Evaluation

Challenges:

- Intrinsic subjectivity of some discourse related judgments
- Hard to find corpora for training/testing
 - Lack of standard corpora for most of the tasks
- Different evaluation methodology for different tasks

Evaluation Strategies

1/32

Evaluation Strategies

Regina Barzilay

April 26, 2004

Intrinsic Evaluation

Comparison with an "ideal" output:

- Requires a large testing set
- Especially suited for classification tasks
- Typical measures: precision, recall and F-measure
- Confusion metric can help to understand the results
- Statistical significance tests used to validate improvement
- Must include baselines, including a straw baseline (majority class, or random) and comparable methods

Evaluation Strategies

3/32

Evaluation

• Intrinsic:

- comparison with an "ideal" output
- subjective quality evaluation
- Extrinsic (task-based):
 - impact of the output quality on the judge's performance in a particular task

Evaluation Strategies

Intrinsic Evaluation

Subjective quality evaluation

- Advantages:
 - Doesn't require any testing data
 - Gives an easily understandable performance evaluation
- Disadvantages:
 - Requires several judges and a mechanism for dealing with disagreement
 - Tightly depends on the quality of instructions
 - Hard to isolate different components
 - Hard to reproduce

Evaluation Strategies

5/32

Intrinsic Evaluation

Comparison with an "ideal" output:

- Advantages:
 - Results can be easily reproducible
 - Allows to isolate different factors contributing to system performance
- Disadvantages:
 - In the presence of multiple "ideal" outputs, penalizes alternative solutions
 - Distance between an "ideal" and a machine-generated output may not be proportional to the human perception of quality

Task-based Evaluation

Advantages:

- Doesn't require any testing data
- Gives an easily understandable performance evaluation

Disadvantages:

- Hard to find a task with good discriminative power
- Requires multiple judges
- Hard to reproduce

Evaluation Strategies

7/32

Task-based Evaluation

Examples:

- Dialogue systems: Book a flight satisfying some requirements
- Summarization systems: Retrieve a story about X from a collection of summaries
- Summarization systems: Determine if a paper X should be part of related work for a paper on topic Y

Large Annotation Efforts	Basic Scheme	
• Dialogue acts		
Coreference	Preliminary categories that seem to cover the range of	
Discourse relations	phenomena of interest	
Summarization	• Different categories functionally important and/o easy to distinguish	
he first three are available through LDC, the last one is vailable through DUC		
aluation Strategies 9/32	Evaluation Strategies	
aluation Strategies 9/32	Evaluation Strategies Developing an Annotation Scheme	
Today	Developing an Annotation Scheme	
	Developing an Annotation Scheme Main steps:	
• Basic of annotations; agreement computation	Developing an Annotation Scheme Main steps: • Basic scheme	
Today • Basic of annotations; agreement computation • Estimating difference in the distribution of two sets - Significance of the method's improvement - Impact of a certain change on the system's	Developing an Annotation Scheme Main steps: • Basic scheme • Preliminary Annotation	
 Today Basic of annotations; agreement computation Estimating difference in the distribution of two sets Significance of the method's improvement Impact of a certain change on the system's performance 	Developing an Annotation Scheme Main steps: • Basic scheme • Preliminary Annotation • Informal evaluation	
Today • Basic of annotations; agreement computation • Estimating difference in the distribution of two sets - Significance of the method's improvement - Impact of a certain change on the system's	Developing an Annotation Scheme Main steps: • Basic scheme • Preliminary Annotation • Informal evaluation • Scheme revision and re-coding	

Evaluation Strategies

Evaluation Strategies

11/32

Example: Dialogue Act Classification

Taxonomy principles:

- Activity-specific
 - Must cover activity features
 - Make crucial distinctions
 - Avoid irrelevant distinctions
- General
 - Aim to cover all activities
 - Specific activities work in a sub-space
 - Activity-specific clusters as "macros"

Evaluation Strategies

13/32

Example: Dialogue Act Classification

- Informativeness:
 - Difference in conditions/effects vs. confidence in label
 - Generalization vs. distinctions
 - * Example: state, assert, inform, confess, concede, affirm, claim
- Granularity:
 - Complex, multi-functional acts vs. simple acts (the latter relies on multi-class classification)

Informal Evaluation and Development

- Analysis of problematic annotations
 - Are some categories missing?
 - Are some categories indistinguishable for some coding decisions?
 - Do categories overlap?
- Meetings between annotators and scheme designers and users
- Revision of annotation guidelines
- More annotations

Result: Annotation manual

Evaluation Strategies

15/32

Preliminary Annotation

- Algorithm
 - Automated annotation if possible
 - * Semi-automated (partial, supervised decisions)
 - Decision trees for human annotators
- Definitions, guidelines
- Trial run with multiple annotators
 - Ideally following official guidelines or algorithm rather than informally taught

Reliability of Annotations

- The performance of an algorithm has to be evaluated against some kind of correct solution, the *key*
- For most linguistic tasks *correct* can be defined using human performance (not linguistic intuition)
- If different humans get different solutions for the same task, it is questionable which solution is correct and whether the task can be solved by humans at all
- Measures of reliability have to be used to test whether human performance is reliable
- If human performance is indeed reliable, the solution produced by human can be used as a key against which an algorithm can be evaluated

