
1

Cache-efficient sorting for Burrows-Wheeler Transform

Advait D. Karande Sriram Saroop

December 2003

Abstract

The expensive activity during compression in the Burrows-Wheeler Transform (BWT) is sorting of
all the rotations of the block of data to compress. Most of the fast suffix sorting algorithms suggested
to encounter this problem suffer from adverse memory effects. We present cache-efficient suffix sorting
algorithms that can overcome this overhead. We analyze the performance of Sadakane’s algorithm that
uses a cache-oblivious Distribution sort instead of Quick sort. We then present a fast cache-efficient
suffix sorting algorithm based on a Divide and Conquer strategy and evaluate its effectiveness. A recent
breakthrough in the field of suffix sorting has been the emergence of a linear time suffix sorting algorithm.
We present improvisations to the algorithm and compare its performance against contemporary suffix
sorting implementations.

Introduction

Lossless data compression based on Burrows-Wheeler Transform (BWT) has received much attention
since its introduction [1]. The bzip2 software is an industrial strength compression tool based on this
transform. BWT involves sorting of all rotations of the block of data to be compressed. This problem is
usually solved by transforming it into an easier problem of suffix sorting. Suffix array data structure is
widely used to perform this task, because of its lower memory requirements than other alternatives such
as suffix trees. Yet, suffix array construction is a computationally intensive activity, which dominates the
compression time.

Several successful attempts have been made to improve the asymptotic behavior of BWT. The original
implementation incurs the worst case complexity of O(N 2log(N)), if there is a high degree of repetitiveness
in the input file. The number of characters, N, is typically quite large and such worst case behavior is
unacceptable. An algorithm introduced by Larsson and Sadakane for suffix sorting, has a better worst case
bound of O(N(logN)) [2]. Recently, linear time algorithms have been proposed [3][4], but little is known
about their practicability.

The practical aspects of the suffix array construction, however, have received little attention. The locality
of reference and hence the cache performance is one such factor. On modern architectures with multiple
levels of memory hierarchy, the cache behavior and the memory access pattern of an algorithm play an
important role in its overall performance.

The objective of this project is to devise ways of making suffix sorting for Burrows-Wheeler transform
cache-efficient. In this paper, we present three approaches that can potentially lead to an improved cache
behavior for suffix sorting.

•	 The use of cache-oblivious distribution sort in suffix sorting. It performs a factor of 1.76 to 3.76
slower than the quick-sort based approach for relatively small block sizes. However, we expect it to
outperform quick-sort and merge-sort based approaches when the block size is increased to extents
that accomodate paging. (Section 2)
A divide and conquer algorithm to exploit the spatial locality of reference. It has O(N 2) running time •
and takes 8N extra space. It displays better cache behavior than asymptotically faster algorithms such
as Larsson-Sadakane. (Section 3)

1

• Improvements to a linear time suffix array construction algorithm invented recently by Aluru et al [3].
We find that our implementation performs as well as contemporary fast suffix sorting implementations.
It displays the linear behavior as per expectations. We also analyze the trade-offs that need to be
considered in order to come up with better implementations.(Section 4)

We conclude this paper in Section 5 by summarizing the main results and providing pointers for future
work based on this project.

2 Incorporating Cache-oblivious Distribution sort

2.1 Motivation

Sadakane’s algorithm for fast suffix-sorting involves passes that sort the suffix according to a given key
value. Each of these passes can be modelled as an integer-sorting problem. Cache-oblivious sorting of
strings has not been dealt with in the past because of the implicit difficulty caused due to the low locality
of references involved. However, cache-oblivious integer sorting algorithms have been developed in the past.
The modelling of Sadakane’s suffix-sorting as passes of integer array sorting facilitates the usage of cache-
oblivious integer-sorting algorithms.

2.2 A Discussion of the Algorithm

The cache-oblivious distribution sort is described in [5]. The key aspects of the algorithm are described
below. The distribution sorting algorithm uses O(n lg n) work to sort n elements, and it incurs �(1 +
(n/L)(1 + logZ n)) cache misses if the cache is tall. This algorithm uses a bucket − splitting technique to
select pivots incrementally during the distribution.

Given an array A of length n, the cache-oblivious distribution sort sorts A as follows:

A
�

n
�

n.

q � �
n B1 2 q

1. Partition into contiguous subarrays of size

2. Distribute the sorted subarrays into buckets , B , . . . , B

Recursively sort each subarray.

of size n1, n2, . . . , nq , respectively,
such that for i = 1, 2, 3, . . . , q − 1, we have

(a) max x�Bi}� min{x
ni � 2

�
n.

