans and partially-ordered plans)
- (Goldman&Geib&Miller, 1999): abductive, probabilistic plan recognition, centered around plan execution (supports interleaved plans, takes context into account)

Dialogue Systems

5/16

Plan Recognition: Two views

Cohen, Perault and Allen (1981)

- Keyhole: the recognition is simply watching normal actions by an agent
- Intended: the agent is cooperative; its actions are done with the intent to be understood;

Notations(cont.)

Plan (Beliefs concerning goal decomposition): (A, E, C)

- A set of actions
- E set of directed acyclic edges, $A_i \rightarrow A_j$ if A_j is a step in achieving A_i
- C set of Constraints

Recipies: functions from non-primitive action A_i to (A'_i , E', C'), such that actions in A' are steps towards A_i Other functions: CONSISTENT?(P), REPLACE (P, A_i , A_j), DONE? (A)

Dialogue Systems

7/16

Notations

ACT - a set of actions

 $\text{PRI} \in \text{ACT}$

 $\mathsf{TOP} \in \mathsf{ACT}$ (done for no other purposes than thems leves)

Primitive actions can be executed directly, while abstract actions are achieved indirectly by achieving other goals

Plan Recognition

- Input: $[A_1, \ldots A_n]$, P=(A, E, C), a focus of action f \in P, recipy library
- Output: (possibly empty) set of extensions of P which "minimally explain" the input actions by applying recipies "below" the focus

Dialogue Systems

9/16

Properties of Recognized Plans

- $[A_1, \ldots A_n] \in A'$
- every action in (A' A) is reachable in E' from f
- P' can be derived from P by a composition of calls to EXTEND (\ldots, R_k, \ldots) , where $R_k \in R$, and replace (\ldots, \ldots, A_k) , where $A_k \in [A_1, \ldots, A_n]$
- no smaller plan (A",E", C"), and A" \in A', E" \in E', C" \in C'

Dialogue Systems

11/16

Properties of Recognized Plans

- $[A_1, \ldots A_n] \in A'$
- every action in (A' A) is reachable in E' from f
- P' can be derived from P by a composition of calls to EXTEND (..., R_k, ...), where R_k ∈ R, and replace(..., A_k), where A_k ∈ [A₁,...A_n]
- no smaller plan (A",E", C"), and A" ∈ A', E" ∈ E', C" ∈ C'

The size of the search space required to explain one action is bounded by: $F(R * S)^L$,

S is the maximum number of steps in a recipe R is the maximum number of recipes applicable to the actions

 ${\cal F}$ is the number of actions on the fringe of ${\cal P}$

L is the lengthy of the longest sequence of recipes R_1, \ldots, R_L the algorithms must consider

Dialogue Systems

13/16

Algorithm	
(a) Plan recognition. RECONNEC[$[A_1,, A_n], P, f, R$) = $\mathcal{EXPL} \leftarrow \emptyset, Q \leftarrow \emptyset$ if $P = \langle \emptyset, \emptyset, \emptyset \rangle$ foreach $T_i \in TOP$ add $\langle [A_1,, A_n], \langle \{T_i\}, \emptyset, \emptyset \rangle, T_i \rangle$ to Q else foreach $g_i \in FRINGE(P, f)$ add $\langle [A_1,, A_n], P, g_i \rangle$ to Q infill $Q = \emptyset$ remove $\langle [A'_1,, A'_{n'}], P', act \rangle$ from Q $P'' \leftarrow REPLACE(P', act, A'_i)$ if $CONSITENTY(P'')$ if $n' = 1$ add P'' to \mathcal{EXPL} else foreach $g_i \in FRINGE(P'', f)$ add $\langle [A_2,, A'_{n'}], P'', g_i \rangle$ to Q if $act \notin \mathcal{PRIM}$ foreach $recipe R_k \in \mathcal{R}$ $P'' \leftarrow EXFLOP(P', R_k, act)$ foreach s_i , where $act - s_i \in P'''$ add $\langle [A'_1,, A'_{n'}], P''', s_j \rangle$ to Q return \mathcal{EXPL}	

Dialogue Systems

15/16

 Algorithm(cont)
(b) Focus, ambiguity and clarification.
$plan \leftarrow \langle \emptyset, \emptyset, \emptyset \rangle, focus \leftarrow null, acts \leftarrow []$ repeat wait for next input action A_i ,
if DONE?(root of plan) $plan \leftarrow \langle \emptyset, \emptyset, \emptyset \rangle$, focus \leftarrow null add A_i to acts
$\begin{aligned} \mathcal{E}\mathcal{XPL} \leftarrow \text{Recognize}(acts, plan, focus, \mathcal{R}) \\ \text{if } \mathcal{E}\mathcal{XPL} = \emptyset \\ \text{set } focus \text{ to root of } plan \\ \mathcal{E}\mathcal{XPL} \leftarrow \text{Recognize}(acts, plan, focus, \mathcal{P}) \end{aligned}$
if $ \mathcal{EXPL} = 1$ remove pick from \mathcal{EXPL} else if $\mathcal{EXPL} = \emptyset$ or $ acts > MaxWait$
$\begin{aligned} pick &\leftarrow CLARIFY(\mathcal{EXPL}) \\ \mathbf{if} \ pick &\neq null \\ plan &\leftarrow pick \end{aligned}$
$focus \leftarrow \text{UDATEFOCUS}(plan, A_i)$ $acts \leftarrow []$

Example without plan recognition with plan recognition 1 USER: "Let's work on email." USER: "Let's work on email." 2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages." 2 AGENT: 'IOU HAVE 5 HITEAU MCSONGEL 3 USER: "Let's read a message." 4 USER: <Select message from Chuck> 5 USER: "Let's read message in its own window." USER: <Select message from Chuck> 5 USER: "Let's read message in its own window. 6 USER: "Let's do something using message." 8 USER: "Let's do something using message." 9 ...long lunch... 10 USER: "What was I doing?" 11 AGENT: "Working on email. 12 Reading message from Chuck. 13 Reading message in its own window. 14 Done something using message. 15 «Visit http://foo.bar.com> 16 Expecting to react to message." USER: <Open message> USER: <Visit http://foo.bar.com> ...long lunch... USER: "What was I doing?" AGENT: "Working on email. 11 AGENT: "Working on email. 12 Reading message from Chuck. 13 Reading message in its own winds 14 Done something using message. 15 <Visit http://foo.bar.com> 16 Expecting to react to message." 17 USER: "Let's send email." 19 USER: "Let's send email." 19 USER: "Let's fill in message." 20 USER: "Let's fill in message." 21 USER: "Let's fill an wessage." 22 USER: <Address message to Dan> 23 working on email. Reading message from Chuck. Reading message in its own ... Done something using message. <Visit http://foo.bar.com> Expecting to react to message." USER: <Start new message> USER: <Address message to Dan> AGENT: "Why you sending email to Dan? (a) reacting to msg from Chuck(b) as a new goal " 23 24 (b) as a new goal * (b) as a new goal * (c) as a second base of the s 24 25 26additional editing actions... 27 USER: "Done filling in message." 28 AGENT: "Let's send, cancel or save msg." 29 USER: "Please save message." 30 AGENT: <Save message> Key: "utterance" <primitive action>