
Problem

● Parallelize (serial) applications that use files.
– Examples: compression tools, logging utilities, databases.

● In general
– applications that use files depend on sequential output,
– serial append is the usual file I/O operation.

● Goal:
– perform file I/O operations in parallel,
– keep the sequential, serial append of the file.

Results

●	 Cilk runtime-support for serial append with good
scalability.

●	 Three serial append schemes and implementations for
Cilk:
1. ported Cheerio, previous parallel file I/O API (M. Debergalis),
2. simple prototype (with concurrent Linked Lists),
3. extension, more efficient data structure (concurrent double-

linked Skip Lists).

●	 Parallel bz2 using PLIO.

Single Processor Serial Append

FILE (serial append)

1

5

12

92 6

1187

3 4

10

computation DAG

Single Processor Serial Append

FILE (serial append)

1 2 3

computation DAG

1

5

12

92 6

1187

3 4

10

Single Processor Serial Append

FILE (serial append)

1 2 3 4 5 6 7

computation DAG

1

5

12

92 6

1187

3 4

10

Single Processor Serial Append

FILE (serial append)

1 2 3 4 5 6 7 8 9 10 11 12

computation DAG

1

5

12

92 6

1187

3 4

10

Single Processor Serial Append

FILE (serial append)

1 2 3 4 5 6 7 8 9 10 11 12

computation DAG Why not in parallel?!

1

5

12

92 6

1187

3 4

10

Fast Serial Append

ParalleL file I/O (PLIO) support

for Serial Append in

Cilk

Alexandru Caracaş

Outline

● Example
– single processor & multiprocessor

● Semantics
– view of Cilk Programmer

● Algorithm
– modification of Cilk runtime system

● Implementation
– Previous work

● Performance
– Comparison

Multiprocessor Serial Append

FILE (serial append)

1

5

12

92 6

1187

3 4

10

computation DAG

Multiprocessor Serial Append

FILE (serial append)

1 2 7

computation DAG

1

5

12

92 6

1187

3 4

10

Multiprocessor Serial Append

FILE (serial append)

1 2 3 5 7 8 9

computation DAG

1

5

12

92 6

1187

3 4

10

Multiprocessor Serial Append

FILE (serial append)

1 2 3 4 5 7 8 9 106

computation DAG

1

5

12

92 6

1187

3 4

10

Multiprocessor Serial Append

FILE (serial append)

1 2 3 4 5 6 7 8 9 10 11 12

computation DAG

1

5

12

92 6

1187

3 4

10

File Operations

●	 open (FILE, mode) / close (FILE).
●	 write (FILE, DATA, size)

–	 processor writes to its PION.

●	 read (FILE, BUFFER, size)
–	 processor reads from PION.

●	 Note: a seek operation may be required

●	 seek (FILE, offset, whence)
–	 processor searches for the right PION in the ordered data

structure

Semantics

● View of Cilk programmer:
– Write operations

● preserve the sequential, serial append.

– Read and Seek operations
● can occur only after the file has been closed,
● or on a newly opened file.

Approach (for Cilk)

● Bookkeeping (to reconstruct serial append)
– Divide execution of the computation,
– Meta-Data (PIONs) about the execution of the computation.

● Observation
– In Cilk, steals need to be accounted for during execution.

● Theorem
– expected # of steals = O (PT∞).

● Corollary (see algorithm)
– expected # of PIONs = O (PT∞).

PION (Parallel I/O Node)

●	 Definition: a PION represents all the write operations to
a file performed by a processor in between 2 steals.

●	 A PION contains:
–	 # data bytes written,
–	 victim processor ID,
–	 pointer to written data.

π1
π1 π3

π3 π2
π2 π4

π4
PION

1 2 3 4 5 6 7 8 9 10 11 12FILE

Algorithm

●	 All PIONSs are kept in an ordered data structure.
–	 very simple Example: Linked List.

●	 On each steal operation performed by processor Pi from
processor Pj:

–	 create a new PION πi,
–	 attach πi immediately after πj, the PION of P in the order dataj

structure.