{x x�Bi+1},| |
(b)

3. Recursively sort each bucket.

4. Copy the sorted buckets back to array A.

Strategy

The crux of the algorithm is the Distribution step, which is Step 2 of the above algorithm.�
nFirstly, each bucket holds at most 2 elements at any time, and any

There are
two invariants in the algorithm.
element in bucket Bi is smaller than any element in bucket Bi+1. Secondly, every bucket has a pivot
associated with it. The pivot is a value that is greater than all elements in the bucket. Initially, there
exists only one empty bucket with pivot ∗. At the end of Step 2, all elements will be in buckets and both
the conditions stated in Step 2 will hold. State information for a subarray includes the index next of the
element which is to be copied next. The other component of the state information is the index bnum of the
bucket into which the next element is to be copied. The basic strategy is to copy the element at position
next into bucket bnum. We increment bnum until we find a bucket for which the pivot is greater than the
element. However, this basic strategy has a poor caching behavior. Hence, a recursive approach is used
to distribute the subarrays into buckets. The distribution step is accomplished by a recursive procedure,
DISTRIBUTE(i, j, m) which distributes elements from the ith through (i+ m− 1)th subarrays into buckets

2

starting from Bj . Given the precondition that each subarray r = i, i + 1, . . . , i + m − 1 has its bnum[r] √ j,
the execution of DISTRIBUTE(i, j, m) enforces the postcondition that bnum[r] √ j + m. Step 2 invokes
DISTRIBUTE(1, 1,

�
n). The DISTRIBUTE procedure is shown below:

DISTRIBUTE(i, j, m)
if m = 1

then COPYELEMS(i, j)
else DISTRIBUTE(i, j, m/2)

DISTRIBUTE(i + m/2, j, m/2)
DISTRIBUTE(i, j + m/2, m/2)
DISTRIBUTE(i + m/2, j + m/2, m/2)

The base case occurs when only one bucket needs to be distributed. We then call the subroutine
COPYELEMS(i,j) that copies all elements from subarray i to bucket j. If bucket j has more than 2

�
n

elements after the insertion, it is split into two buckets of size at least
�

n. The deterministic median-finding
algorithm is used for the partitioning of the bucket. The distribution sort described above is provably optimal
in terms of number of cache-misses incurred = �(1 + (n/L)(1 + logZ n)).

2.3 Testing Environment

The tests were performed on Sunfire (sf3.comp.nus.edu.sg). The technical specifications are shown in Table 1.

Table 1: Testing Environment used
P arameter V alue
Processor Ultra Sparc III
Number of processors 8
Operating System Solaris V8.0
Processor Speed 750MHz
Compiler gcc 3.2.2
L1 Cache size 64KB 4-way Data, 32KB 4-way Instruction
L2 Cache size 8MB
RAM 8GB

2.4 Performance

We implemented Sadakane’s algorithm for suffix sorting that used distribution sort for single character
comparisons, and compared it with implementations of Sadakane’s algorithm that used Merge Sort and
Quick Sort respectively. The last two columns in Table 2, RDistri/M erge and RDistri/Qsort are the ratios of
times taken by Distribution sort versus Merge sort and Quick sort respectively. The ratios were calculated
for different files which varied from a random string like rand.txt that provides an example of a fairly good
case to worse cases exemplified by a large amount of repetition like the genome chromosome sequence -
gene.txt. Table 2 shows that in the above cases, Distribution sort performs at worst a factor of 3.76 slower
than Quick sort and a factor of 3.452 slower than Merge sort. Considering the fact that Quick sort and
Merge Sort do not suffer from as much memory management overhead as Distribution sort, this factor is
acceptable. Moreover for the cases considered above, the cache misses may not be as dominating a factor
as the extra housekeeping needed to store state information and splitting the buckets. These factors are
discussed in the next subsection.

3

Table 2: Performance of Distribution sort compared against Quick sort and Merge sort

F ileN ame Size

cia.txt 52KB
linux.txt 80KB
bin.txt 111KB
binop.txt 550KB
rome.txt 1618KB
rand.txt 4MB
gene.txt 8MB

Time(in sec.)
Qsort M ergeSort DistriSort
0.081 0.100 0.170
0.130 0.140 0.251
0.210 0.231 0.370
1.061 1.102 1.873
2.594 2.804 9.634
4.775 5.201 17.954
32.166 53.232 100.224

RDistri/M erge RDistri/Qsort

1.700 2.099
1.793 1.930
1.602 1.762
1.699 1.765
3.436 3.714
3.452 3.760
1.883 3.116

Overheads incurred

The implementation of the distribution sort incurs a lot of memory management overhead unlike quick sort or
even merge sort. The bucket splitting involves dynamic memory allocation using mallocs. This deteriorates
the performance of the implementation in terms of the observed timing. The cache is not ideal, and hence
the required cache-obliviousness may not be observed perfectly. Moreover, it is possible that the run-time is
not dominated by the cache-misses. The extra memory management in terms of maintaining correct state
information for the buckets and the subarrays contribute adversely to the observed timings. We initially spilt
the original array into

�
n subarrays of size

�
n each. The splitting into square roots causes rounding errors,

and we need to draw out special cases in order to produce correct results, which again results in an overhead.
Hence, the above mentioned factors contribute to the degradation of the observed performance. However,
if we increase the file sizes to arbitrary lengths, page faults occur. In this paging scenario, distribution sort
can potentially perform better than merge sort or quick sort. This is an aspect which needs to be explored
further.

