
Problem


● Parallelize (serial) applications that use files. 
– Examples: compression tools, logging utilities, databases. 

● In general 
– applications that use files depend on sequential output, 
– serial append is the usual file I/O operation. 

● Goal: 
– perform file I/O operations in parallel, 
– keep the sequential, serial append of the file. 



Results


●	 Cilk runtime-support for serial append with good 
scalability. 

●	 Three serial append schemes and implementations for 
Cilk: 
1. ported Cheerio, previous parallel file I/O API (M. Debergalis), 
2. simple prototype (with concurrent Linked Lists), 
3. extension, more efficient data structure (concurrent double-

linked Skip Lists). 

●	 Parallel bz2 using PLIO. 
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Outline


● Example 
– single processor & multiprocessor 

● Semantics 
– view of Cilk Programmer 

● Algorithm 
– modification of Cilk runtime system 

● Implementation 
– Previous work 

● Performance 
– Comparison 
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File Operations


●	 open (FILE, mode) / close (FILE). 
●	 write (FILE, DATA, size) 

–	 processor writes to its PION. 

●	 read (FILE, BUFFER, size) 
–	 processor reads from PION. 

●	 Note: a seek operation may be required 

●	 seek (FILE, offset, whence) 
–	 processor searches for the right PION in the ordered data 

structure 



Semantics


● View of Cilk programmer: 
– Write operations 

● preserve the sequential, serial append. 

– Read and Seek operations 
● can occur only after the file has been closed, 
● or on a newly opened file. 



Approach (for Cilk)


● Bookkeeping (to reconstruct serial append) 
– Divide execution of the computation, 
– Meta-Data (PIONs) about the execution of the computation. 

● Observation 
– In Cilk, steals need to be accounted for during execution. 

● Theorem 
– expected # of steals = O ( PT∞ ). 

● Corollary (see algorithm) 
– expected # of PIONs = O ( PT∞ ). 



PION (Parallel I/O Node)


●	 Definition: a PION represents all the write operations to 
a file performed by a processor in between 2 steals. 

●	 A PION contains: 
–	 # data bytes written, 
–	 victim processor ID, 
–	 pointer to written data. 
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Algorithm


●	 All PIONSs are kept in an ordered data structure. 
–	 very simple Example: Linked List. 

●	 On each steal operation performed by processor Pi from 
processor Pj: 

–	 create a new PION πi, 
–	 attach πi immediately after πj, the PION of P in the order dataj

structure. 
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Implementation


●	 Modified the Cilk runtime system to support desired 
operations. 

–	 implemented hooks on the steal operations. 

●	 Initial implementation: 
–	 concurrent Linked List (easier algorithms). 

●	 Final implementation: 
–	 concurrent double-linked Skip List. 

●	 Ported Cheerio to Cilk 5.4. 



Details of Implementation


●	 Each processor has a buffer for the data in its own 
PIONs 

–	 implemented as a file. 

●	 Data structure to maintain the order of PIONs: 
–	 Linked List, Skip List. 

●	 Meta-Data (order maintenance structure of PIONs) 
–	 kept in memory, 
–	 saved to a file when serial append file is closed. 



Skip List


● Similar performance with search trees: 
– O ( log (SIZE) ). 

NILNIL 

NILNIL 
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Double-Linked Skip List


●	 Based on Skip Lists (logarithmic performance). 
●	 Cilk runtime-support in advanced implementation of 

PLIO as rank order statistics. 

NILNIL 
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PLIO Performance


● no I/O vs writing 100MB with PLIO (w/ linked list), 
● Tests were run on yggdrasil a 32 proc Origin machine. 
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Improvements & Conclusion


● Possible Improvements: 
– Optimization of algorithm: 

●	 delete PIONs with no data, 
●	 cache oblivious Skip List, 

– File system support, 
– Experiment with other order maintenance data structures: 

●	 B-Trees. 

● Conclusion: 
– Cilk runtime-support for parallel I/O 

●	 allows serial applications dependent on sequential output to be 
parallelized. 
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