Evaluation Strategies

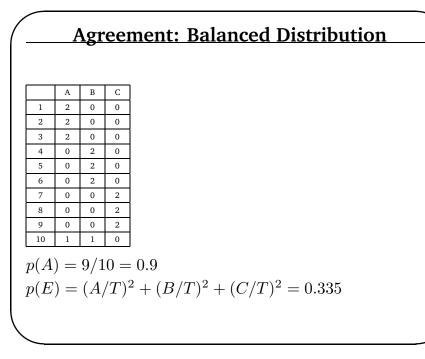
17/32

Formal Evaluation

- Controlled coding procedures
 - Individuals coding unseen data
 - Coding on the basis of manual
 - No discussion between coders
- Evaluation of inter-code reliability
 - Confusion matrix
 - Statistical measure of agreement

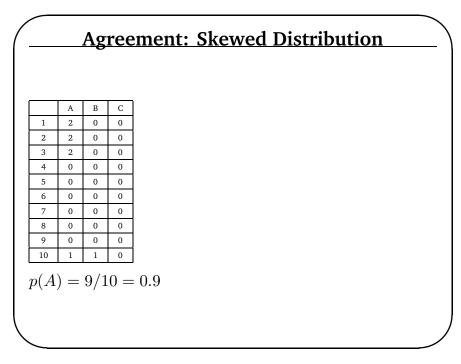
Agreement: Balanced Distribution

	А	В	С		
1	2	0	0		
2	2	0	0		
3	2	0	0		
4	0	2	0		
5	0	2	0		
6	0	2	0		
7	0	0	2		
8	0	0	2		
9	0	0	2		
10	1	1	0		
p(A) = 9/10 = 0.9					


Evaluation Strategies

19/32

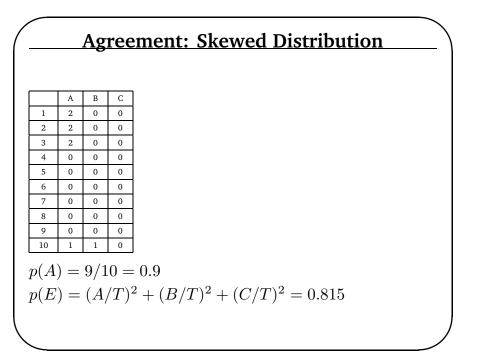
Reliability of Annotations


- Kowtko et al. (1992) and Litman&Hirschberg use pairwise agreement between naive annotators
- Silverman et al. (1992) have two groups of annotators: a small group of experienced annotators and a large group of naive annotators. Assumption: the annotations are reliable, of there is only a small difference between groups.

However, what does reliability mean in these cases?

Evaluation Strategies

21/32


- The kappa statistics can be used when multiple annotators have to assign markables to one of a set of non-ordered classes
- Kappa is defined as:

$$K = \frac{P(A) - P(E)}{1 - p(E)}$$

where P(A) is the actual agreement between annotators, and P(E) is the agreement by chance

Evaluation Strategies

23/32

Today

- Basic of annotations; agreement computation
- Estimating difference in the distribution of two sets
 - Significance of the method's improvement
 - Impact of a certain change on the system's performance
- Comparing rating schemes

Evaluation Strategies

25/32

Kappa Interpretation

- Complete agreement: K = 1; random agreement: K = 0 random agreement
- In our example: K for balance set is 0.85, and for skewed one is 0.46
- Typically, K > 0.8 indicates good reliability

Many statisticians do not like Kappa! (alternative: interclass agreement)

Paired Data

- Goal: determine the impact of a certain fact on a given distribution
- Test is performed on the same sample
- Example scenario: we want to test whether adding parsing information improves performance of a summarization system on a predefined set of texts
- Null hypothesis: the actual mean difference is consistent with zero

Evaluation Strategies

27/32

Student's t-Test

- Goal: determine whether two distributions are different
- Samples are selected independently
- Example scenario: we want to test whether adding parsing information improves performance of a summarization system
- Null hypothesis: the difference is due to chance For N = 10, $X_{avg} \pm 2.26 * \sigma/N^{\frac{1}{2}}$ (with 95% confidence)
- "Statistical significance": the probability that the difference is due to chance

Chi-squared test

- Goal: compare expected counts
- Example scenario: we want to test whether number of backchannels in a dialogue predicted by our algorithm is consistent with their distributions in real text
- Assume "normal" distribution with mean μ and standard deviation σ:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}$$

Evaluation Strategies

29/32

Anova

- Goal: determine the impact of a certain fact on several distributions (assumes cause-effect relation)
- Samples are selected independently
- Null hypothesis: the difference is due to chance
- Computation:

 $F = \frac{found variation of the group averages}{expected variation of the group averages}$

• Interpretation: if *F* = 1 null hypothesis is correct, while large values of *F* confirm the impact

• In some cases, we don't know the standard deviation for each count:

$$X^2 = \sum_{i=1}^k \frac{(x_i - E_i)^2}{E_i}$$

$$E_i = p_i N$$

- Assume the Poisson distribution (the standard deviation equals the square of the expected counts)
- Restrictions: not applicable for small E_i

Kendall's τ

- Goal: estimate the agreement between two orderings
- Computation:

$$\tau = 1 - 2 \frac{I}{N(N-1)/2},$$

where N is a sample size and I is the minimal number of interchanges required to map the first order into the second