3 A divide and conquer algorithm for suffix sorting

This algorithm extends the basic divide and conquer strategy of the merge-sort algorithm used for sorting
numbers. Larger suffix arrays are formed by merging smaller suffix arrays formed recursively. In addition it
has two other important aspects.

•	 Right-to-left processing: The relative order among the suffixes near the end of the block can be
determined using a small number of character comparisons. The suffixes on their left (towards the
beginning of the block) can in turn use this order to determine the relative order among themselves.
The algorithm makes use of this intuition. The suffixes are sorted from right to left in a given block of
data.

•	 Storing of match-lengths: The match length between of any two suffixes is the length of their common
prefix. If two suffixes have a large common prefix, then determination of the relative order between
them requires a large number of comparisons. Comparisons of many other suffixes sharing a portion
of this common prefix would also involve the same comparisons. We want to avoid this duplication of
work by storing the match lengths of the suffixes whose relative order has been determined.

We begin by defining the data structures used by the algorithm.

3.1 Data structures and notations

•	 T [0..N − 1]: The original block of characters to be transformed

•	 SA[0..N − 1]: The suffix array which finally contains the sorted order of suffixes

4

•	 M L[0..N − 1]: An array to store the match lengths between the sorted consecutive suffixes. M L[i] is
the match length between suffix SA[i] and SA[i − 1]. M L[0] = 0

•	 last match len: The match length of the two leftmost suffixes in the sorted part.

•	 P OS[0..1]: It stores the relative position of the two leftmost sorted suffixes

Suffix Si denotes the suffix starting at T [i]. Similarly, suffix SA[i] denotes the suffix starting at position
T[SA[i]]. The main structure of the algorithm is similar to that of merge-sort as shown below. We define the
precedence relation, ≤, on the suffixes as follows. Si ≤ Sj if and only if suffix Si is lexicographically smaller
than Sj .

sort(unsigned char T[], int SA[], int ML[], int p, int q){
if q − p � 1

then compare suffixes Sp and Sp+1

store the order in POS[]
update last match len
update SA[p..q] and M L[p..q]
return

mid = (p+q+1)/2;
//sort the right half
sort(T, SA, ML, mid, q);
//sort the left half
sort(T, SA, ML, p, mid-1);
//merge the two halves
merge(T, SA, ML, p, q);

}

The algorithm recursively processes the two halves of the string - first the right half and then the left half.
Now, at the lowest level of recursion, the length of the string to be processed is at most 2 (i.e. q − p � 1).
The two suffixes Sp and Sp+1 are compared and their relative order is determined. The order is stored in
the POS array. If Sp ≤ Sp+1 then P OS =< p, p + 1 > and if Sp+1 ≤ Sp then P OS =< p + 1, p >.

Lemma 1 If q − p � 1, the relative order of the two suffixes Sp and Sp+1 and their match length can be
completely determined by string T [p..q + 1] and P OS.

Proof The base case arises when q = N −1. Here T [p..q] is a rightmost substring of the original block. It is
the first short string to be processed and the POS array and last match len do not contain any information.
However, by construction, T [N − 1] is the lowest character in the alphabet that does not appear in the string.
Hence T [N − 2] and T [N − 1] cannot be equal. Therefore their relative order is Sp+1 ≤ Sp; and the match
length equal to zero.

If q = N − 1 then suffix Sp can be represented as a concatenation of T [p..q] and T [q + 1..N − 1]. Sim-≥
ilarly, suffix Sp+1 is a concatenation of T [p + 1..q + 1] and T [q + 2..N − 1]. We first compare T [p..q] with
T [p + 1..q + 1]. If they are not equal their relative order and the match length is evidently found. Otherwise,
the order is determined by the relative order between T [q + 1] and T [q + 2] However, this order is already
known, and has been stored in the POS array. Similarly, if T [p..q] with T [p + 1..q + 1] are equal, then the
match length between Sp and Sp+1 is equal to (last match len + q − p + 1). Hence the result follows.

5

Thus, at any time, the POS array and the last match len variable store the information about the relative
order and the match length of the two leftmost suffixes of the block, whose relative order has been determined.
Hence they propagate this information from right to left at the lowest level of recursion.

The relative orders and match lengths are also stored in SA and ML arrays, to be used at all the levels
of recursion and they are updated in a bottom-up manner while merging of two suffix arrays.

