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Abstract 

The expensive activity during compression in the Burrows-Wheeler Transform (BWT) is sorting of 
all the rotations of the block of data to compress. Most of the fast suffix sorting algorithms suggested 
to encounter this problem suffer from adverse memory effects. We present cache-efficient suffix sorting 
algorithms that can overcome this overhead. We analyze the performance of Sadakane’s algorithm that 
uses a cache-oblivious Distribution sort instead of Quick sort. We then present a fast cache-efficient 
suffix sorting algorithm based on a Divide and Conquer strategy and evaluate its effectiveness. A recent 
breakthrough in the field of suffix sorting has been the emergence of a linear time suffix sorting algorithm. 
We present improvisations to the algorithm and compare its performance against contemporary suffix 
sorting implementations. 

Introduction 

Lossless data compression based on Burrows-Wheeler Transform (BWT) has received much attention 
since its introduction [1]. The bzip2 software is an industrial strength compression tool based on this 
transform. BWT involves sorting of all rotations of the block of data to be compressed. This problem is 
usually solved by transforming it into an easier problem of suffix sorting. Suffix array data structure is 
widely used to perform this task, because of its lower memory requirements than other alternatives such 
as suffix trees. Yet, suffix array construction is a computationally intensive activity, which dominates the 
compression time. 

Several successful attempts have been made to improve the asymptotic behavior of BWT. The original 
implementation incurs the worst case complexity of O(N 2log(N)), if there is a high degree of repetitiveness 
in the input file. The number of characters, N, is typically quite large and such worst case behavior is 
unacceptable. An algorithm introduced by Larsson and Sadakane for suffix sorting, has a better worst case 
bound of O(N(logN)) [2]. Recently, linear time algorithms have been proposed [3][4], but little is known 
about their practicability. 

The practical aspects of the suffix array construction, however, have received little attention. The locality 
of reference and hence the cache performance is one such factor. On modern architectures with multiple 
levels of memory hierarchy, the cache behavior and the memory access pattern of an algorithm play an 
important role in its overall performance. 

The objective of this project is to devise ways of making suffix sorting for Burrows-Wheeler transform 
cache-efficient. In this paper, we present three approaches that can potentially lead to an improved cache 
behavior for suffix sorting. 

•	 The use of cache-oblivious distribution sort in suffix sorting. It performs a factor of 1.76 to 3.76 
slower than the quick-sort based approach for relatively small block sizes. However, we expect it to 
outperform quick-sort and merge-sort based approaches when the block size is increased to extents 
that accomodate paging. (Section 2) 
A divide and conquer algorithm to exploit the spatial locality of reference. It has O(N 2) running time • 
and takes 8N extra space. It displays better cache behavior than asymptotically faster algorithms such 
as Larsson-Sadakane. (Section 3) 
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• Improvements to a linear time suffix array construction algorithm invented recently by Aluru et al [3]. 
We find that our implementation performs as well as contemporary fast suffix sorting implementations. 
It displays the linear behavior as per expectations. We also analyze the trade-offs that need to be 
considered in order to come up with better implementations.(Section 4) 

We conclude this paper in Section 5 by summarizing the main results and providing pointers for future 
work based on this project. 

2 Incorporating Cache-oblivious Distribution sort 

2.1 Motivation 

Sadakane’s algorithm for fast suffix-sorting involves passes that sort the suffix according to a given key 
value. Each of these passes can be modelled as an integer-sorting problem. Cache-oblivious sorting of 
strings has not been dealt with in the past because of the implicit difficulty caused due to the low locality 
of references involved. However, cache-oblivious integer sorting algorithms have been developed in the past. 
The modelling of Sadakane’s suffix-sorting as passes of integer array sorting facilitates the usage of cache-
oblivious integer-sorting algorithms. 

2.2 A Discussion of the Algorithm 

The cache-oblivious distribution sort is described in [5]. The key aspects of the algorithm are described 
below. The distribution sorting algorithm uses O(n lg n) work to sort n elements, and it incurs �(1 + 
(n/L)(1 + logZ n)) cache misses if the cache is tall. This algorithm uses a bucket − splitting technique to 
select pivots incrementally during the distribution. 

Given an array A of length n, the cache-oblivious distribution sort sorts A as follows: 

A 
�

n 
�

n.

q � �
n B1 2 q 

1. Partition into contiguous subarrays of size 

2. Distribute the sorted subarrays into buckets , B , . . . , B

Recursively sort each subarray. 

of size n1, n2, . . . , nq , respectively, 
such that for i = 1, 2, 3, . . . , q − 1, we have 

(a) max x�Bi}� min{x
ni � 2

�
n. 

