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1. Overview


Today we examine the zig-zag product introduced by Reingold, Vadhan, and Wigder­
son [2] and Capalbo, Reingold, Vadhan, and Wigderson [1]. The product leads to a 
remarkable constructioon of expander graphs needed in the Spiser-Spielman code. In 
addition, their works introduce a probabilistic viewpoint of expansion. In previous liter­
ature, the spectral techniques are used to analyze the expansion of expanders and often 
limited to nonbiparite graphs. This randomness notion of expansion enables them to 
construct a new family of expanders that beat the eigenvalue bound. Warning: this 
lecture is not self-contained and omits various proofs. 

2. Preliminaries 

Definition 1. A D-regular graph G = (V, E) is a (K, A)-expander if for every S ≤ 
V, |S| � K, |�(S)| � A|S|. 

When D is constant and A > 1, we consider G a good expander. If A � (1 − γ)D, 
G is considered an excellent expander. Recall that we need a family of expanders with 
A > D/2 in the Sipser-Spielman code. In [1], a construction of a family of excellent, 
imbalanced bipartite expanders was given. 

However, it is difficult to prove that graphs have good expansion using the above 
definition. Typically spectral techniques are employed. 

1Definition 2. The normalized adjacency matrix P of a D-regular graph G is 
D A, where 

A is the adjacency matrix of G. 

By normalizing, this allows us to interpret P as the transition matrix of a random walk 
on G. Note that P is a real, symmetric matrix. From linear algebra, we know that it 
has N eigenvalues, �1 � . . . � �N , and N orthogonal linearly independent eigenvectors 
v1, . . . , vN , such that each eigenvector vi has eigenvalue �i. It is not hard to see that 

1 v1 = ( 1 
N , . . . , N ) and �1 = 1. 

Now interpreting graphs in this framework, suppose that a particle starts at vertex 1 
and at each step, jumps to a random neighbor. How fast does the probability distribution 
converges to the uniform distribution? First, note that in a disconnected graph, it never 
converges to uniform because some vertices will never be visited. And in a graph with 
a sparse cut, the distribution also does not converge because some vertices will rarely 
be visited. So intuitively, we should expect that an expander with weak expansion rate 
has slow convergence rate whereas an excellent expander has fast convergence. This is 
formalized as follows. 

Suppose all eigenvalues except �1 are less than 1/2 and that the initial distribution 
is � = (�1, . . . , �N ). Since the eigenvectors form an orthogonal basis, we can write 
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� = v1 + 
�N �ivi. Then P t� = �t v1 + 

�N �t�ivi. Since �1 = 1, we see that P t�
i=2 1 i=2 i 

quickly converges to v1, the uniform distribution, if all the other eigenvalues are small. 

3. RVW Result


Let G = (N, D), where G is a D-regular graph on N vertices and H = (D, d), where 
H is a d-regular graph on D vertices. We write �(G) as the second largest eigenvalue 
of graph G. The zig-zag product is an operation that takes graphs G and H and pro­
duces a new graph GzH. Syntactically, the zig-zag product GzH = (ND, d2). Moreover, 
there exists a function f(·, ·) such that if �(G) = �1 < 1 and �(H) = �2 < 1, then 
�(GzH) � f(�1, �2) < 1. 

G
G

We first describe how to construct a family of expanders from the zig-zag product then 
define the product itself. let H be a constant sized expander (which can be found in 
constant time by brute force). More formally, there exists a constant d0 such that for 
all d � d0, there exists a constant D0 such that for all D � D0, there exists a graph 
H = (D, d) with �(H) � 1/2. From H we can obtain a family of expanders. Before we 
do so, let’s recall the powering operation. If G has transition matrix P , then for t � 1, 

t is a multigraph corresponding to the transition matrix P j . Note also the edges in 
t correspond to walks of length exactly t in G. Now, for some appropriate constant 

j, let G1 = H2j . Iteratively, define Gi = (Gi−1zH)j . Inductively, deg(Gi) = dj and 
�(Gi) � 1/2 (with appropriate j). This iterative method provides a construction of good 
but not excellent expanders from scratch. 

Now we describe the zig-zag product informally. The vertices of the zig zag product 
GzH is V (G) × V (H). So we can imagine placing a copy of H at each vertex u of G, and 
these are the new vertices of the zig-zag graph. Furthermore, each node of H indexes a 
neighbor of u. Pictorially, think of the underlying graph G as colored red and each edge 
in a copy of H as colored blue. Nodes (u, i), (v, j) are connected in GzH iff there is a 
path of length 3 between the two nodes pictorially, where the first edge in the path is 
blue, second is red, and the third is blue. Formally, the two nodes are connected iff there 
exists i�, j � such that (i, i�), (j, j �) are edges in H, such that the i�-th neighbor of u is v in 
G and the j �-th neighbor of v is u in G. 

4. Third Notion of Expansion 

In [1], a third notion of expansion is introduced. Graphs are viewed as entropy con­
ductors. Recall that extractors, interpreted as a bipartite graph, have k bits of entropy 
on the left set of vertices, each has d edges (interpreted as d seed bits), and the induced 
distribution on the right has min(k + a, m) bits of entropy, a > 0. A bipartite expander 
is such that for every set of at most K vertices on the left, the set of neighbors on the 
right is at least AK for some A > 0. Write K = 2k and A = 2a . Then similarly we can 
interpret expanders as taking a source with k bits of entropy on the left with d additional 
random bits and producing a distribution with k + a bits of entropy, a > 0. An excellent 
expander (the expansion rate is arbitrarily close to the degree) produces almost k + d 
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bits of entropy. This view of expanders as entropy conductors allows Capalbo et. al. to 
construct a family of excellent expanders, and this will be shown in the next lecture. 
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