The merging phase involves merging of the left and right halves of the suffix array formed recursively.

merge(unsigned char T[], int SA[], int ML[], int p, int q){

mid = (p+q+1)/2;

create arrays SA1[0..mid-1] and SA2[0..q-mid]

copy array SA[p..p+mid-1] into SA1[0..mid-1]

copy array SA[p+mid..q] into SA2[0..q-mid]

create arrays ML1[0..mid-1] and ML2[0..q-mid]

copy array ML[p..p+mid-1] into ML1[0..mid-1]

copy array ML[p+mid..q] into ML2[0..q-mid]

last insert
= 0prev lenmatch

= LEFT

i=j=k=r=0;

while

if last insert

(i < mid AND j < q − mid)

= LEFT

then min(prev
min(prev

match len, ML1[i])

r = match len, ML2[j])
r =

else

compare suffixes T[SA1[i]+r] and T[SA2[j]+r]

if SA1[i + r] ≤ SA2[j + r]

then

SA[k] = SA1[i]
if prev insert = LEFT

then ML[k] = ML1[i]

else ML[k] =
prev lenmatch

i=i+1

= LEFT
last insert

else
SA[k] = SA2[j]
if prev insert = RIGHT

then ML[k] = ML2[j]

else ML[k] =
prev lenmatch

j=j+1

= RIGHT

lenupdate prev match
last insert

k=k+1
if i < mid

then copy SA1[i..mid] into SA[k..q]

if j < q − mid

then copy SA2[j..q-mid] into SA[k..q]

}

6

The routine merges two suffix arrays SA1 and SA2 into SA. Its structure is similar to the merge routine
used in any merge sort. Figure 1 provides an illustration of the algorithm. The next two sections describe
the algorithm, especially the merging process in detail.

a b c d \0aa a a ab bbbb d
0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 5 4 67 89 1011 1215

0 0 0 0 0 0 0 0 0 0 2 0 3 01 1

i
T

SA
ML

12 1314 15

13 14

POS <5, 4>

last_match_len = 0

Figure 1: A snapshot of the data structures as the divide and conquer algorithm builds a suffix array SA for block
of data T . Suffixes T8 to T15 have been sorted and their order has been stored in SA[8..15]. Two suffix arrays of
length two (SA[4..5] and SA[6..7]) have been created in the sort phase. The next step would be two merge these two
suffix arrays into SA[4..7]. POS array stores the relative order of T4 and T5. The last match len variable stores the
match length between the same.

3.2 Computation of match lengths

The routine computes the match lengths for the new suffix array. The variable prev match len stores the
match lengths between the suffixes from SA1 and SA2 compared in the previous iteration of the loop. The
variable prev insert keeps track of which suffix array the suffix inserted in the SA in the previous iteration
came from. These two variables help us to compute minimum match length between the two suffixes SA1[i]
and SA2[j] being compared in the current iteration. For example, let the previous insertion into SA be from
the left suffix array SA1. In other words, SA[k − 1] = SA1[i − 1] at the beginning of the current iteration.
Therefore the prev match len variable stores the match length between SA1[i−1] and SA2[j]. Since, ML1[i]
stores the match length between SA1[i − 1] and SA1[i], the match length between the suffixes SA1[i] and
SA2[j] must be at least r = min(prev match len, ML[i]). Therefore substrings T [SA1[i]..SA[i] + r − 1] and
T [SA2[j]..SA2[j] + r − 1] must be the same. Here, r is the length of minimun common prefix of the two
suffixes. Hence the order between suffixes SA1[i] and SA2[j] can be determined by comparing the suffixes
starting at T [SA1[i] + r] and T [SA2[j] + r] respectively. This mechanism avoids the necessity for repeated
comparisons.

After determining the order between suffixes SA1[i] and SA2[j], we insert the smaller suffix into SA[k].
We also need to store the match length between SA[k − 1] and SA[k] in ML[k]. If SA[k − 1] and SA[k]
came from the same parent array then their match length is already known and can be copied from the
corresponding match length array. Otherwise, the match length between the two is equal to the value of the
prev match len variable. Finally, the prev match len variable is updated to store the match length between
SA1[i] and SA2[j]. This match length is found while comparing the two suffixes as explained in the next
section.

7

3.3 Comparison of suffixes

In the merge routine the order between the suffixes SA1[i] and SA2[j] is determined by the order between
the suffixes starting at positions T [SA1[i] + r] and T [SA2[j] + r]. Let d = SA2[j] − SA1[i], the distance
between the start points of the two suffixes. Then, in the worst case, this comparison would involve the
comparison between characters T[SA1[i]+r..N-d-1] and T[SA2[j]+r..N-1], which is computationally expensive.
However, it turns out that this worst case behavior can be avoided based on the data structures that have
been built so far. Recall that SA1[0..mid-1] contains the order of the suffixes Sp, Sp+1, . . . , Smid−1. Similarly,
SA2[0..q-mid] stores the order of the suffixes Smid, Smid+1, . . . , Sq . Since the algorithm sorts suffixes from
right to left, we know that the relative order of some suffixes starting from Sq+1 is already known. The
folowing observation formalizes this intuition based on the divide and conquer nature of the algorithm and
right to left processing.