{x x�Bi+1},| |
(b) 

3. Recursively sort each bucket. 

4. Copy the sorted buckets back to array A. 

Strategy 

The crux of the algorithm is the Distribution step, which is Step 2 of the above algorithm.�
nFirstly, each bucket holds at most 2 elements at any time, and any

There are 
two invariants in the algorithm. 
element in bucket Bi is smaller than any element in bucket Bi+1. Secondly, every bucket has a pivot 
associated with it. The pivot is a value that is greater than all elements in the bucket. Initially, there 
exists only one empty bucket with pivot ∗. At the end of Step 2, all elements will be in buckets and both 
the conditions stated in Step 2 will hold. State information for a subarray includes the index next of the 
element which is to be copied next. The other component of the state information is the index bnum of the 
bucket into which the next element is to be copied. The basic strategy is to copy the element at position 
next into bucket bnum. We increment bnum until we find a bucket for which the pivot is greater than the 
element. However, this basic strategy has a poor caching behavior. Hence, a recursive approach is used 
to distribute the subarrays into buckets. The distribution step is accomplished by a recursive procedure, 
DISTRIBUTE(i, j, m) which distributes elements from the ith through (i+ m− 1)th subarrays into buckets 
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starting from Bj . Given the precondition that each subarray r = i, i + 1, . . . , i + m − 1 has its bnum[r] √ j, 
the execution of DISTRIBUTE(i, j, m) enforces the postcondition that bnum[r] √ j + m. Step 2 invokes 
DISTRIBUTE(1, 1, 

�
n). The DISTRIBUTE procedure is shown below: 

DISTRIBUTE(i, j, m) 
if m = 1 

then COPYELEMS(i, j) 
else DISTRIBUTE(i, j, m/2) 

DISTRIBUTE(i + m/2, j, m/2) 
DISTRIBUTE(i, j + m/2, m/2) 
DISTRIBUTE(i + m/2, j + m/2, m/2) 

The base case occurs when only one bucket needs to be distributed. We then call the subroutine 
COPYELEMS(i,j) that copies all elements from subarray i to bucket j. If bucket j has more than 2

�
n 

elements after the insertion, it is split into two buckets of size at least 
�

n. The deterministic median-finding 
algorithm is used for the partitioning of the bucket. The distribution sort described above is provably optimal 
in terms of number of cache-misses incurred = �(1 + (n/L)(1 + logZ n)). 

2.3 Testing Environment 

The tests were performed on Sunfire (sf3.comp.nus.edu.sg). The technical specifications are shown in Table 1. 

Table 1: Testing Environment used 
P arameter V alue 
Processor Ultra Sparc III 
Number of processors 8 
Operating System Solaris V8.0 
Processor Speed 750MHz 
Compiler gcc 3.2.2 
L1 Cache size 64KB 4-way Data, 32KB 4-way Instruction 
L2 Cache size 8MB 
RAM 8GB 

2.4 Performance 

We implemented Sadakane’s algorithm for suffix sorting that used distribution sort for single character 
comparisons, and compared it with implementations of Sadakane’s algorithm that used Merge Sort and 
Quick Sort respectively. The last two columns in Table 2, RDistri/M erge and RDistri/Qsort are the ratios of 
times taken by Distribution sort versus Merge sort and Quick sort respectively. The ratios were calculated 
for different files which varied from a random string like rand.txt that provides an example of a fairly good 
case to worse cases exemplified by a large amount of repetition like the genome chromosome sequence -
gene.txt. Table 2 shows that in the above cases, Distribution sort performs at worst a factor of 3.76 slower 
than Quick sort and a factor of 3.452 slower than Merge sort. Considering the fact that Quick sort and 
Merge Sort do not suffer from as much memory management overhead as Distribution sort, this factor is 
acceptable. Moreover for the cases considered above, the cache misses may not be as dominating a factor 
as the extra housekeeping needed to store state information and splitting the buckets. These factors are 
discussed in the next subsection. 
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Table 2: Performance of Distribution sort compared against Quick sort and Merge sort 

F ileN ame Size 

cia.txt 52KB 
linux.txt 80KB 
bin.txt 111KB 
binop.txt 550KB 
rome.txt 1618KB 
rand.txt 4MB 
gene.txt 8MB 

Time(in sec.) 
Qsort M ergeSort DistriSort 
0.081 0.100 0.170 
0.130 0.140 0.251 
0.210 0.231 0.370 
1.061 1.102 1.873 
2.594 2.804 9.634 
4.775 5.201 17.954 
32.166 53.232 100.224 

RDistri/M erge RDistri/Qsort 

1.700 2.099 
1.793 1.930 
1.602 1.762 
1.699 1.765 
3.436 3.714 
3.452 3.760 
1.883 3.116 

Overheads incurred 

The implementation of the distribution sort incurs a lot of memory management overhead unlike quick sort or 
even merge sort. The bucket splitting involves dynamic memory allocation using mallocs. This deteriorates 
the performance of the implementation in terms of the observed timing. The cache is not ideal, and hence 
the required cache-obliviousness may not be observed perfectly. Moreover, it is possible that the run-time is 
not dominated by the cache-misses. The extra memory management in terms of maintaining correct state 
information for the buckets and the subarrays contribute adversely to the observed timings. We initially spilt 
the original array into 

�
n subarrays of size 

�
n each. The splitting into square roots causes rounding errors, 

and we need to draw out special cases in order to produce correct results, which again results in an overhead. 
Hence, the above mentioned factors contribute to the degradation of the observed performance. However, 
if we increase the file sizes to arbitrary lengths, page faults occur. In this paging scenario, distribution sort 
can potentially perform better than merge sort or quick sort. This is an aspect which needs to be explored 
further. 

