
Verifying Software Transactions 
C. Scott Ananian 

Computer Science and Artifical Intelligence Laboratory 

Massachusetts Institute of Technology 

Ananian, 6.895 – p. 1 

http://cscott.net


Outline 
• 

• 

• 

• Conclusions 

Concurrency control with non-blocking 
transactions (review) 
Introduction to the Spin Model Checker 
Modelling a software transaction implementation 

Ananian, 6.895 – p. 2 



Non-blocking Transactions 

Ananian, 6.895 – p. 3 



• 

commits or . 
• 

atomically. 
• 

• 

Transactions (review) 
A transaction is a sequence of loads and stores 
that either aborts
If a transaction commits, all the loads and store 
appear to have executed 

If a transaction aborts, none of its stores take 
effect. 
Transaction operations aren’t visible until they 
commit or abort. 

Ananian, 6.895 – p. 4 



• 

in 

• 

• 

• 

• 

• 

Non-blocking synchronization 
Although transactions can be implemented with 
mutual exclusion (locks), we are interested only 

non-blocking implementations. 
In a non-blocking implementation, the failure of 
one process cannot prevent other processes from 
making progress. This leads to: 

Scalable parallelism 
Fault-tolerance 
Safety: freedom from some problems which 
require careful bookkeeping with locks, 
including priority inversion and deadlocks. 

Little known requirement: limits on transaction 
suicide. 

Ananian, 6.895 – p. 5 



• 

• One 
• One 
• One 

• 

Non-blocking algorithms are hard! 
In published work on Synthesis, a non-blocking 
operating system implementation, three separate 
races were found: 

ABA problem in LIFO stack. 
likely race in MP-SC FIFO queue. 
interesting corner case in quaject 

callback handling. 
It’s hard to get these right! Ad hoc reasoning 
doesn’t cut it. 

Ananian, 6.895 – p. 6 



The Spin Model Checker 

Ananian, 6.895 – p. 7 



• 

• 

• 

• 

• finite 
infinite 

• 

• 

The Spin Model Checker 
Spin is a model checker for communicating 
concurrent processes. It checks: 

Safety/termination properties. 
Liveness/deadlock properties. 
Path assertions (requirements/never claims). 

It works on models, written in the Promela 
language, which describe executions. 
Explores the entire state space of the model, 
including all possible concurrent executions, 
verifying that Bad Things don’t happen. 

Not an absolute proof — but pretty useful in 
practice. 

Ananian, 6.895 – p. 8 



int turn; 
int wants[2]; 

// i is the current is the other thread 

wants[i] = TRUE; 
while 

if 
wants[i] = FALSE; 
while 
wants[i] = TRUE; 

} 
} 
critical_section(); 
turn=j; // release 
wants[i] = FALSE; 
noncrit(); 

} 

Dekker’s mutex algorithm (C) 

thread, j=1-i 
while(1) { // trying 

(wants[j]) { 
(turn==j) { 

(turn==j) ; // empty loop 

Ananian, 6.895 – p. 9 



Dekker’s “railroad” 

Railroad visualization of Dekker’s algorithm for mutual 
exclusion. The threads “move” in the direction shown 
by the arrows. [from lecture 5 scribe notes] 

Ananian, 6.895 – p. 10 



bool 
active /* Dekker’s 1965 
{ 

i = _pid; 
j = 1 - _pid; 

again: flag[i] = true; 
do /* can be ’if’ - says Doran&Thomas */ 
:: flag[j] -> 

if 
:: turn == j -> 

flag[i] = false; 
!(turn == j); 
flag[i] = true 

:: else 
fi 

:: else -> break 
od; 

== critical section */ 
turn = j; 
flag[i] = false; 

} 

Dekker’s mutex algorithm (Promela) 
turn, flag[2]; byte cnt; 

[2] proctype mutex() algorithm */ 
pid i, j; 

cnt++; assert(cnt 1); cnt--; /* 

goto again 
Ananian, 6.895 – p. 11 



$ spin -a mutex.pml 
$ cc -DSAFETY -o 
$ ./pan 
(Spin Version 4.1.0 - 6 December 2003) 

+ Partial Order Reduction 

Full statespace search for: 
never claim -
assertion violations + 
cycle checks -
invalid end states + 

State-vector 20 reached 65, errors: 0 
190 states, stored 
173 states, matched 
363 transitions 

0 atomic steps 
hash conflicts: 0 (resolved) 
(max size 2ˆ18 states) 
$ 

Spin verification 

pan pan.c 

(none specified) 

(disabled by -DSAFETY) 

byte, depth 

(= stored+matched) 

If an error is found, will give you execution trail producing the error. 
Ananian, 6.895 – p. 12 



• 

specification. 
• 

• 

• 

• If x y y 
x

• 

Spin theory 
Generates a Büchi Automaton from the Promela 

Finite-state machine w/ special acceptance conditions. 
Transitions correspond to executability of statements. 