Observation 2 While merging the suffix arrays for suffixes Sp, Sp+1, . . . , Smid−1 and Smid, Smid+1, . . . , Sq ,
if q = N − 1, the relative order of at least M suffixes Sq+1, Sq+2, . . . , Sq+M is known and has been stored in ≥
SA[q + 1..q + M], where M = q − p + 1 and M � N − q

Note that if q = N − 1, the relative order of suffixes Sp, Sp+1, . . . , Sq can be completely determined by
the substring T [p..q], since the last character T [N − 1] is the lowest character in the alphabet, not appearing
in the original block. For all other cases, if two substrings of equal length in T [p..q] are found to be equal
then the relative order of their corresponding suffixes can be determined using the order of already sorted
suffixes.

While comparing the suffixes starting at positions T [SA1[i] + r] and T [SA2[j] + r], we need to handle 3
cases.

Case 1: SA1[i] + r � q
We first compare T [SA1[i]+r..q] and T [SA2[j]+r..q+d]. Depending on their equality there are two subcases.

Case 1a: T [SA1[i] + r..q] = T [SA2[j] + r..q + d]≥
In this case, the order has evidently been found. The match length between the two suffixes is the sum of r
and the length of the common prefix of T [SA1[i] + r..q] and T [SA2[j] + r..q + d].

Case 1b: T [SA1[i] + r..q] = T [SA2[j] + r..q + d]
Now we must determine the order between Sq+1 and Sq+d+1. Start scanning the suffix array from SA[q + 1]
and find positions a and b in the array such that SA[a] = q + 1 and SA[b] = q + d + 1. If a < b, then the
Sq+1 ≤ Sq+d+1, which implies SSA1[i] ≤ SSA2[j]. Similarly, if b < a, then SSA2[j] ≤ SSA1[i]. In this case,
the match length between SSA1[i] and SSA2[j] is the sum of q − SA[i] + 1 and the match length of Sq+1

and Sq+d+1. The match length between Sq+1 and Sq+d+1 found by scanning the match length array ML as
follows.

�
min(ML[a + 1], ML[a + 2], . . . , ML[b]) if a < b

mlab =
min(ML[b + 1], ML[b + 2], . . . , ML[a]) if b < a

Case 2: SA1[i] + r > q
In this case, the order between SA1[i] and SA2[j] is same as the order between Sq+1 and Sq+d+1. The order
and match length is determined in the same manner as case 1b.

3.4 Timing analysis

In this analysis, for the sake of simplicity of explanation, we assume the block size, N , to be a power
of 2, such that N = 2c . Also, we measure the running time of the algorithm in terms of the number of
character comparisons. A comparison of two suffixes would involve multiple character comparisons. For
example, consider the merging of two suffix arrays, SA[p..mid − 1] and SA[mid..q]. We define the character
comparisons on the portion of the block that is currently being merged as local comparisons. Therefore, the

8

character comparisons performed the substring T [p..q] during the merge process are the local comparisons.
They correspond to Case 1 described in Section 3.3. If the local portions of the two suffixes are equal, then
the sorted portion of the suffix array starting from SA[q + 1] is scanned to determine their relative order.
The comparisons involved in the scanning operation are termed as remote comparisons. We analyse the
number of local and remote comparisons separately.

Local comparisons

Consider the merging of two suffix arrays of length N/2 each at the topmost level of recursion. It involves
at most N suffix comparisons. Further, each suffix comparison may involve at most N local comparisons.
Note that this is a loose bound, because even for a block with high degree of repetitiveness, the number of
comparisons would be reduced by the match length heuristic. In total, N 2 local comparisons are needed.

Now consider the next level of recursion, which involves two merges of two suffix arrays, each of length
N/4. Here there are at most N suffix comparisons, N/2, in each merge. Now, number of local comparisons
in each suffix comparison would be at most N/2, resulting in at most N 2/2 local comparisons.

Similarly, we can calculate the number of local comparisons at each level of recursion. At the lowest
level, when 2c−2 merges result in as many suffix arrays of length 4, N 2/2c−2 local comparisons are required.
So, the total number of local comparisons is:

N2 N2

Total no. of local comparisons, L(N) = N 2 + + . . . +
2c−22

= 2(1 − (1/2)
c−1

)N2

= O(N2) (1)

Remote comparisons

Consider the merging of two suffix arrays of length N/2 each at the topmost level of recursion. Here
there are no remote comparisons required, since the entire block of data is involved in merging, the order
between any two suffixes can be determined by only local comparisons.

Now consider the next level of recursion, which involves two merges of two suffix arrays, each of length
N/4. Again, the merging of suffix array SA[N/2..(3N/4 − 1)] and SA[3N/4..N − 1] does not require any
remote comparisons. The next merge between SA[0..(N/4−1)] and SA[N/4..(N/2−1)] may require scanning
of SA[N/2..N], if the two suffixes turn out to be equal after the local comparisons. This follows from
Observation 2. There are N/2 such suffix comparisons. Hence the total number of remote comparisons
required is at most N/2 � N/2.