3 A divide and conquer algorithm for suffix sorting 

This algorithm extends the basic divide and conquer strategy of the merge-sort algorithm used for sorting 
numbers. Larger suffix arrays are formed by merging smaller suffix arrays formed recursively. In addition it 
has two other important aspects. 

•	 Right-to-left processing: The relative order among the suffixes near the end of the block can be 
determined using a small number of character comparisons. The suffixes on their left (towards the 
beginning of the block) can in turn use this order to determine the relative order among themselves. 
The algorithm makes use of this intuition. The suffixes are sorted from right to left in a given block of 
data. 

•	 Storing of match-lengths: The match length between of any two suffixes is the length of their common 
prefix. If two suffixes have a large common prefix, then determination of the relative order between 
them requires a large number of comparisons. Comparisons of many other suffixes sharing a portion 
of this common prefix would also involve the same comparisons. We want to avoid this duplication of 
work by storing the match lengths of the suffixes whose relative order has been determined. 

We begin by defining the data structures used by the algorithm. 

3.1 Data structures and notations 

•	 T [0..N − 1]: The original block of characters to be transformed 

•	 SA[0..N − 1]: The suffix array which finally contains the sorted order of suffixes 
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•	 M L[0..N − 1]: An array to store the match lengths between the sorted consecutive suffixes. M L[i] is 
the match length between suffix SA[i] and SA[i − 1]. M L[0] = 0 

•	 last match len: The match length of the two leftmost suffixes in the sorted part. 

•	 P OS[0..1]: It stores the relative position of the two leftmost sorted suffixes 

Suffix Si denotes the suffix starting at T [i]. Similarly, suffix SA[i] denotes the suffix starting at position 
T[SA[i]]. The main structure of the algorithm is similar to that of merge-sort as shown below. We define the 
precedence relation, ≤, on the suffixes as follows. Si ≤ Sj if and only if suffix Si is lexicographically smaller 
than Sj . 

sort(unsigned char T[], int SA[], int ML[], int p, int q){
if q − p � 1 

then compare suffixes Sp and Sp+1 

store the order in POS[] 
update last match len 
update SA[p..q] and M L[p..q] 
return 

mid = (p+q+1)/2; 
//sort the right half 
sort(T, SA, ML, mid, q); 
//sort the left half 
sort(T, SA, ML, p, mid-1); 
//merge the two halves 
merge(T, SA, ML, p, q); 

} 

The algorithm recursively processes the two halves of the string - first the right half and then the left half. 
Now, at the lowest level of recursion, the length of the string to be processed is at most 2 (i.e. q − p � 1). 
The two suffixes Sp and Sp+1 are compared and their relative order is determined. The order is stored in 
the POS array. If Sp ≤ Sp+1 then P OS =< p, p + 1 > and if Sp+1 ≤ Sp then P OS =< p + 1, p >. 

Lemma 1 If q − p � 1, the relative order of the two suffixes Sp and Sp+1 and their match length can be 
completely determined by string T [p..q + 1] and P OS. 

Proof The base case arises when q = N −1. Here T [p..q] is a rightmost substring of the original block. It is 
the first short string to be processed and the POS array and last match len do not contain any information. 
However, by construction, T [N − 1] is the lowest character in the alphabet that does not appear in the string. 
Hence T [N − 2] and T [N − 1] cannot be equal. Therefore their relative order is Sp+1 ≤ Sp; and the match 
length equal to zero. 

If q = N − 1 then suffix Sp can be represented as a concatenation of T [p..q] and T [q + 1..N − 1]. Sim-≥
ilarly, suffix Sp+1 is a concatenation of T [p + 1..q + 1] and T [q + 2..N − 1]. We first compare T [p..q] with 
T [p + 1..q + 1]. If they are not equal their relative order and the match length is evidently found. Otherwise, 
the order is determined by the relative order between T [q + 1] and T [q + 2] However, this order is already 
known, and has been stored in the POS array. Similarly, if T [p..q] with T [p + 1..q + 1] are equal, then the 
match length between Sp and Sp+1 is equal to (last match len + q − p + 1). Hence the result follows. 
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Thus, at any time, the POS array and the last match len variable store the information about the relative 
order and the match length of the two leftmost suffixes of the block, whose relative order has been determined. 
Hence they propagate this information from right to left at the lowest level of recursion. 