PIONs
π1
π1 πk

πkπj
πj

Algorithm

●	 All PIONSs are kept in an ordered data structure.
–	 very simple Example: Linked List.

●	 On each steal operation performed by processor Pi from
processor Pj:

–	 create a new PION πi,
–	 attach πi immediately after πj, the PION of P in the order dataj

structure.

PIONs
π1
π1 πk

πkπj
πj

πi
πi

Algorithm

●	 All PIONSs are kept in an ordered data structure.
–	 very simple Example: Linked List.

●	 On each steal operation performed by processor Pi from
processor Pj:

–	 create a new PION πi,
–	 attach πi immediately after πj, the PION of P in the order dataj

structure.

π1
π1 πj

πj πk
πk

PIONs
πi
πi

Implementation

●	 Modified the Cilk runtime system to support desired
operations.

–	 implemented hooks on the steal operations.

●	 Initial implementation:
–	 concurrent Linked List (easier algorithms).

●	 Final implementation:
–	 concurrent double-linked Skip List.

●	 Ported Cheerio to Cilk 5.4.

Details of Implementation

●	 Each processor has a buffer for the data in its own
PIONs

–	 implemented as a file.

●	 Data structure to maintain the order of PIONs:
–	 Linked List, Skip List.

●	 Meta-Data (order maintenance structure of PIONs)
–	 kept in memory,
–	 saved to a file when serial append file is closed.

Skip List

● Similar performance with search trees:
– O (log (SIZE)).

NILNIL

NILNIL

NILNIL

NILNIL

Double-Linked Skip List

●	 Based on Skip Lists (logarithmic performance).
●	 Cilk runtime-support in advanced implementation of

PLIO as rank order statistics.

NILNIL

NILNIL

NILNIL

NILNIL

PLIO Performance

● no I/O vs writing 100MB with PLIO (w/ linked list),
● Tests were run on yggdrasil a 32 proc Origin machine.

14

● Parallelism=32, 13

12
● Legend:

11

10– black: no I/O,
9

–	 red: PLIO. 8

7

6

5

4

3

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

1 2 3 4 5 6 7 8

Number of Processors

Improvements & Conclusion

● Possible Improvements:
– Optimization of algorithm:

●	 delete PIONs with no data,
●	 cache oblivious Skip List,

– File system support,
– Experiment with other order maintenance data structures:

●	 B-Trees.

● Conclusion:
– Cilk runtime-support for parallel I/O

●	 allows serial applications dependent on sequential output to be
parallelized.

References

–	 Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. In Proceedings
of the 35th Annual Symposium on Foundations of Computer
Science, pages 356-368, Santa Fe, New Mexico, November
1994.

–	 Matthew S. DeBergalis. A parallel file I/O API for Cilk.
Master's thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
June 2000.

–	 William Pugh. Concurrent Maintenance of Skip Lists.
Departments of Computer Science, University of Maryland,
CS-TR-2222.1, June, 1990.

References

–	 Thomas H. Cormen, Charles E. Leiserson, Donald L. Rivest
and Clifford Stein. Introduction to Algorithms (2nd Edition).
MIT Press. Cambridge, Massachusetts, 2001.

–	 Supercomputing Technology Group MIT Laboratory for
Computer Science. Cilk 5.3.2 Reference Manual, November
2001. Available at http://supertech.lcs.mit.edu/cilk/manual-
5.3.2.pdf.

–	 bz2 source code. Available at http://sources.redhat.com/bzip2.

	Problem
	Results
	Single Processor Serial Append
	Single Processor Serial Append
	Single Processor Serial Append
	Single Processor Serial Append
	Single Processor Serial Append
	Fast Serial Append
	Outline
	Multiprocessor Serial Append
	Multiprocessor Serial Append
	Multiprocessor Serial Append
	Multiprocessor Serial Append
	Multiprocessor Serial Append
	File Operations
	Semantics
	Approach (for Cilk)
	PION (Parallel I/O Node)
	Algorithm
	Algorithm
	Algorithm
	Implementation
	Details of Implementation
	Skip List
	Double-Linked Skip List
	PLIO Performance
	Improvements & Conclusion
	References
	References