At the next level, is one merge of length N/4 that requires scanning the sorted part of length N/2 and
two merges of length N/4 that involve scanning sorted parts of length N/4 - again from Observation 2. The
total number of remote comparisons is at most N/4 � N . Proceeding in this manner, the total number of
remote comparisons, R(N), can be found as follows.

9

�

R(N) = 0
N N

+
2

�
2

N 2N
+

4
�

2
N 3N

+
8

�
2

+ . . .
N ((c − 2)N

+
2c−2

�
2

N2 2N2 3N2 (c − 2)N2

= + + + . . . +
2c−1

2 3 c − 2
4 8 16

= N2(
1

+ + + . . . +
2c−1

) (2)
4 8 16

2 3 c − 2
2*R(N) = N2(

1
+ + + . . . +

2c−2
) (3)

2 4 8

Subtracting Equation 2 from 3:

1 1 1 c − 2
R(N) = N2(

1
+ + + . . . +

2c−2
−

2c−1
)

2 4 8

= N2 (1 − (1/2)c−1) −
c − 2
2c−1

= O(N2) (4)

From Equations 1 and 4, the running time of the divide and conquer algorithm is O(N 2).

3.5 Memory requirements

The memory efficiency of a suffix sorting algorithm is measured in terms of extra space required besides
the original character block and the suffix array. In the above discussion of the algorithm, we have assumed
the existence of two temporary arrays to hold the two sorted halves of the suffix array being merged into a
single array. Hence we would need two temporary arrays of length N/2 each to merge suffixes. Similarly, we
would need two temporary arrays of length N/2 each for merging match lengths.

However, this requirement can be reduced by a simple modification to the algorithm. At the beginning
of the merge routine, only the left sorted half of SA needs to be stored in a temporary array. The right half
of SA and the temporary array can then be merged into SA. Similarly, we would need only one temporary
array of length N/2 for merging match lengths. Besides the temporary arrays, of course, we would need two
arrays of size N to store the merged suffixes and match lengths. All temporary arrays and the match length
array, ML, are integer arrays. Therefore the total extra space required is 8N bytes, for a character data of
length N .

3.6 Performance

We compared the performance of the divide and conquer algorithm with the qsufsort suffix sorting
algorithm developed by Larsson-Sadakane [2]. It uses the doubling technique first introduced by Manber-
Mayers in [6]. It has a worst case time complexity of O(Nlog(N)) and with a good implementation, it is
considered as the fastest algorithm for generic suffix sorting.

10

1.17 2.52 5.54 21.96 48.73 101.32

0.1

1

10

100

1000

d&c

qsufsort

Ratio

0.41 0.84 1.82 5.02 18.01 42.79

2.854 3 3.044 4.374 2.706 2.368

256K 512K 1M 2M 4M 8M

Ti
m

e
(s

ec
.)

Blocksize, N (=Datasize)

Figure 2: Perfomance of divide and conquer algorithm as compared to the qsufsort algorithm on a Sun UltraSPARC
III cluster. This experiement has been perfomrmed on Human Genome dataset files.

0.1

1

10

100

Ti
m

e
(s

ec
.)

d&c

qsufsort

Ratio

0.25 0.541 1.222 2.854 6.439 14.39

0.241 0.531 1.232 2.724 6.009 13.17
1.037 1.019 0.992 1.048 1.072 1.093

256K 512K 1M 2M 4M 8M

Blocksize,N (=Datasize)

Figure 3: Perfomance of divide and conquer algorithm as compared to the qsufsort algorithm on a Pentium4 2.4Ghz
machine. This experiment has been performed on Human Genome dataset files.

11

Figure 2 shows the performance of the two algorithms for varying block size, N , on Human Genome
dataset on a Sun UltraSPARC III cluster. Even though the qsufsort algorithm outperforms the divide and
conquer algorithm, the time taken by the divide and conquer version exceeds the time taken by qsufsort by
a factor of 2-5 for sufficiently large blocksize.

Figure 3 shows the result of a similar experiment on a Pentium4 2.4GHz machine. On this machine, the
divide and conquer algorithm performs almost as well as the qsufsort algorithm.

Besides the running time, we also analyzed the cache performance of the two algorithms using a cache
simulator. The experiment was performed on two different data sets, reuters corpus and protein sequence
dataset, using a fixed block size of N = 1, 048, 576. Tables 3 and 4, summarize the cache behavior of the
two algorithms. An L1 data cache of size 16KB was used in this experiments. It can be seen that even
though the divide and conquer algorithm makes many more data references than the qsufsort algorithm, it
still incurs lesser cache misses.