The relative orders and match lengths are also stored in SA and ML arrays, to be used at all the levels 
of recursion and they are updated in a bottom-up manner while merging of two suffix arrays. 

The merging phase involves merging of the left and right halves of the suffix array formed recursively. 

merge(unsigned char T[], int SA[], int ML[], int p, int q){

mid = (p+q+1)/2;

create arrays SA1[0..mid-1] and SA2[0..q-mid]

copy array SA[p..p+mid-1] into SA1[0..mid-1]

copy array SA[p+mid..q] into SA2[0..q-mid]


create arrays ML1[0..mid-1] and ML2[0..q-mid]

copy array ML[p..p+mid-1] into ML1[0..mid-1]

copy array ML[p+mid..q] into ML2[0..q-mid]


last insert 
= 0prev lenmatch 

= LEFT

i=j=k=r=0;

while

if last insert

(i < mid AND j < q − mid)

= LEFT 

then min(prev 
min(prev 

match len, ML1[i])

r = match len, ML2[j]) 
r = 

else

compare suffixes T[SA1[i]+r] and T[SA2[j]+r]

if SA1[i + r] ≤ SA2[j + r]


then

SA[k] = SA1[i] 
if prev insert = LEFT


then ML[k] = ML1[i]

else ML[k] =
prev lenmatch 

i=i+1

= LEFT
last insert 

else 
SA[k] = SA2[j] 
if prev insert = RIGHT


then ML[k] = ML2[j]

else ML[k] =
prev lenmatch 

j=j+1

= RIGHT


lenupdate prev match 
last insert 

k=k+1 
if i < mid


then copy SA1[i..mid] into SA[k..q]

if j < q − mid


then copy SA2[j..q-mid] into SA[k..q]

} 
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The routine merges two suffix arrays SA1 and SA2 into SA. Its structure is similar to the merge routine 
used in any merge sort. Figure 1 provides an illustration of the algorithm. The next two sections describe 
the algorithm, especially the merging process in detail. 

a b c d \0aa a a ab bbbb d 
0 1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 5 4 67 89 1011 1215 

0 0 0 0 0 0 0 0 0 0 2 0 3 01 1 

i 
T 

SA 
ML 

12 1314 15 

13 14 

POS <5, 4>


last_match_len = 0


Figure 1: A snapshot of the data structures as the divide and conquer algorithm builds a suffix array SA for block 
of data T . Suffixes T8 to T15 have been sorted and their order has been stored in SA[8..15]. Two suffix arrays of 
length two (SA[4..5] and SA[6..7]) have been created in the sort phase. The next step would be two merge these two 
suffix arrays into SA[4..7]. POS array stores the relative order of T4 and T5. The last match len variable stores the 
match length between the same. 

3.2 Computation of match lengths 

The routine computes the match lengths for the new suffix array. The variable prev match len stores the 
match lengths between the suffixes from SA1 and SA2 compared in the previous iteration of the loop. The 
variable prev insert keeps track of which suffix array the suffix inserted in the SA in the previous iteration 
came from. These two variables help us to compute minimum match length between the two suffixes SA1[i] 
and SA2[j] being compared in the current iteration. For example, let the previous insertion into SA be from 
the left suffix array SA1. In other words, SA[k − 1] = SA1[i − 1] at the beginning of the current iteration. 
Therefore the prev match len variable stores the match length between SA1[i−1] and SA2[j]. Since, ML1[i] 
stores the match length between SA1[i − 1] and SA1[i], the match length between the suffixes SA1[i] and 
SA2[j] must be at least r = min(prev match len, ML[i]). Therefore substrings T [SA1[i]..SA[i] + r − 1] and 
T [SA2[j]..SA2[j] + r − 1] must be the same. Here, r is the length of minimun common prefix of the two 
suffixes. Hence the order between suffixes SA1[i] and SA2[j] can be determined by comparing the suffixes 
starting at T [SA1[i] + r] and T [SA2[j] + r] respectively. This mechanism avoids the necessity for repeated 
comparisons. 