Depth-first search of state space, with each state 
stored in a hashtable to detect cycles and prevent 
duplication of work. 

followed by leads to the same state as followed 
by , will not re-traverse the succeeding steps. 

If memory is not sufficient to hold all states, may 
ignore hashtable collisions: requires one bit per 
entry. # collisions provides approximate coverage 
metric. 

Ananian, 6.895 – p. 13 



Modeling software transactions 

Ananian, 6.895 – p. 14 



A
• Goals: 

• 

• 

• 

• Solution: 
• FLAG 

• 

• FLAG

software transaction implementation 

Non-transactional operations should be fast. 

Reads should be faster than writes. 
Minimal amount of object bloat. 

Use special value to indicate “location involved in 

a transaction”. 

Object points to a linked list of versions, containing 

values written by (in-progress, committed, or aborted) 
transactions. 
Semantic value of a ged field is: “value of the first 
version owned by a committed transaction on the 
version list.” Ananian, 6.895 – p. 15 



field1 

field2 
3.14159 

FLAG 

field1 

field2 
FLAG 

2.71828 

Object #1 

Object #2 

Version 

field1 

field2 
FLAG 

23 

owner 

next 

Version 

field1 

field2 
FLAG 

55 

owner 

next 

type 

readers 

versions 

OtherClass 

type 

{OID68} 

MyClass 

readers 

versions 

status 
WAITING 

status 
COMMITTED 

status 
COMMITTED 

Version 

field1 

field2 
’A’ 

FLAG 

owner 

next 

Version 

field1 

field2 
’B’ 

FLAG 

owner 

next 

{OID25} 

Transaction ID #68 Transaction ID #56 

Transaction ID #23 

. 

. 

. 

. 

. 

. . 
. 
. 

. 

. 

. 

. 

. 

. 
. 
. 
. 

Transactions using version lists 

Ananian, 6.895 – p. 16 



• 

• FLAG 

time? 

• FLAG

• 

• 

• 

• yggdrasil 

Races, races, everywhere! 
Lots of possible races: 

What if two threads try to a field at the same 

What if two threads try to copy-back a ged field at 
the same time? 

What if two transactions perform conflicting updates? 

Do transactions commit atomically? 

Formulated model in Promela and used Spin to 
verify correctness. 

Used the 16G on memory on to good 
advantage. 

Ananian, 6.895 – p. 17 



inline 
do 
:: v = object[o].field[f]; 

if 
:: (v!=FLAG) -> break /* done! */ 
:: else 
fi; 

if 
:: (_st==false_flag) -> 

v = FLAG; 
break 

:: else 
fi 

od 
} 

Non-transactional Read 
readNT(o, f, v) { 

copyBackField(o, f, kill_writers, _st); 

Ananian, 6.895 – p. 18 



inline 
if 
:: (nval != FLAG) -> 

do 
:: atomic { 

if /* this is a 
:: (object[o].readerList == NIL) -> 

object[o].fieldLock[f] = _thread_id; 
object[o].field[f] = nval; 
break /* success! */ 

:: else 
fi 

} 
/* unsuccessful SC */ 

od 
:: else -> /* create false 

this as a short *transactional* write. */ 
/* start a new transaction, write FLAG, commit the transaction, 
* repeat until successful. Implementation elided. */ 

fi; 
} 

Non-transactional Write 
writeNT(o, f, nval) { 

LL(readerList)/SC(field) */ 

copyBackField(o, f, kill_all, _st) 

flag */ 
/* implement 

Ananian, 6.895 – p. 19 



_nonceV=NIL; _ver = NIL; _r = NIL; st = success; 
to abort each version. when abort got a 