aTable 3: Cache Performance: Reuters dataset

qsufsort
data references 525,305K
L1 data cache misses 14,614K
Cache miss ratio 2.7%

d&c
1,910,425K

13,707K
0.7%

aInput file size: 1MB, Blocksize, N=1MB

aTable 4: Cache Performance: Protein sequence dataset

qsufsort
data references 531,201K
L1 data cache misses 16,323K
Cache miss ratio 3.0%

aInput file size: 890KB, Blocksize, N=1MB

3.7 Discussion

d&c
2,626,356K

12,945K
0.4%

From the performance results it is clear that the qsufsort algorithm by Larsson-Sadakane is still faster
for generic suffix sorting. This is expected considering the asymptotic running times of the two algorithms.
However, based on the results on different data sets, one can say that the divide and conquer algorithm has
a good average case running time. Most importantly, it shows a good cache behavior. Secondly, it does
not require any memory parameters to be set, besides the blocksize, N , which is usually determined by the
compression algorithm using the BWT. For these reasons, the algorithm is likely to be scalable and is likely
to perform well across various memory hierarchies.

12

4 Linear time construction of suffix arrays

4.1 Motivation

A linear time algorithm to sort all suffixes of a string over a large alphabet of integers is presented in [3].
This could potentially be a major break-through in the field of suffix sorting which has witnessed several
improvisations to the O(n lg n) algorithm in terms of improving the constants, and coming up with better
implementations. The work done in [3] proves the linear bound on the proposed algorithm. With the
knowledge gained from previous suffix-array implementations, we improvised on the linear time algorithm
and came up with an efficient implementation. We examine the performance of our implementation, and
analyze the trade-offs involved.

4.2 Description of the algorithm

Consider a string T = t1t2 . . . tn over the alphabet � = 1 . . . n. We denote the last character of T by $,
assume it to be the lexicographically smallest character. Let Ti = titi+1 . . . tn denote the suffix of T starting
with ti. For strings � and �, we use � ≤ � to denote that � is lexicographically smaller than �. We classify
the suffixes into two types: Suffix Ti is of type S if Ti ≤ Ti+1, and is of type L if Ti+1 ≤ Ti. Since, the last
suffix does not have a successor, we can classify it as both type S and type L.

Lemma 3 All suffixes of T can be classified as either type S or type L in O(n) time.

Proof Consider a suffix Ti(i < n)

Case 1 If ti = ti+1, we can determine if Ti is of type S or L by only comparing ti and ti+1.≥
Case 2 If ti = ti+1, we find the smallest j > i such that tj = ti.≥

if tj > ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type S.

if tj < ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type L.

Therefore, all suffixes can be classified using a left to right scan of T in O(n) time.

Another important property of type S and type L suffixes is, if a type S suffix and a type L suffix both begin
with the same character, the type S suffix is lexicographically greater than the type L suffix. Therefore,
among all suffixes that start with the same character the type S suffixes appear after the type L suffixes.
Let A be the suffix array, and B be the array of suffixes of type S, sorted in lexicographic order. The final
sorted order is obtained from B as follows:

1. Bucket all suffixes of T according to their first character in array A. Each bucket consists of all suffixes
that start with the same character. This step takes O(n) time.

2. Scan B from right to left. For each suffix encountered in the scan, move the suffix to the current end
of its bucket in A, and advance the current end of the bucket by one position to the left. After the
scan of B is completed, all type S positions are in their correct positions in A. The time taken for this
step is O(B), which is bounded by O(n).| |

3. Scan A from left to right. For each entry A[i], if TA[i]−1 is a type L suffix, move it to the current front
of its bucket in A, and advance the front of the bucket by one. This takes O(n) time. At the end of
this step, A contains all suffixes of T in sorted order.

The remaining task is to sort all type S suffixes in T . The substring ti . . . tj is called a type S substring
if both i and j are type S positions, and every position between i and j is a type L position. For each suffix
Ti, define its S − distance to be the distance from its starting position i to the nearest type S position to its
left. We first sort all the type S substrings in O(n) time. This is done by a single traversal of S − distance
lists. Sorting of the type S substrings generates buckets where all substrings are identical. A final recursive
sorting of these buckets yields the final lexicographic ordering of the type S suffixes.

13

3 4 6 79 10111 8 5 212 3 4 6 79 10111 8 5 212

4.3 An example

Figure 4 illustrates obtaining the final sorted order of suffixes.

TT MM II SS SS II SS SS II PP PP II $$

TypeType LL SS LL LL SS LL LL SS LL LL LL LL

PosPos 11 22 33 44 55 66 77 88 99 1010 1111 1212

Suffix array: A
(sorted acc to
first character)

Move to front of
Bucket
according to B

Order of Type S
suffixes: B

Scan L to R- Move type L suffixes to front of bucket

3 4 6 79 1012 5 8 1112 3 4 6 79 1012 5 8 1112

25812 25812

364791012581112 364791012581112

Final Sorted Order

Figure 4: An example of how to obtain the final sorted ordering of the suffixes

4.4 An implementation strategy

In order to sort the type S suffixes in T , we have to sort all type S substrings. This sorting generates buckets
where all the substrings in a bucket are identical. We generate a new string T � by scanning T from left to
right and for each type S position in T writing the bucket number of the type S substring from that position
to T � . Then we sort T � recursively. The ordering of T � corresponds to the sorted order of the type S suffixes.
However, if a bucket contains only one type S substring, the position of the corresponding type S suffix in
the sorted order is already known. Let T � = b1b2 . . . bm. Consider the maximal substring bi . . . bj (j < m)
such that each bk(i � k � j) contains only one type S substring. We can then shorten T � by replacing each
such maximal substring bi . . . bj with its first character bi. Since j < m , the bucket corresponding to ’$’ is
never dropped. We can compute the shortened version of T � without having to compute T � first and then
shorten it. This method has the effect of eliminating some of the suffixes of T � . It also modifies each suffix
that contains a substring that is shortened.