After determining the order between suffixes SA1[i] and SA2[j], we insert the smaller suffix into SA[k]. 
We also need to store the match length between SA[k − 1] and SA[k] in ML[k]. If SA[k − 1] and SA[k] 
came from the same parent array then their match length is already known and can be copied from the 
corresponding match length array. Otherwise, the match length between the two is equal to the value of the 
prev match len variable. Finally, the prev match len variable is updated to store the match length between 
SA1[i] and SA2[j]. This match length is found while comparing the two suffixes as explained in the next 
section. 
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3.3 Comparison of suffixes 

In the merge routine the order between the suffixes SA1[i] and SA2[j] is determined by the order between 
the suffixes starting at positions T [SA1[i] + r] and T [SA2[j] + r]. Let d = SA2[j] − SA1[i], the distance 
between the start points of the two suffixes. Then, in the worst case, this comparison would involve the 
comparison between characters T[SA1[i]+r..N-d-1] and T[SA2[j]+r..N-1], which is computationally expensive. 
However, it turns out that this worst case behavior can be avoided based on the data structures that have 
been built so far. Recall that SA1[0..mid-1] contains the order of the suffixes Sp, Sp+1, . . . , Smid−1. Similarly, 
SA2[0..q-mid] stores the order of the suffixes Smid, Smid+1, . . . , Sq . Since the algorithm sorts suffixes from 
right to left, we know that the relative order of some suffixes starting from Sq+1 is already known. The 
folowing observation formalizes this intuition based on the divide and conquer nature of the algorithm and 
right to left processing. 

Observation 2 While merging the suffix arrays for suffixes Sp, Sp+1, . . . , Smid−1 and Smid, Smid+1, . . . , Sq , 
if q = N − 1, the relative order of at least M suffixes Sq+1, Sq+2, . . . , Sq+M is known and has been stored in ≥
SA[q + 1..q + M ], where M = q − p + 1 and M � N − q 

Note that if q = N − 1, the relative order of suffixes Sp, Sp+1, . . . , Sq can be completely determined by 
the substring T [p..q], since the last character T [N − 1] is the lowest character in the alphabet, not appearing 
in the original block. For all other cases, if two substrings of equal length in T [p..q] are found to be equal 
then the relative order of their corresponding suffixes can be determined using the order of already sorted 
suffixes. 

While comparing the suffixes starting at positions T [SA1[i] + r] and T [SA2[j] + r], we need to handle 3 
cases. 

Case 1: SA1[i] + r � q 
We first compare T [SA1[i]+r..q] and T [SA2[j]+r..q+d]. Depending on their equality there are two subcases. 

Case 1a: T [SA1[i] + r..q] = T [SA2[j] + r..q + d]≥
In this case, the order has evidently been found. The match length between the two suffixes is the sum of r 
and the length of the common prefix of T [SA1[i] + r..q] and T [SA2[j] + r..q + d]. 

Case 1b: T [SA1[i] + r..q] = T [SA2[j] + r..q + d] 
Now we must determine the order between Sq+1 and Sq+d+1. Start scanning the suffix array from SA[q + 1] 
and find positions a and b in the array such that SA[a] = q + 1 and SA[b] = q + d + 1. If a < b, then the 
Sq+1 ≤ Sq+d+1, which implies SSA1[i] ≤ SSA2[j]. Similarly, if b < a, then SSA2[j] ≤ SSA1[i]. In this case, 
the match length between SSA1[i] and SSA2[j] is the sum of q − SA[i] + 1 and the match length of Sq+1 

and Sq+d+1. The match length between Sq+1 and Sq+d+1 found by scanning the match length array ML as 
follows. 

� 
min(ML[a + 1], ML[a + 2], . . . , ML[b]) if a < b 

mlab = 
min(ML[b + 1], ML[b + 2], . . . , ML[a]) if b < a 

Case 2: SA1[i] + r > q 
In this case, the order between SA1[i] and SA2[j] is same as the order between Sq+1 and Sq+d+1. The order 
and match length is determined in the same manner as case 1b. 

3.4 Timing analysis 

In this analysis, for the sake of simplicity of explanation, we assume the block size, N , to be a power 
of 2, such that N = 2c . Also, we measure the running time of the algorithm in terms of the number of 
character comparisons. A comparison of two suffixes would involve multiple character comparisons. For 
example, consider the merging of two suffix arrays, SA[p..mid − 1] and SA[mid..q]. We define the character 
comparisons on the portion of the block that is currently being merged as local comparisons. Therefore, the 
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character comparisons performed the substring T [p..q] during the merge process are the local comparisons. 
They correspond to Case 1 described in Section 3.3. If the local portions of the two suffixes are equal, then 
the sorted portion of the suffix array starting from SA[q + 1] is scanned to determine their relative order. 
The comparisons involved in the scanning operation are termed as remote comparisons. We analyse the 
number of local and remote comparisons separately. 

Local comparisons 

Consider the merging of two suffix arrays of length N/2 each at the topmost level of recursion. It involves 
at most N suffix comparisons. Further, each suffix comparison may involve at most N local comparisons. 
Note that this is a loose bound, because even for a block with high degree of repetitiveness, the number of 
comparisons would be reduced by the match length heuristic. In total, N 2 local comparisons are needed. 

Now consider the next level of recursion, which involves two merges of two suffix arrays, each of length 
N/4. Here there are at most N suffix comparisons, N/2, in each merge. Now, number of local comparisons 
in each suffix comparison would be at most N/2, resulting in at most N 2/2 local comparisons. 

