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6.895 Theory of Parallel Systems	 Lecture 15 

Snoopy caching and the Spin-Block Problem 
Lecturer: Bradley C. Kuszmaul and Michael Bender Scribe: Sharad Ganesh and Neelkamal 

Lecture Summary 

1.	 Competitive snoopy cache proof

This section discusses the proof by induction of snoopy bus-based caching algorithm.


2.	 Directory-based caching systems 
This section gives a brief overview of the algorithm and its scalability as compared to the snoopy cache 
algorithm. 

3.	 Randomized algorithm for the Ski-rental Problem 
This section introduces the Spin-Block problem, which is a continuous version of the Ski-buy problem. 

Strategy for the proof (Snoopy caching) 

A competitive algorithm that is within a factor of 2. The idea is to keep these buckets such that: 

The economics of the algorithm: 

Wi(B) =  p ; whenever we have to fetch block B from memory(M). 

Wj (B) −−  ; when i writes and j has money in its cookie-jar. Whenever I do a write, I decrement somebody 
else’s cookie jar. At some point of time they are going to put money into the cookie-jar, so I am actually 
going to charge them something. If nobody has any money left, then they all have to invalidate their copies 
in their caches and then I will not have to do a broadcast in future. 

Wi(B) = 0 ; when I drop a block. A reason I could drop a block is the possiblility of a conflict with 
another block or maybe somebody else decremented my cookie-jar count to 0. 

Wi(B) + + ; We increment the count upto a point(only upto p), when we read a block. 

Some facts about the algorithm 

It does tell us when there is going to be a switch from a write-through to a write-back. Basically, you

do a switch from pack-rat, where everybody tries to hang onto everything, to the exclusive write where I can

do writes to my local cache and not tell anybody. Basically, I have to broadcast(keep updating everybody)

as long as everyone is reading.


We are not too far off from the optimal, because everytime I did one of these operations that add money,

there was already doing an operation that cost me that much (anyway Wi(B) =  p cost p cycles). So i’m

putting money into the cookie-jar(i.e. p).

So, anybody who is going to do work and steal money from my cookie-jar, that work just charge it to me.

Otherwise, anytime I increment it, because I did a read, its saying if it weren’t in the cache, I’d be happy to

pay something to have it gotten into the cache, because the read would really have cost me a lot more.
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1.1 Strategy 

Define a potential function, which function that tells us how far off our algorithm is from the offline algorithm 
A. 
This is a function of the cache states of algorithm A(which is the one we are trying to beat - to come up 
within a factor of 2 of A). Those cache states after processing i steps in sequence of operations(reads and 
writes). The sequence we are talking about is: 

- τ : which is the ops for A for the first read/write (tagged ”A”)

- ops for dsc for the first read / write (tagged ”dsc”)

- supply / update at the end of the first read / write. (tagged ”both” - because both have to do it)


Basically both the algorithms are constrained in the sense that, when they see the first read, they can

do whatever they want to, but you have to end with the supply which gives the value to the processor.


We will be taking all the operations for A and tag them as specified in the bracket as tagged ”A”. It

is important to know the order in which the ops happened.


1.2 What is this potential function ? 

φ(t) =  (wi(B) − 2p) +  −wi(B). (1) 
(i,B)∈SA (i,B) /∈SA 

where: (i, B) ∈ SA =¿ A has B in cache i at step t. Basically, the set of things that A caches. 

Recall wi(B) = 0 iff it is not in cache i. So, no matter how big the memory is, there is only a certain 
amount of non-zero values in the sum in equation (1). 

1.3 Proof by induction of the following statement 

COSTdsc(t) − 2COSTA(t) ≤ φ(t) − φ(0). (2) 

where: 
COSTdsc(t): cost of doing dsc upto time t 
COSTdsc(t): cost of doing A upto time t 
RHS : Amount the potential function has increased since we started. 

Theorem 1 
COSTdsc(t) ≤ 2COSTA(t) +  k 

where: k is essentially the difference of the potential functions. 
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If cache started out with 0, i.e. completely empty, then k = 0.  But, if cache started out with some value, 
that may favor A, k covers for that. 

By construction: 

φt ≤ 0. (3) 

Basically, the Wi� s(B) are between 0 and p. (0 ≤ wi(B) ≤ p).

Then we take some point of those numbers, subtract 2p and then −wi(B) makes it more negative.

So, we are taking a negative number + something having to do with the initial state.

Just let,


k = −φ(0) 

If the caches are completely empty at the beginning of the algorithm, φ(0) will turn out be be 0. So, 
we will later see that this will actually prove k = 0, if the cache starts out empty. 

Proof 
Base case for induction (t=0) 

LHS:Neither algorithm has done anything yet, so their costs are both 0. 
RHS: φ(0) − φ(0) = 0.  

Both sides are 0. 

Inductive case: Basically, we want to show something about the changes in the costs and how they are 
related to the change in potential function. We would want to show: 

∆COSTdsc − 2∆COSTA ≤ φ 

where: 

∆COSTdsc denotes the change in cost of dsc. 
∆COSTA denotes the change in cost of A. 

We present a case analysis for the above: 
Idea of the analysis: 

We have the sequences, that we’d discussed earlier, and for everything in the sequence the property holds. 
i.e. We have to show that, if one of them drops a block or does a fetch or an update, the changes should 
have this property. 