* 
do 
:: _ver = object[o].version; 

if 
:: (_ver==NIL) -> 

st = /* the us */ 
:: else 
fi; 
/* move owner to local var to avoid races (owner set to NIL behind 
* our 

if 
:: -> 

break /* found a 
:: else 
fi; 
/* link out an 

od; 

Copy-back Field, part I 
inline copyBackField(o, f, mode, st) { 

/* try fails, we’ve 
committed version. */ 

saw_race; break someone’s done copyback for 

back) */ 
_tmp_tid=version[_ver].owner; 
tryToAbort(_tmp_tid); 

(_tmp_tid==NIL || transid[_tmp_tid].status==committed) 
committed version */ 

aborted version */ 
assert(transid[_tmp_tid].status==aborted); 
CAS_Version(object[o].version, _ver, version[_ver].next, _); 

continued. . .Ananian, 6.895 – p. 20 



link in our nonce. this will 
* 

if 
:: (st==success) -> 

assert (_ver!=NIL); 

if 
:: (!_cas_stat) -> 

st = saw_race_cleanup 
:: else 
fi 

:: else 
fi; 

Copy-back Field, part II 
/* okay, prevent others from doing the 

copyback. */ 

allocVersion(_retval, _nonceV, aborted_tid, _ver); 
CAS_Version(object[o].version, _ver, _nonceV, _cas_stat); 

continued. . . 

Ananian, 6.895 – p. 21 



/* check that no one’s beaten us to the copy back */ 
if 
:: (st==success) -> 

if 
:: -> 

_val = 
if 
:: (_val==FLAG) -> /* false 

st = ...no copy back 
:: else -> /* not a false 

if 
:: (object[o].version == _nonceV) -> 

= _thread_id; 
object[o].field[f] = _val; 

:: else fail. Must 
st = need to clean up nonce */ 

fi 
} 

fi 
:: else doesn’t set _val=FLAG*/ 

st = need to nonce */ 
fi 

:: else /* 
fi; 

Copy-back Field, part III 

(object[o].field[f]==FLAG) 
version[_ver].field[f]; 

flag... */ 
false_flag /* needed */ 

flag */ 
d_step { /* LL/SC */ 

object[o].fieldLock[f] 

/* hmm, retry. */ 
saw_race_cleanup /* 

/* may arrive here because of readT, which 
saw_race_cleanup /* clean up 

!success */ 

continued. . . 
Ananian, 6.895 – p. 22 



kill or not. This ensures that we 
* make called from a readNT sets readerList 
* to st will 
* this 

if 
:: (mode == kill_all) -> 

do /* kill all 
:: 

if 
:: (_r==NIL) -> break 
:: else 
fi; 

/* link out this reader */ 
_r, 

od; 
:: else /* no more 
fi; 
/* done */ 

} 

done! 

Copy-back Field, part IV 
/* always readers, whether successful 

progress if writeNT after 
non-null without changing FLAG _val (see immediately above; 
equal saw_race_cleanup in scenario). */ 

readers */ 
moveReaderList(_r, object[o].readerList); 

tryToAbort(readerlist[_r].transid); 

CAS_Reader(object[o].readerList, readerlist[_r].next, _); 

killing needed. */ 

Ananian, 6.895 – p. 23 



Conclusions 

Ananian, 6.895 – p. 24 



• 

• 

• 

Conclusions 
Non-blocking transactions are a useful and 
intuitive means of concurrency control. 
Software implementations of non-blocking 
transactions are possible and may be efficient, 
but hard to get right! 
The Spin model checking tool is an excellent way 
to nail down indeterminacies in parallel code and 
more rigorously show correctness. 

Ananian, 6.895 – p. 25 


	Outline
	Non-blocking Transactions
	Transactions (review)
	Non-blocking synchronization
	Non-blocking algorithms are hard!
	The Spin Model Checker
	The Spin Model Checker
	Dekker's mutex algorithm (C)
	Dekker's ``railroad''
	Dekker's mutex algorithm (Promela)
	Spin verification
	Spin theory
	Modeling software transactions
	A software transaction implementation
	Transactions using version lists
	Races, races, everywhere!
	Non-transactional Read
	Non-transactional Write
	Copy-back Field, part I
	Copy-back Field, part II
	Copy-back Field, part III
	Copy-back Field, part IV
	Conclusions
	Conclusions