Similarly, we can calculate the number of local comparisons at each level of recursion. At the lowest 
level, when 2c−2 merges result in as many suffix arrays of length 4, N 2/2c−2 local comparisons are required. 
So, the total number of local comparisons is: 

N2 N2 

Total no. of local comparisons, L(N) = N 2 + + . . . +
2c−22 

= 2(1 − (1/2)
c−1

)N2 

= O(N2) (1) 

Remote comparisons 

Consider the merging of two suffix arrays of length N/2 each at the topmost level of recursion. Here 
there are no remote comparisons required, since the entire block of data is involved in merging, the order 
between any two suffixes can be determined by only local comparisons. 

Now consider the next level of recursion, which involves two merges of two suffix arrays, each of length 
N/4. Again, the merging of suffix array SA[N/2..(3N/4 − 1)] and SA[3N/4..N − 1] does not require any 
remote comparisons. The next merge between SA[0..(N/4−1)] and SA[N/4..(N/2−1)] may require scanning 
of SA[N/2..N ], if the two suffixes turn out to be equal after the local comparisons. This follows from 
Observation 2. There are N/2 such suffix comparisons. Hence the total number of remote comparisons 
required is at most N/2 � N/2. 

At the next level, is one merge of length N/4 that requires scanning the sorted part of length N/2 and 
two merges of length N/4 that involve scanning sorted parts of length N/4 - again from Observation 2. The 
total number of remote comparisons is at most N/4 � N . Proceeding in this manner, the total number of 
remote comparisons, R(N), can be found as follows. 
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R(N) = 0 
N N 

+ 
2 

� 
2 

N 2N 
+ 

4 
� 

2 
N 3N 

+ 
8 

� 
2 

+ . . . 
N ((c − 2)N 

+
2c−2 

� 
2 

N2 2N2 3N2 (c − 2)N2 

= + + + . . . + 
2c−1 

2 3 c − 2 
4 8 16 

= N2(
1

+ + + . . . +
2c−1 

) (2)
4 8 16 

2 3 c − 2 
2*R(N) = N2(

1
+ + + . . . +

2c−2 
) (3)

2 4 8 

Subtracting Equation 2 from 3: 

1 1 1 c − 2 
R(N) = N2(

1
+ + + . . . +

2c−2 
− 

2c−1 
)

2 4 8 

= N2 (1 − (1/2)c−1) − 
c − 2 
2c−1 

= O(N2) (4) 

From Equations 1 and 4, the running time of the divide and conquer algorithm is O(N 2). 

3.5 Memory requirements 

The memory efficiency of a suffix sorting algorithm is measured in terms of extra space required besides 
the original character block and the suffix array. In the above discussion of the algorithm, we have assumed 
the existence of two temporary arrays to hold the two sorted halves of the suffix array being merged into a 
single array. Hence we would need two temporary arrays of length N/2 each to merge suffixes. Similarly, we 
would need two temporary arrays of length N/2 each for merging match lengths. 

However, this requirement can be reduced by a simple modification to the algorithm. At the beginning 
of the merge routine, only the left sorted half of SA needs to be stored in a temporary array. The right half 
of SA and the temporary array can then be merged into SA. Similarly, we would need only one temporary 
array of length N/2 for merging match lengths. Besides the temporary arrays, of course, we would need two 
arrays of size N to store the merged suffixes and match lengths. All temporary arrays and the match length 
array, ML, are integer arrays. Therefore the total extra space required is 8N bytes, for a character data of 
length N . 

3.6 Performance 

We compared the performance of the divide and conquer algorithm with the qsufsort suffix sorting 
algorithm developed by Larsson-Sadakane [2]. It uses the doubling technique first introduced by Manber-
Mayers in [6]. It has a worst case time complexity of O(Nlog(N)) and with a good implementation, it is 
considered as the fastest algorithm for generic suffix sorting. 
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Figure 2: Perfomance of divide and conquer algorithm as compared to the qsufsort algorithm on a Sun UltraSPARC 
III cluster. This experiement has been perfomrmed on Human Genome dataset files. 
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Figure 3: Perfomance of divide and conquer algorithm as compared to the qsufsort algorithm on a Pentium4 2.4Ghz 
machine. This experiment has been performed on Human Genome dataset files. 
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Figure 2 shows the performance of the two algorithms for varying block size, N , on Human Genome 
dataset on a Sun UltraSPARC III cluster. Even though the qsufsort algorithm outperforms the divide and 
conquer algorithm, the time taken by the divide and conquer version exceeds the time taken by qsufsort by 
a factor of 2-5 for sufficiently large blocksize. 

Figure 3 shows the result of a similar experiment on a Pentium4 2.4GHz machine. On this machine, the 
divide and conquer algorithm performs almost as well as the qsufsort algorithm. 