We will go through some of the cases, but for the rest you can refer to the Goodman’s paper [1].


Case 1:

Step: A does a fetchblock(i, B), which is fetching over the bus to get a block into cache i of block B.
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∆COSTA = p 

∆COSTdsc = 0  

This is because, dsc did’nt do anything 

Now we have to show: 
∆φ ≥ 2p 

Before the action: (i, B) /∈ SA 

This is because, none of these snoopy caches do a fetch unless they do a read / write. Moreover, they don’t 
a fetch if they already got it cached. So, before the action it was’nt in the cache. 

After the action: (i, B) ∈ SA 

After the action, it is in the cache. 

So, 
∆φ = wi(B) − 2p − wi(B) 

Therefore, ∆φ = −2p

Therefore, whatever A does if it does a fetch, potential function does the right thing.


Case 2:

A drops (i, B)


At this point ’A’ has more freedom to do something different than we did. ’A’ might drop something

that you didn’t drop because we were still paying something and so could’nt drop it. A might decide to drop

something and let the slot be occupied by something else. In that case, I won’t be incurring any cost for

update later.


∆COSTA = 0  

∆COSTdsc = 0  

Now we have to show: 
∆φ ≥ 0 

So we have,

wi(B) + 2p − wi(B)

The second −wi(B), because it is no longer in the cache.


∆φ = −2wi(B) + 2p 

The above term is always greater than or equal to 0, because 0 ≤ Wi(B) ≤ p. 
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Case 3: 
dsc does a fetchblock(i, B) 

∆COSTdsc = p 

∆COSTA = 0  

Now we have to show: 
∆φ ≥ p 

Therefore here, wi(B) changes from 0 to p.

Before it was’nt in the cache(wi(B) = 0), and then when we did a fetch we set(wi(B) = p).

Since we did A’s operations first, we must have (i, B) in A’s cache at the end of A’s ops. Both algorithms

can be supplied from the cache. The key point is since we did A’s ops first, we know it is in the cache.


Therefore, 
∆φ = p 

For the other cases, you can read the Goodman’s[1] paper. 

Directory based caches 

The problem with MESI is the bus. 
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Dir
 42

 NET 

M 
E 
S
 I

 M 

Figure 1: MESI network setup 

Some processor wants to obtain E(exclusive) access, So send a message to M saying you want E access. 

Case 1: Nobody has it. Memory says you have got it and changes the state. 
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 No body has it in their cache

 Processor k has it in E state
 Processor 4, 7, 9 has it in S state 

Figure 2: A typical directory entry 

Case 2: Some other proc has it in E state. M sends message to the other processor. The other proces-
sor sends it to M. If it has been modified, it has to send it back to M. In any case M sends it to P. Real 
machines do a shortcut sending a message directly to the processor. 

Directory based cache analysis 
None. 

3 Spin-Block Problem 

There are basically two ways in which a process waits for a lock 

1. Spin: keep on waiting in a nop loop till get the lock Cost = spin time 

2. Block: You ask the lock manager to give u a lock and while he manages for the lock u go on and do 
your work and return after some time. Cost: fixed cost ’c’ 

4 Continuous ski rental problem 

A simple algorithm based on randomized algorithm strategy. 

4.1 Spin 

1. until time c/2 
2. With probability P, block 
3. With probability 1-P, keep spinning until ’c’ spins. 
4. Then block 

Definition 2 f(t) = expected cost of waiting t units of time. ⎧
⎨ t, t < c/2;

f(t)= p(c + c/2) + (1  − p)t, c/2 ≤ t < c; ⎩ 

p(c + c/2) + (1  − p) ∗ 2c, t ≥ c. 

Goal: Choose p to minimize competitive ratio (1+ α)

Setting the inequalities to equalities and solving:


f (t) =  c/2 +  pc = (1  +  α)c/2 (4) 

f (t) =  p(3/2c) + (1  − p) ∗ 2c = (1  +  α)c (5) 

p = 2/5 (6) 

1 +  α = 9/5 (7) 

Good News: (1+ α) is less than 2. 
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Definition 3 Function Π(t) = density function of time before a processor should block. 

Expected cost of waiting Q steps. 

∫ q ∏ ∫ inf 

f (q) =  dt (t)(t + c) +  q (dtΠ(t)) (8) 
t=0 t=q 

Solving the above equation: 
Idea: choose Π(t) to minimum competitive ratio: 

∫ inf 

f 1(q) = (q + c)Π(q) +  (dtΠ(t)) − qΠ(q) (9) 
t=q 

∫ inf 

f 1(q) =  cΠ(q) +  (dtΠ(t)) − qΠ(q) (10) 
t=q 

f 2(q) =  cΠ1(q) − cΠ(q) = 0 (11) 

Π(q) =  A exp q/c (12) 

Calculating A 
c 

dtΠ(t) = 1 (13) 
t=0 

c 

A exp(t/c)dt ⇒ AC(e − 1) = 1 (14) 
t=0 

⇒ A = 1/(C(e − 1)) (15) 

Calculating 1+α 
c 

f (C)/C = A/C × dt(t + C) exp(t/c) (16) 
t=0 

= A/C × C2 (17) 

= e/(e − 1) � 1.59 (18) 

Note: If you make this discrete space solution, then also u will get the same value 
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