14

5

4.5 Performance

The tests were performed on Sunfire (sf3.comp.nus.edu.sg).

10

0.01

0.1

1

Ti
m

e(
in

 s
ec

.)

Linear Algo

qsufsort

0.168

0.091

64KB

0.338

0.192

128KB

Block Size

0.676 1.387

0.404 0.876

256KB 512KB

2.939

1.914

1MB

6.766

5.072

2MB

Figure 5: Performance of Linear time algorithm as compared to qsufsort

It can be seen from Figure 5 that as expected, the time taken by the linear algorithm is linearly pro
portional to the block size. It performs as well as the fastest available suffix sorting algorithm available :
qsufsort, for larger block sizes.Our implementation is still crude as compared to the refined implementations
of the O(n log n) algorithms like qsufsort. Some of the trade-offs are discussed below.

Trade-offs

The current implementation suffers from some memory-management overhead. We presently use 3 integer
arrays of size n, and 3 boolean arrays(2 of size n, and 1 of size n/2). This gives rise to a total space of 12n
bytes plus 2.5n bits. This is greater than the 8n bytes used by Manber and Myers’ suffix sorting algorithm [6]
which takes O(n log n) time. Hence, we find that a trade-off between space and time exists. However, with
more efficient implementations, the advantages in terms of linearity of time would outweigh problems caused
due to the extra space requirements. In fact we found that certain optimizations which included storing the
reverse correspondences between buckets and suffixes led to a marked improvement in performance.

Conclusions and Future Work

Increasing the Block size in the Burrows-Wheeler transform provides better compression. But, the cost
incurred for the sorting of the rotated strings proves to be the bottleneck in achieving better compression
ratios in a shorter time. We suggest techniques for fast suffix sorting that would ease this bottleneck.

We implemented a cache-oblivious Distribution sort based suffix sorting. We found that it incurs memory
management overheads, and performs a factor of 1.76 to 3.76 slower than the Quick sort based approach, and
a factor of 1.6 to 3.45 slower than the Merge sort based approach. However, we would expect our approach
to be more effective when the Block sizes are increased to such an extent that the paging effects become
more significant. We proceeded to develop an O(N 2) divide and conquer algorithm that is cache-efficient
and requires no memory parameters to be set. Even though it is found to be slower than the asymptotically
superior algorithms such as qsufsort by a factor of upto 4.3 for sufficiently large block sizes, it shows a much

15

better cache behaivor. We then present issues dealing with the linear time suffix sorting algorithm. We
examine the tradeoffs between space and time. The linear time algorithm performed as expected, and was
comparable to the fastest suffix sorting available- qsufsort.

Several issues still remain to be investigated. The divide and conquer algorithm that we have introduced
essentially processes the block of data from right to left. This sequential nature of the algorithm will not
allow it to be easily parallelizable. A variant of the algorithm should be developed that offers parallelism, and
yet maintains the good cache behavior of the original algorithm. We have tried to make our implementation
of the linear time algorithm cache-efficient. Nevertheless the implementation is still crude and needs to be
refined. A more thorough analysis of the experimental data is needed in order to explain the experimental
results satisfactorily. Experiments should further be performed to analyze the effects of arbitrary block sizes.
New structures like the suffix cactus [7] offer an interesting point of view to the family of suffix structures.
Employing these structures to facilitate fast suffix sorting is another area which can be looked into.

References

[1] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm.,” Tech. Rep. 124,
Digital Systems Research Center, Palo Alto, 1994.

[2] N. J. Larsson and K. Sadakane, “Faster suffix sorting,” 1999.

[3] P. Ko and S. Aluru, “Space efficient linear time construction of suffix arrays,” 2003.

[4] J. K¨ ainen and P. Sanders, “Simple linear work suffix array construction,” in Proc. 13th International arkk¨

Conference on Automata, Languages and Programming, Springer, 2003.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious algorithms,” in	 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, 1999.

[6] U.Manber and G.Myers, “Suffix arrays: a new method for on-line search,” in SIAM Journal on Comput
ing, pp. 22:935–48, 1993.

[7] J. Karkkainen, “Suffix cactus:	 A cross between suffix tree and suffix array,” in Combinatorial Pattern
Matching, pp. 191–204, 1995.

16