Besides the running time, we also analyzed the cache performance of the two algorithms using a cache 
simulator. The experiment was performed on two different data sets, reuters corpus and protein sequence 
dataset, using a fixed block size of N = 1, 048, 576. Tables 3 and 4, summarize the cache behavior of the 
two algorithms. An L1 data cache of size 16KB was used in this experiments. It can be seen that even 
though the divide and conquer algorithm makes many more data references than the qsufsort algorithm, it 
still incurs lesser cache misses. 

aTable 3: Cache Performance: Reuters dataset 

qsufsort 
# data references 525,305K 
L1 data cache misses 14,614K 
Cache miss ratio 2.7% 

d&c 
1,910,425K 

13,707K 
0.7% 

aInput file size: 1MB, Blocksize, N=1MB 

aTable 4: Cache Performance: Protein sequence dataset 

qsufsort 
# data references 531,201K 
L1 data cache misses 16,323K 
Cache miss ratio 3.0% 

aInput file size: 890KB, Blocksize, N=1MB 

3.7 Discussion 

d&c 
2,626,356K 

12,945K 
0.4% 

From the performance results it is clear that the qsufsort algorithm by Larsson-Sadakane is still faster 
for generic suffix sorting. This is expected considering the asymptotic running times of the two algorithms. 
However, based on the results on different data sets, one can say that the divide and conquer algorithm has 
a good average case running time. Most importantly, it shows a good cache behavior. Secondly, it does 
not require any memory parameters to be set, besides the blocksize, N , which is usually determined by the 
compression algorithm using the BWT. For these reasons, the algorithm is likely to be scalable and is likely 
to perform well across various memory hierarchies. 
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4 Linear time construction of suffix arrays 

4.1 Motivation 

A linear time algorithm to sort all suffixes of a string over a large alphabet of integers is presented in [3]. 
This could potentially be a major break-through in the field of suffix sorting which has witnessed several 
improvisations to the O(n lg n) algorithm in terms of improving the constants, and coming up with better 
implementations. The work done in [3] proves the linear bound on the proposed algorithm. With the 
knowledge gained from previous suffix-array implementations, we improvised on the linear time algorithm 
and came up with an efficient implementation. We examine the performance of our implementation, and 
analyze the trade-offs involved. 

4.2 Description of the algorithm 

Consider a string T = t1t2 . . . tn over the alphabet � = 1 . . . n. We denote the last character of T by $, 
assume it to be the lexicographically smallest character. Let Ti = titi+1 . . . tn denote the suffix of T starting 
with ti. For strings � and �, we use � ≤ � to denote that � is lexicographically smaller than �. We classify 
the suffixes into two types: Suffix Ti is of type S if Ti ≤ Ti+1, and is of type L if Ti+1 ≤ Ti. Since, the last 
suffix does not have a successor, we can classify it as both type S and type L. 

Lemma 3 All suffixes of T can be classified as either type S or type L in O(n) time. 

Proof Consider a suffix Ti(i < n) 

Case 1 If ti = ti+1, we can determine if Ti is of type S or L by only comparing ti and ti+1.≥
Case 2 If ti = ti+1, we find the smallest j > i such that tj = ti.≥

if tj > ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type S. 

if tj < ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type L. 

Therefore, all suffixes can be classified using a left to right scan of T in O(n) time. 

Another important property of type S and type L suffixes is, if a type S suffix and a type L suffix both begin 
with the same character, the type S suffix is lexicographically greater than the type L suffix. Therefore, 
among all suffixes that start with the same character the type S suffixes appear after the type L suffixes. 
Let A be the suffix array, and B be the array of suffixes of type S, sorted in lexicographic order. The final 
sorted order is obtained from B as follows: 

1. Bucket all suffixes of T according to their first character in array A. Each bucket consists of all suffixes 
that start with the same character. This step takes O(n) time. 

2. Scan B from right to left. For each suffix encountered in the scan, move the suffix to the current end 
of its bucket in A, and advance the current end of the bucket by one position to the left. After the 
scan of B is completed, all type S positions are in their correct positions in A. The time taken for this 
step is O( B ), which is bounded by O(n).| |

3. Scan A from left to right. For each entry A[i], if TA[i]−1 is a type L suffix, move it to the current front 
of its bucket in A, and advance the front of the bucket by one. This takes O(n) time. At the end of 
this step, A contains all suffixes of T in sorted order. 

The remaining task is to sort all type S suffixes in T . The substring ti . . . tj is called a type S substring 
if both i and j are type S positions, and every position between i and j is a type L position. For each suffix 
Ti, define its S − distance to be the distance from its starting position i to the nearest type S position to its 
left. We first sort all the type S substrings in O(n) time. This is done by a single traversal of S − distance 
lists. Sorting of the type S substrings generates buckets where all substrings are identical. A final recursive 
sorting of these buckets yields the final lexicographic ordering of the type S suffixes. 
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4.3 An example 

Figure 4 illustrates obtaining the final sorted order of suffixes. 

TT MM II SS SS II SS SS II PP PP II $$

TypeType LL SS LL LL SS LL LL SS LL LL LL LL

PosPos 11 22 33 44 55 66 77 88 99 1010 1111 1212

Suffix array: A 
(sorted acc to 
first character) 

Move to front of 
Bucket 
according to B 

Order of Type S 
suffixes: B 

Scan L to R- Move type L suffixes to front of bucket 

3 4 6 79 1012 5 8 1112 3 4 6 79 1012 5 8 1112

25812 25812

364791012581112 364791012581112

Final Sorted Order 

Figure 4: An example of how to obtain the final sorted ordering of the suffixes 

4.4 An implementation strategy 

In order to sort the type S suffixes in T , we have to sort all type S substrings. This sorting generates buckets 
where all the substrings in a bucket are identical. We generate a new string T � by scanning T from left to 
right and for each type S position in T writing the bucket number of the type S substring from that position 
to T � . Then we sort T � recursively. The ordering of T � corresponds to the sorted order of the type S suffixes. 
However, if a bucket contains only one type S substring, the position of the corresponding type S suffix in 
the sorted order is already known. Let T � = b1b2 . . . bm. Consider the maximal substring bi . . . bj (j < m) 
such that each bk(i � k � j) contains only one type S substring. We can then shorten T � by replacing each 
such maximal substring bi . . . bj with its first character bi. Since j < m , the bucket corresponding to ’$’ is 
never dropped. We can compute the shortened version of T � without having to compute T � first and then 
shorten it. This method has the effect of eliminating some of the suffixes of T � . It also modifies each suffix 
that contains a substring that is shortened. 
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4.5 Performance 

The tests were performed on Sunfire (sf3.comp.nus.edu.sg). 
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Figure 5: Performance of Linear time algorithm as compared to qsufsort 

It can be seen from Figure 5 that as expected, the time taken by the linear algorithm is linearly pro
portional to the block size. It performs as well as the fastest available suffix sorting algorithm available : 
qsufsort, for larger block sizes.Our implementation is still crude as compared to the refined implementations 
of the O(n log n) algorithms like qsufsort. Some of the trade-offs are discussed below. 

Trade-offs 

The current implementation suffers from some memory-management overhead. We presently use 3 integer 
arrays of size n, and 3 boolean arrays( 2 of size n, and 1 of size n/2). This gives rise to a total space of 12n 
bytes plus 2.5n bits. This is greater than the 8n bytes used by Manber and Myers’ suffix sorting algorithm [6] 
which takes O(n log n) time. Hence, we find that a trade-off between space and time exists. However, with 
more efficient implementations, the advantages in terms of linearity of time would outweigh problems caused 
due to the extra space requirements. In fact we found that certain optimizations which included storing the 
reverse correspondences between buckets and suffixes led to a marked improvement in performance. 

Conclusions and Future Work 

Increasing the Block size in the Burrows-Wheeler transform provides better compression. But, the cost 
incurred for the sorting of the rotated strings proves to be the bottleneck in achieving better compression 
ratios in a shorter time. We suggest techniques for fast suffix sorting that would ease this bottleneck. 

We implemented a cache-oblivious Distribution sort based suffix sorting. We found that it incurs memory 
management overheads, and performs a factor of 1.76 to 3.76 slower than the Quick sort based approach, and 
a factor of 1.6 to 3.45 slower than the Merge sort based approach. However, we would expect our approach 
to be more effective when the Block sizes are increased to such an extent that the paging effects become 
more significant. We proceeded to develop an O(N 2) divide and conquer algorithm that is cache-efficient 
and requires no memory parameters to be set. Even though it is found to be slower than the asymptotically 
superior algorithms such as qsufsort by a factor of upto 4.3 for sufficiently large block sizes, it shows a much 

15 



better cache behaivor. We then present issues dealing with the linear time suffix sorting algorithm. We 
examine the tradeoffs between space and time. The linear time algorithm performed as expected, and was 
comparable to the fastest suffix sorting available- qsufsort. 

Several issues still remain to be investigated. The divide and conquer algorithm that we have introduced 
essentially processes the block of data from right to left. This sequential nature of the algorithm will not 
allow it to be easily parallelizable. A variant of the algorithm should be developed that offers parallelism, and 
yet maintains the good cache behavior of the original algorithm. We have tried to make our implementation 
of the linear time algorithm cache-efficient. Nevertheless the implementation is still crude and needs to be 
refined. A more thorough analysis of the experimental data is needed in order to explain the experimental 
results satisfactorily. Experiments should further be performed to analyze the effects of arbitrary block sizes. 
New structures like the suffix cactus [7] offer an interesting point of view to the family of suffix structures. 
Employing these structures to facilitate fast suffix sorting is another area which can be looked into. 
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